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SET THEORYSET THEORY



Copyright © Cengage Learning. All rights reserved.

Properties of Sets

SECTION 6.2
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Properties of Sets

We begin by listing some set properties that involve subset 
relations.
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Properties of Sets

Procedural versions of the definitions of the other set 
operations are derived similarly and are summarized 
below.
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Example 1 – Proof of a Subset Relation

Prove Theorem 6.2.1(1)(a): For all sets A and B, 

A ∩∩∩∩ B ⊆ A.

Solution:
We start by giving a proof of the statement and then 
explain how you can obtain such a proof yourself.
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Example 1 – Solution

Proof:

Suppose A and B are any sets and suppose x is any 
element of A ∩∩∩∩ B.

Then x ∈ A and x ∈ B by definition of intersection. 

In particular, x ∈ A .

Thus A ∩∩∩∩ B ⊆ A.

cont’d
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Example 1 – Solution

The underlying structure of this proof is not difficult, but it is 
more complicated than the brevity of the proof suggests. 

The first important thing to realize is that the statement to 
be proved is universal (it says that for all sets A and B, 
A ∩∩∩∩ B ⊆ A). 

The proof, therefore, has the following outline:

Starting Point: Suppose A and B are any (particular but 
arbitrarily chosen) sets.

To Show: A ∩∩∩∩ B ⊆ A

cont’d
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Example 1 – Solution

Now to prove that A ∩∩∩∩ B ⊆ A, you must show that

∀∀∀∀x, if x ∈ A ∩∩∩∩ B then x ∈ A.

But this statement also is universal. So to prove it, you

suppose x is an element in A ∩∩∩∩ B

and then you

show that x is in A.

cont’d
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Example 1 – Solution

Filling in the gap between the “suppose” and the “show” is 
easy if you use the procedural version of the definition of 
intersection: To say that x is in A ∩∩∩∩ B means that

x is in A and      x is in B.

This allows you to complete the proof by deducing that, in 
particular,

x is in A,
as was to be shown. 

Note that this deduction is just a special case of the valid 
argument form       

p ∧ q

•  p.

cont’d
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Set Identities
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Set Identities

An identity is an equation that is universally true for all 
elements in some set. For example, the equation 
a + b = b + a is an identity for real numbers because it is 
true for all real numbers a and b. 

The collection of set properties in the next theorem consists 
entirely of set identities. That is, they are equations that are 
true for all sets in some universal set.



12

Set Identities
cont’d
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Set Identities
cont’d
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Proving Set Identities
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Proving Set Identities

As we have known,

Two sets are equal ⇔ each is a subset of the other.

The method derived from this fact is the most basic way to 
prove equality of sets.
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Example 2 – Proof of a Distributive Law

Prove that for all sets A, B, and C,

A ∪∪∪∪ (B ∩∩∩∩ C) = (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C).

Solution:
The proof of this fact is somewhat more complicated than 
the proof in Example 1, so we first derive its logical 
structure, then find the core arguments, and end with a 
formal proof as a summary.
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Example 2 – Solution

As in Example 1, the statement to be proved is universal, 
and so, by the method of generalizing from the generic 
particular, the proof has the following outline:

Starting Point: Suppose A, B, and C are arbitrarily chosen 
sets.

To Show: A ∪∪∪∪ (B ∩∩∩∩ C) = (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C).

cont’d
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Example 2 – Solution

Now two sets are equal if, and only if, each is a subset of 
the other. 

Hence, the following two statements must be proved:

A ∪∪∪∪ (B ∩∩∩∩ C) ⊆ (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C)

and (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C) ⊆ A ∪∪∪∪ (B ∩∩∩∩ C).

Showing the first containment requires showing that

∀∀∀∀x, if x ∈ A ∪∪∪∪ (B ∩∩∩∩ C) then x ∈ (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C).

cont’d
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Example 2 – Solution

Showing the second containment requires showing that

∀∀∀∀x, if x ∈ (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C) then x ∈ A ∪∪∪∪ (B ∩∩∩∩ C).

Note that both of these statements are universal. So to 
prove the first containment, you

suppose you have any element x in A ∪∪∪∪ (B ∩∩∩∩ C),

and then you 

show that x ∈ (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C).

cont’d
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Example 2 – Solution

And to prove the second containment, you

suppose you have any element x in (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C),

and then you 

show that x ∈ A ∪∪∪∪ (B ∩∩∩∩ C).

cont’d
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Example 2 – Solution

In Figure 6.2.1, the structure of the proof is illustrated by 
the kind of diagram that is often used in connection with 
structured programs.

cont’d

Figure 6.2.1
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Example 2 – Solution

The analysis in the diagram reduces the proof to two 
concrete tasks: filling in the steps indicated by dots in the 
two center boxes of Figure 6.2.1.

cont’d

Figure  6.2.1 (continued)
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Example 2 – Solution

Filling in the missing steps in the top box:

To fill in these steps, you go from the supposition that 
x ∈ A ∪∪∪∪ (B ∩∩∩∩ C) to the conclusion that 
x ∈ (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C).

Now when x ∈ A ∪∪∪∪ (B ∩∩∩∩ C), then by definition of union, 
x ∈ A or x ∈ B ∩∩∩∩ C. But either of these possibilities might 
be the case because x is assumed to be chosen arbitrarily 
from the set A ∪∪∪∪ (B ∩∩∩∩ C).

So you have to show you can reach the conclusion that 
x ∈ (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C) regardless of whether x happens to 
be in A or x happens to be in B ∩∩∩∩ C.

cont’d
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Example 2 – Solution

This leads you to break your analysis into two cases: x ∈ A

and x ∈ B ∩∩∩∩ C.

In case x ∈ A, your goal is to show that 
x ∈ (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C), which means that 
x ∈ A ∪∪∪∪ B and x ∈ A ∪∪∪∪ C (by definition of intersection). But 
when x ∈ A, both statements x ∈ A ∪∪∪∪ B and x ∈ A ∪∪∪∪ C are 
true by virtue of x’s being in A.

Similarly, in case x ∈ B ∩∩∩∩ C, your goal is also to show that 
x ∈ (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C), which means that x ∈ A ∪∪∪∪ B and 
x ∈ A ∪∪∪∪ C.

cont’d
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Example 2 – Solution

But when x ∈ B ∩∩∩∩ C, then x ∈ B and x ∈ C (by definition of 
intersection), and so x ∈ A ∪∪∪∪ B (by virtue of being in B) and 
x ∈ A ∪∪∪∪ C (by virtue of being in C).

This analysis shows that regardless of whether x ∈ A or 
x ∈ B ∩∩∩∩ C, the conclusion x ∈ (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C) follows. 
So you can fill in the steps in the top inner box.

Filling in the missing steps in the bottom box:

To fill in these steps, you need to go from the supposition 
that x ∈ (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C) to the conclusion that 
x ∈ A ∪∪∪∪ (B ∩∩∩∩ C).

cont’d
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Example 2 – Solution

When x ∈ (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C) it is natural to consider the 
two cases x ∈ A and x ∉ A because when x happens to be 
in A, then the statement “x ∈ A or x ∈ B ∩∩∩∩ C” is certainly 
true, and so x is in A ∪∪∪∪ (B ∩∩∩∩ C) by definition of union. 

Thus it remains only to show that even in the case when x
is not in A, and x ∈ (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C), then 
x ∈ A ∪∪∪∪ (B ∩∩∩∩ C).

So suppose x is not in A. Now to say that 
x ∈ (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C) means that x ∈ A ∪∪∪∪ B and 
x ∈ A ∪∪∪∪ C (by definition of intersection). But when 
x ∈ A ∪∪∪∪ B, then x is in at least one of A or B, so since x is 
not in A, then x must be in B.

cont’d
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Example 2 – Solution

Similarly, when x ∈ A ∪∪∪∪ C, then x is in at least one of A or 
C, so since x is not in A, then x must be in C. Thus, when x
is not in A and x ∈ (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C), then x is in both B
and C, which means that x ∈ B ∩∩∩∩ C. 

It follows that the statement “x ∈ A or x ∈ B ∩∩∩∩ C” is true, 
and so x ∈ A ∪∪∪∪ (B ∩∩∩∩ C) by definition of union.

This analysis shows that if x ∈ (A ∪∪∪∪ B) ∩∩∩∩ (A ∪∪∪∪ C), then 
regardless of whether x ∈ A or x ∉ A, you can conclude 
that x ∈ A ∪∪∪∪ (B ∩∩∩∩ C). Hence you can fill in the steps of the 
bottom inner box.

cont’d
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Proving Set Identities

Suppose A and B are arbitrarily chosen sets.
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Proving Set Identities

The set property given in the next theorem says that if one 
set is a subset of another, then their intersection is the 
smaller of the two sets and their union is the larger of the 
two sets.
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The Empty Set
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The Empty Set

The crucial fact is that the negation of a universal 
statement is existential: If a set B is not a subset of a set A, 
then there exists an element in B that is not in A. But if B
has no elements, then no such element can exist.

If E is a set with no elements and A is any set, then to say 
that E ⊆ A is the same as saying that

∀∀∀∀x, if x ∈ E, then x ∈ A.
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The Empty Set

But since E has no elements, this conditional statement is 
vacuously true.

How many sets with no elements are there? Only one.

Suppose you need to show that a certain set equals the 
empty set. By Corollary 6.2.5 it suffices to show that the set 
has no elements.
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The Empty Set

For since there is only one set with no elements (namely 
Ø), if the given set has no elements, then it must equal Ø.
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Example 5 – A Proof for a Conditional Statement

Prove that for all sets A, B, and C, if A ⊆ B and B ⊆ Cc, 
then A ∩∩∩∩ C = Ø.

Solution:

Since the statement to be proved is both universal and 
conditional, you start with the method of direct proof:

Suppose A, B, and C are arbitrarily chosen sets

that satisfy the condition: A ⊆ B and B ⊆ Cc.

Show that A ∩∩∩∩ C = Ø.
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Example 5 – Solution

Since the conclusion to be shown is that a certain set is 
empty, you can use the principle for proving that a set 
equals the empty set. 

A complete proof is shown below.

cont’d
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Example 5 – Solution

Proof:

Suppose A, B, and C are any sets such that A ⊆ B and 
B ⊆ Cc. We must show that A ∩∩∩∩ C = Ø. Suppose not. That 
is, suppose there is an element x in A ∩∩∩∩ C. 

By definition of intersection, x ∈ A and x ∈ C. Then, since 
A ⊆ B, x ∈ B by definition of subset. Also, since B ⊆ Cc, 
then x ∈ Cc by definition of subset again. It follows by 
definition of complement that x ∉ C. Thus x ∈ C and x ∉ C, 
which is a contradiction. 

So the supposition that there is an element x in A ∩∩∩∩ C is 
false, and thus A ∩∩∩∩ C = Ø [as was to be shown].

cont’d


