
Copyright © Cengage Learning. All rights reserved.

CHAPTER 6

SET THEORYSET THEORY



Copyright © Cengage Learning. All rights reserved.

Set Theory: Definitions and the 
Element Method of Proof

SECTION 6.1
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Set Theory: Definitions and the Element Method of Proof

The words set and element are undefined terms of set 
theory just as sentence, true, and false are undefined terms 
of logic.

The founder of set theory, Georg Cantor, suggested
imagining a set as a “collection into a whole M of definite 
and separate objects of our intuition or our thought. These 
objects are called the elements of M.”

Cantor used the letter M because it is the first letter of the 
German word for set: Menge.
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Subsets: Proof and Disproof
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Subsets: Proof and Disproof

We begin by rewriting what it means for a set A to be a 
subset of a set B as a formal universal conditional 
statement:

The negation is, therefore, existential:
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Subsets: Proof and Disproof

A proper subset of a set is a subset that is not equal to its 
containing set. Thus
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Example 1 – Testing Whether One Set Is a Subset of Another

Let A = {1} and B = {1, {1}}.

a. Is A ⊆ B?

b. If so, is A a proper subset of B?

Solution:

a. Because A = {1}, A has only one element, namely the
symbol 1. 

This element is also one of the elements in set B. Hence
every element in A is in B, and so A ⊆ B.



8

Example 1 – Solution

b. B has two distinct elements, the symbol 1 and the set {1} 
whose only element is 1. 

Since 1 ≠≠≠≠ {1}, the set {1} is not an element of A, and so 
there is an element of B that is not an element of A. 
Hence A is a proper subset of B.

cont’d
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Subsets: Proof and Disproof

Because we define what it means for one set to be a 
subset of another by means of a universal conditional 
statement, we can use the method of direct proof to 
establish a subset relationship.

Such a proof is called an element argument and is the 
fundamental proof technique of set theory.
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Example 2 – Proving and Disproving Subset Relations

Define sets A and B as follows:

a. Outline a proof that A ⊆ B.

b. Prove that A ⊆ B.

c. Disprove that B ⊆ A. 
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Example 2 – Solution

a. Proof Outline:

Suppose x is a particular but arbitrarily chosen element 
of A.

Therefore, x is an element of B.

b. Proof:
Suppose x is a particular but arbitrarily chosen element 
of A.
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Example 2 – Solution

By definition of A, there is an integer r such that 

x = 6r + 12.

Let s = 2r + 4.

Then s is an integer because products and sums of 
integers are integers.

cont’d
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Example 2 – Solution

Also 

Thus, by definition of B, x is an element of B,

c. To disprove a statement means to show that it is false, 
and to show it is false that B ⊆ A, you must find an 
element of B that is not an element of A.

cont’d
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Example 2 – Solution

By the definitions of A and B, this means that you must 
find an integer x of the form 3 � (some integer) that 
cannot be written in the form 6 � (some integer) + 12.

A little experimentation reveals that various numbers do 
the job. For instance, you could let x = 3.

Then x ∈∈∈∈ B because 3 = 3 � 1, but x ∉∉∉∉ A because there is 
no integer r such that 3 = 6r + 12. For if there were such 
an integer, then

cont’d
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Example 2 – Solution

but 3/2 is not an integer. Thus 3 ∈∈∈∈ B but 3 ∉∉∉∉ A, and 

so B A.

cont’d
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Set Equality
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Set Equality

We have known that by the axiom of extension, sets A and 
B are equal if, and only if, they have exactly the same 
elements.

We restate this as a definition that uses the language of 
subsets.
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Set Equality

This version of the definition of equality implies the 
following:

To know that a set A equals a set B, you must know

that A ⊆ B and you must also know that B ⊆ A.
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Example 3 – Set Equality

Define sets A and B as follows:

Is A = B?

Solution: 

Yes. To prove this, both subset relations A ⊆ B and B ⊆ A

must be proved.
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Example 3 – Solution

Part 1, Proof That A ⊆⊆⊆⊆ B:

Suppose x is a particular but arbitrarily chosen element of A.

[We must show that x ∈ B. By definition of B, this means we 

must show that x = 2 ���� (some integer) – 2.]

By definition of A, there is an integer a such that x = 2a.

[Given that x = 2a, can x also be expressed as 2 ���� (some 

integer) – 2? i.e., is there an integer, say b, such that 

2a = 2b – 2? Solve for b to obtain b = (2a + 2)/2 = a + 1.
Check to see if this works.]

cont’d
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Example 3 – Solution

Let b = a + 1.

[First check that b is an integer.]

Then b is an integer because it is a sum of integers.

[Then check that x = 2b – 2.]

Also 2b – 2 = 2(a + 1) – 2 = 2a + 2 – 2 = 2a = x,

Thus, by definition of B, x is an element of B

[which is what was to be shown].

Part 2, Proof That B ⊆⊆⊆⊆ A:

Similarly we can prove that B ⊆⊆⊆⊆ A. Hence A = B.

cont’d
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Venn Diagrams
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Venn Diagrams

If sets A and B are represented as regions in the plane, 
relationships between A and B can be represented by 
pictures, called Venn diagrams, that were introduced by 
the British mathematician John Venn in 1881.

For instance, the relationship A ⊆ B can be pictured in one 
of two ways, as shown in Figure 6.1.1.

Figure 6.1.1

A ⊆ B
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Venn Diagrams

The relationship A B can be represented in three different 
ways with Venn diagrams, as shown in Figure 6.1.2.

Figure 6.1.2

A    B
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Example 4 – Relations among Sets of Numbers

Since Z, Q, and R denote the sets of integers, rational 
numbers, and real numbers, respectively, Z is a subset of 
Q because every integer is rational (any integer n can be 
written in the form   ).

Q is a subset of R because every rational number is real 
(any rational number can be represented as a length on the 
number line).

Z is a proper subset of Q because there are rational 
numbers that are not integers (for example,  ).
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Q is a proper subset of R because there are real numbers 
that are not rational (for example,     ).

This is shown diagrammatically in Figure 6.1.3.

cont’d

Figure 6.1.3

Example 4 – Relations among Sets of Numbers
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Operations on Sets
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Operations on Sets

Most mathematical discussions are carried on within some 
context. For example, in a certain situation all sets being 
considered might be sets of real numbers.

In such a situation, the set of real numbers would be called 
a universal set or a universe of discourse for the
discussion.
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Operations on Sets
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Operations on Sets

Venn diagram representations for union, intersection, 
difference, and complement are shown in Figure 6.1.4.

Shaded region

represents A ∪∪∪∪ B.

Shaded region

represents A ∩∩∩∩ B.

Shaded region
represents B – A.

Shaded region
represents Ac.

Figure 6.1.4
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Example 5 – Unions, Intersections, Differences, and Complements

Let the universal set be the set U = {a, b, c, d, e, f, g} and 
let A = {a, c, e, g} and B = {d, e, f, g}. Find A ∪∪∪∪ B, A ∩∩∩∩ B, 

B – A, and Ac.

Solution: 
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Operations on Sets

There is a convenient notation for subsets of real numbers 
that are intervals.

Observe that the notation for the interval (a, b) is identical
to the notation for the ordered pair (a, b). However, context
makes it unlikely that the two will be confused.



33

Example 6 – An Example with Intervals

Let the universal set be the set R of all real numbers and 
let

These sets are shown on the number lines below.

Find A ∪∪∪∪ B, A ∩∩∩∩ B, B – A, and Ac.
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Example 6 – Solution
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Example 6 – Solution
cont’d
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Operations on Sets

The definitions of unions and intersections for more than 
two sets are very similar to the definitions for two sets.
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Operations on Sets

An alternative notation for                                     and an

alternative notation for
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For each positive integer i, let

a.

b.

Solution:

a.

Example 7 – Finding Unions and Intersections of More than Two Sets
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Example 7 – Solution
cont’d
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Example 7 – Solution

b.

cont’d
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The Empty Set
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The Empty Set

We have stated that a set is defined by the elements that 
compose it. This being so, can there be a set that has no 
elements? It turns out that it is convenient to allow such a
set.

Because it is unique, we can give it a special name. We 
call it the empty set (or null set) and denote it by the 
symbol Ø.

Thus {1, 3} ∩∩∩∩ {2, 4} = Ø and {x ∈∈∈∈ R| x2 = –1} = Ø.
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Example 8 – A Set with No Elements

Describe the set

Solution:
We have known that a < x < b means that a < x and x < b. 
So D consists of all real numbers that are both greater than 
3 and less than 2.

Since there are no such numbers, D has no elements and 
so D = Ø. 
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Partitions of Sets
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Partitions of Sets

In many applications of set theory, sets are divided up into 
nonoverlapping (or disjoint) pieces. Such a division is 
called a partition.



46

Example 9 – Disjoint Sets

Let A = {1, 3, 5} and B = {2, 4, 6}. Are A and B disjoint?

Solution:
Yes. By inspection A and B have no elements in common, 
or, in other words, {1, 3, 5} ∩∩∩∩ {2, 4, 6} = Ø.
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Partitions of Sets
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Example 10 – Mutually Disjoint Sets

a. Let A1 = {3, 5}, A2 = {1, 4, 6}, and A3 = {2}. Are A1, A2, 
and A3 mutually disjoint?

b. Let B1 = {2, 4, 6}, B2 = {3, 7}, and B3 = {4, 5}. Are B1, B2, 
and B3 mutually disjoint?

Solution:

a. Yes. A1 and A2 have no elements in common, A1 and A3

have no elements in common, and A2 and A3 have no 
elements in common.

b. No. B1 and B3 both contain 4.
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Partitions of Sets

Suppose A, A1, A2, A3, and A4 are the sets of points 
represented by the regions shown in Figure 6.1.5.

Then A1, A2, A3, and A4 are subsets of A, and

A = A1 U A2 U A3  U A4.

Figure 6.1.5

A Partition of a Set
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Partitions of Sets

Suppose further that boundaries are assigned to the 
regions representing A2, A3, and A4 in such a way that 
these sets are mutually disjoint.

Then A is called a union of mutually disjoint subsets, and 
the collection of sets {A1, A2, A3, A4} is said to be a
partition of A.
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Example 11 – Partitions of Sets

a. Let A = {1, 2, 3, 4, 5, 6}, A1 = {1, 2}, A2 = {3, 4}, and 

A3 = {5, 6}. Is {A1, A2, A3} a partition of A?

b. Let Z be the set of all integers and let

Is {T0, T1, T2} a partition of Z?
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Example 11 – Solution

a. Yes. By inspection, A = A1 ∪∪∪∪ A2 ∪∪∪∪ A3 and the sets A1, A2, 
and A3 are mutually disjoint.

b. Yes. By the quotient-remainder theorem, every integer n
can be represented in exactly one of the three forms

for some integer k.

This implies that no integer can be in any two of the sets 
T0, T1, or T2. So T0, T1, and T2 are mutually disjoint.

It also implies that every integer is in one of the sets T0, 
T1, or T2. So Z = T0 ∪∪∪∪ T1 ∪∪∪∪ T2.
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Power Sets
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Power Sets

There are various situations in which it is useful to consider 
the set of all subsets of a particular set. 

The power set axiom guarantees that this is a set.
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Example 12 – Power Set of a Set

Find the power set of the set {x, y}. That is, find ({x, y}).

Solution:

({x, y}) is the set of all subsets of {x, y}. We know that Ø 
is a subset of every set, and so Ø ∈ ({x, y}).

Also any set is a subset of itself, so {x, y} ∈ ({x, y}). The 
only other subsets of {x, y} are {x} and {y}, so
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Cartesian Products
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Cartesian Products
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Example 13 – Ordered n-tuples

a.

b.

Solution:

a. No. By definition of equality of ordered 4-tuples,

But 3 ≠≠≠≠ 4, and so the ordered 4-tuples are not equal.
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Example 13 – Solution

b. Yes. By definition of equality of ordered triples,

Because these equations are all true, the two ordered 
triples are equal.

cont’d
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Cartesian Products
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Example 14 – Cartesian Products

Let A1 = {x, y}, A2 = {1, 2, 3}, and A3 = {a, b}.

a. b.

c.

Solution:

a. A1 ×××× A2 = {(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)}

b. The Cartesian product of A1 and A2 is a set, so it may be
used as one of the sets making up another Cartesian
product. This is the case for (A1 ×××× A2) ×××× A3.
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Example 14 – Solution

c. The Cartesian product A1 ×××× A2 ×××× A3 is superficially similar 
to, but is not quite the same mathematical object as, 
(A1 ×××× A2) × A3. (A1 ×××× A2) ×××× A3 is a set of ordered pairs of 
which one element is itself an ordered pair, whereas 
A1 ×××× A2 ×××× A3 is a set of ordered triples.

cont’d
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Example 14 – Solution

By definition of Cartesian product,

cont’d
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An Algorithm to Check Whether One 
Set Is a Subset of Another (Optional)
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An Algorithm to Check Whether One Set Is a Subset of Another (Optional)

Order the elements of both sets and successively compare 
each element of the first set with each element of the
second set.

If some element of the first set is not found to equal any 
element of the second, then the first set is not a subset of 
the second.

But if each element of the first set is found to equal an 
element of the second set, then the first set is a subset of 
the second. The following algorithm formalizes this 
reasoning.
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An Algorithm to Check Whether One Set Is a Subset of Another (Optional)

Algorithm 6.1.1 Testing Whether A ⊆⊆⊆⊆ B:

[Input sets A and B are represented as one-dimensional 

arrays a[1], a[2], . . . , a[m] and b[1], b[2], . . . , b[n],
respectively. Starting with a[1] and for each successive a[i]
in A, a check is made to see whether a[i] is in B. To do this, 

a[i] is compared to successive elements of B. If a[i] is not 

equal to any element of B, then answer is given the value 

“A    B.” 

If a[i] equals some element of B, the next successive 

element in A is checked to see whether it is in B. If every 

successive element of A is found to be in B, then answer 

never changes from its initial value “A ⊆ B.”]
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An Algorithm to Check Whether One Set Is a Subset of Another (Optional)

Input: 

m [a positive integer], a[1], a[2], . . . , a[m]
[a one-dimensional array representing the set A], n [a 

positive  integer], b[1], b[2], . . . , b[n] [a one-dimensional 

array representing the set B]

Algorithm Body:

i := 1, answer := “A ⊆ B”

while (i ≤ m and answer = “A ⊆ B”)

j := 1, found := “no”

while ( j ≤ n and found = “no”)

if a[i] = b[j] then found := “yes”
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An Algorithm to Check Whether One Set Is a Subset of Another (Optional)

j := j + 1

end while

[If found has not been given the value “yes” when 

execution reaches this point, then a[i] ∉∉∉∉ B.]

if found = “no” then answer := “A    B”

i := i + 1

end while

Output: answer [a string]
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Example 15 – Tracing Algorithm 6.1.1

Trace the action of Algorithm 6.1.1 on the variables i, j , 
found, and answer for m = 3, n = 4, and sets A and B
represented as the arrays a[1] = u, a[2] = v, a[3] = w,

b[1] = w, b[2] = x, b[3] = y, and b[4] = u.

Solution:


