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Solving Recurrence Relations by Iteration

Suppose you have a sequence that satisfies a certain 
recurrence relation and initial conditions. 

It is often helpful to know an explicit formula for the 
sequence, especially if you need to compute terms with 
very large subscripts or if you need to examine general 
properties of the sequence. 

Such an explicit formula is called a solution to the 
recurrence relation. In this section, we discuss methods for 
solving recurrence relations.
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The Method of Iteration
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The Method of Iteration

The most basic method for finding an explicit formula for a 
recursively defined sequence is iteration. 

Iteration works as follows: Given a sequence a0, a1, a2, . . . 
defined by a recurrence relation and initial conditions, you 
start from the initial conditions and calculate successive 
terms of the sequence until you see a pattern developing.

At that point you guess an explicit formula.
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Example 1 – Finding an Explicit Formula

Let a0, a1, a2, . . . be the sequence defined recursively as 
follows: For all integers k ≥≥≥≥ 1,

Use iteration to guess an explicit formula for the sequence.

Solution:
We know that to say

means
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Example 1 – Solution

In particular,

and so forth. 

Now use the initial condition to begin a process of 
successive substitutions into these equations, not just of 
numbers but of numerical expressions.

cont’d
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Example 1 – Solution

The reason for using numerical expressions rather than 
numbers is that in these problems you are seeking a 
numerical pattern that underlies a general formula. 

The secret of success is to leave most of the arithmetic 
undone.

However, you do need to eliminate parentheses as you go 
from one step to the next. Otherwise, you will soon end up 
with a bewilderingly large nest of parentheses.

cont’d
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Example 1 – Solution

Also, it is nearly always helpful to use shorthand notations 
for regrouping additions, subtractions, and multiplications of 
numbers that repeat. 

Thus, for instance, you would write

and

Notice that you don’t lose any information about the 
number patterns when you use these shorthand notations.

cont’d
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Example 1 – Solution

Here’s how the process works for the given sequence:

cont’d
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Example 1 – Solution

Since it appears helpful to use the shorthand k ���� 2 in place 
of 2 + 2 + · · · + 2 (k times), we do so, starting again from 
a0.

cont’d
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Example 1 – Solution

Guess:
The answer obtained for this problem is just a guess. To be 
sure of the correctness of this guess, you will need to 
check it by mathematical induction.

cont’d
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The Method of Iteration

A sequence like the one in Example 1, in which each term 
equals the previous term plus a fixed constant, is called an 
arithmetic sequence.
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Example 2 – An Arithmetic Sequence

Under the force of gravity, an object falling in a vacuum 
falls about 9.8 meters per second (m/sec) faster each 
second than it fell the second before. 

Thus, neglecting air resistance, a skydiver’s speed upon 
leaving an airplane is approximately 9.8m/sec one second 
after departure, 9.8 + 9.8 = 19.6m/sec two seconds after 
departure, and so forth. 

If air resistance is neglected, how fast would the skydiver 
be falling 60 seconds after leaving the airplane?
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Example 2 – Solution

Let sn be the skydiver’s speed in m/sec n seconds after 
exiting the airplane if there were no air resistance. 

Thus s0 is the initial speed, and since the diver would travel 
9.8m/sec faster each second than the second before,

It follows that s0, s1, s2, . . . is an arithmetic sequence with a 
fixed constant of 9.8, and thus
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Example 2 – Solution

Hence sixty seconds after exiting and neglecting air 
resistance, the skydiver would travel at a speed of

Note that 588 m/sec is over half a kilometer per second or 
over a third of a mile per second, which is very fast for a 
human being to travel. 

Happily for the skydiver, taking air resistance into account 
cuts the speed considerably.

cont’d
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The Method of Iteration

Let r be a fixed nonzero constant, and suppose a sequence 
a0, a1, a2, . . . is defined recursively as follows:

Use iteration to guess an explicit formula for this sequence.
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The Method of Iteration

An important property of a geometric sequence with 
constant multiplier greater than 1 is that its terms increase 
very rapidly in size as the subscripts get larger and larger. 

For instance, the first ten terms of a geometric sequence 
with a constant multiplier of 10 are

Thus, by its tenth term, the sequence already has the value 
109 = 1,000,000,000 = 1 billion.
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The Method of Iteration

The following box indicates some quantities that are 
approximately equal to certain powers of 10.
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Using Formulas to Simplify 
Solutions Obtained by Iteration
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Using Formulas to Simplify Solutions Obtained by Iteration

Explicit formulas obtained by iteration can often be 
simplified by using formulas such as those developed 
earlier.
For instance, according to the formula for the sum of a 
geometric sequence with initial term 1 (Theorem 5.2.3), for 
each real number r except r = 1,
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Using Formulas to Simplify Solutions Obtained by Iteration

And according to the formula for the sum of the first n 

integers (Theorem 5.2.2),
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Example 5 – An Explicit Formula for the Tower of Hanoi Sequence

The Tower of Hanoi sequence m1, m2, m3, . . . satisfies the 
recurrence relation

and has the initial condition

Use iteration to guess an explicit formula for this sequence, 
to simplify the answer.
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Example 5 – Solution

By iteration
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Example 5 – Solution

These calculations show that each term up to m5 is a sum 
of successive powers of 2, starting with 20 = 1 and going up 
to 2k, where k is 1 less than the subscript of the term.

The pattern would seem to continue to higher terms 
because each term is obtained from the preceding one by 
multiplying by 2 and adding 1; multiplying by 2 raises the 
exponent of each component of the sum by 1, and adding 1 
adds back the 1 that was lost when the previous 1 was 
multiplied by 2. 

For instance, for n = 6,

cont’d
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Example 5 – Solution

Thus it seems that, in general,

By the formula for the sum of a geometric sequence 
(Theorem 5.2.3),

cont’d
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Example 5 – Solution

Hence the explicit formula seems to be

cont’d
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Checking the Correctness of a 
Formula by Mathematical Induction
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Checking the Correctness of a Formula by Mathematical Induction

It is all too easy to make a mistake and come up with the 
wrong formula. 

That is why it is important to confirm your calculations by 
checking the correctness of your formula. 

The most common way to do this is to use mathematical 
induction.
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Example 7 – Using Mathematical Induction to Verify the Correctness of a  

Solution to a Recurrence Relation

In 1883 a French mathematician, Édouard Lucas, invented 
a puzzle that he called The Tower of Hanoi (La Tour 
D’Hanoï). 

The puzzle consisted of eight disks of wood with holes in 
their centers, which were piled in order of decreasing size 
on one pole in a row of three. 

Those who played the game were supposed to move all 
the disks one by one from one pole to another, never 
placing a larger disk on top of a smaller one. 
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The puzzle offered a prize of ten thousand francs (about 
$34,000 US today) to anyone who could move a tower of 
64 disks by hand while following the rules of the game.

(See Figure 5.6.2) Assuming that you transferred the disks 
as efficiently as possible, how many moves would be 
required to win the prize?

cont’d

Figure 5.6.2

Example 7 – Using Mathematical Induction to Verify the Correctness of a  

Solution to a Recurrence Relation
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The solution to this is as follows:

Let m be the minimum number of moves needed to transfer 
a tower of k disks from one pole to another. Then,

Use mathematical induction to show that this formula is 
correct.

cont’d

Example 7 – Using Mathematical Induction to Verify the Correctness of a  

Solution to a Recurrence Relation
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Example 7 – Solution

What does it mean to show the correctness of a formula for 
a recursively defined sequence? Given a sequence of 
numbers that satisfies a certain recurrence relation and 
initial condition, your job is to show that each term of the 
sequence satisfies the proposed explicit formula. 

In this case, you need to prove the following statement:
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Example 7 – Solution

Proof of Correctness:

Let m1, m2, m3, . . . be the sequence defined by specifying 
that m1 = 1 and mk = 2mk+1 + 1 for all integers k ≥≥≥≥ 2, and let 
the property P(n) be the equation

We will use mathematical induction to prove that for all 
integers n ≥≥≥≥ 1, P(n) is true.

Show that P(1) is true:

To establish P(1), we must show that

cont’d
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Example 7 – Solution

But the left-hand side of P(1) is

and the right-hand side of P(1) is

Thus the two sides of P(1) equal the same quantity, and 
hence P(1) is true.

cont’d
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Example 7 – Solution

Show that for all integers k ≥≥≥≥ 1, if P(k) is true then

P(k + 1) is also true:

[Suppose that P(k) is true for a particular but arbitrarily 

chosen integer k ≥≥≥≥ 1. That is:] 

Suppose that k is any integer with k ≥≥≥≥ 1 such that

[We must show that P(k + 1) is true. That is:] 

We must show that

cont’d
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Example 7 – Solution

But the left-hand side of P(k + 1) is

which equals the right-hand side of P(k + 1). [Since the 

basis and inductive steps have been proved, it follows by 

mathematical induction that the given formula holds for all 

integers n ≥≥≥≥ 1.]

cont’d
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Discovering That an Explicit 
Formula Is Incorrect
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Discovering That an Explicit Formula Is Incorrect

The next example shows how the process of trying to verify 
a formula by mathematical induction may reveal a mistake.
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Example 8 – Using Verification by Mathematical Induction to Find a Mistake

Let c0, c1, c2, . . . be the sequence defined as follows:

Suppose your calculations suggest that c0, c1, c2, . . . 
satisfies the following explicit formula:

Is this formula correct?



41

Example 8 – Solution

Start to prove the statement by mathematical induction and 
see what develops. 

The proposed formula passes the basis step of the 
inductive proof with no trouble, for on the one hand, c0 = 1 
by definition and on the other hand, 20 + 0 = 1 + 0 = 1 also.

In the inductive step, you suppose 

and then you must show that
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Example 8 – Solution

To do this, you start with ck+1, substitute from the 
recurrence relation, and then use the inductive hypothesis 
as follows:

To finish the verification, therefore, you need to show that

cont’d
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Example 8 – Solution

Now this equation is equivalent to

which is equivalent to

But this is false since k may be any nonnegative integer.

Observe that when k = 0, then k + 1 = 1, and

cont’d
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Example 8 – Solution

Thus the formula gives the correct value for c1. However, 
when k = 1, then k + 1 = 2, and

So the formula does not give the correct value for c2. 
Hence the sequence c0, c1, c2, . . . does not satisfy the 
proposed formula.

cont’d
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Discovering That an Explicit Formula Is Incorrect

Once you have found a proposed formula to be false, you 
should look back at your calculations to see where you 
made a mistake, correct it, and try again.


