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Defining Sequences Recursively

A sequence can be defined in a variety of different ways. 

One informal way is to write the first few terms with the 
expectation that the general pattern will be obvious.

We might say, for instance, “consider the sequence            
3, 5, 7, . . ..” Unfortunately, misunderstandings can occur 
when this approach is used.

The next term of the sequence could be 9 if we mean a 
sequence of odd integers, or it could be 11 if we mean the 
sequence of odd prime numbers.
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Defining Sequences Recursively

The second way to define a sequence is to give an explicit 
formula for its nth term.
For example, a sequence a0, a1, a2 . . . can be specified by 
writing

The advantage of defining a sequence by such an explicit 
formula is that each term of the sequence is uniquely 
determined and can be computed in a fixed, finite number 
of steps, by substitution.
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Defining Sequences Recursively

The third way to define a sequence is to use recursion.

This requires giving both an equation, called a recurrence 

relation, that defines each later term in the sequence by 
reference to earlier terms and also one or more initial 
values for the sequence.
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Example 1 – Computing Terms of a Recursively Defined Sequence

Define a sequence c0, c1, c2, . . . recursively as follows: For 
all integers k ≥≥≥≥ 2,

Find c2, c3, and c4.

Solution:
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Example 1 – Solution
cont’d
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Example 4 – Showing That a Sequence Given by an Explicit Formula
Satisfies a Certain Recurrence Relation

The sequence of Catalan numbers, named after the 
Belgian mathematician Eugène Catalan (1814–1894), 
arises in a remarkable variety of different contexts in 
discrete mathematics. It can be defined as follows: For 
each integer n ≥≥≥≥ 1,

a. Find C1,C2, and C3.
b. Show that this sequence satisfies the recurrence 

relation                              for all integers k ≥≥≥≥ 2
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Example 4 – Solution

a.
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Example 4 – Solution

b. To obtain the kth and (k – 1)st terms of the sequence,   
just substitute k and k –1 in place of n in the explicit 
formula for C1, C2, C3, . . . .

cont’d
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Example 4 – Solution

Then start with the right-hand side of the recurrence 
relation and transform it into the left-hand side: For each 
integer k ≥≥≥≥ 2,

cont’d
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Example 4 – Solution
cont’d
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Examples of Recursively Defined 
Sequences
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Examples of Recursively Defined Sequences

Recursion is one of the central ideas of computer science.

To solve a problem recursively means to find a way to 
break it down into smaller subproblems each having the 
same form as the original problem—and to do this in such 
a way that when the process is repeated many times, the 
last of the subproblems are small and easy to solve and the 
solutions of the subproblems can be woven together to 
form a solution to the original problem.
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Example 5 – The Tower of Hanoi

In 1883 a French mathematician, Édouard Lucas, invented 
a puzzle that he called The Tower of Hanoi (La Tour 
D’Hanoï). 

The puzzle consisted of eight disks of wood with holes in 
their centers, which were piled in order of decreasing size 
on one pole in a row of three. Those who played the game 
were supposed to move all the disks one by one from one 
pole to another, never placing a larger disk on top of a 
smaller one.
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Example 5 – The Tower of Hanoi

The puzzle offered a prize of ten thousand francs (about 
$34,000 US today) to anyone who could move a tower of 
64 disks by hand while following the rules of the game. 
(See Figure 5.6.2) Assuming that you transferred the disks 
as efficiently as possible, how many moves would be 
required to win the prize?

Figure  5.6.2

cont’d
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Example 5 – Solution

An elegant and efficient way to solve this problem is to 
think recursively. 

Suppose that you, somehow or other, have found the most 
efficient way possible to transfer a tower of k – 1 disks one 
by one from one pole to another, obeying the restriction 
that you never place a larger disk on top of a smaller one.

What is the most efficient way to transfer a tower of k disks 
from one pole to another?
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Example 5 – Solution

The answer is sketched in Figure 5.6.3, where pole A is the 
initial pole and pole C is the target pole, and is described 
as follows:

cont’d

Figure  5.6.3

Moves for the Tower of Hanoi

Initial Position
(a)

Position after Transferring k – 1 Disks from A to B
(b)
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Example 5 – Solution

Step 1: Transfer the top k – 1 disks from pole A to pole B.   
If k > 2, execution of this step will require a
number of moves of individual disks among the
three poles. But the point of thinking recursively is
not to get caught up in imagining the details of how
those moves will occur.

cont’d

Figure  5.6.3

Moves for the Tower of Hanoi

Position after Moving the Bottom Disk from A to C
(c)

Position after Transferring k – 1 Disks from B to C
(d)
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Example 5 – Solution

Step 2: Move the bottom disk from pole A to pole C.

Step 3: Transfer the top k – 1 disks from pole B to pole C.  
(Again, if k > 2, execution of this step will require  
more than one move.)

To see that this sequence of moves is most efficient,
observe that to move the bottom disk of a stack of k disks 
from one pole to another, you must first transfer the top 
k – 1 disks to a third pole to get them out of the way.

cont’d
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Example 5 – Solution

Thus transferring the stack of k disks from pole A to pole C
requires at least two transfers of the top k – 1 disks:

one to transfer them off the bottom disk to free the bottom 
disk so that it can be moved and another to transfer them 
back on top of the bottom disk after the bottom disk has
been moved to pole C.

cont’d
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Example 5 – Solution

If the bottom disk were not moved directly from pole A to 
pole C but were moved to pole B first, at least two 
additional transfers of the top k – 1 disks would be 
necessary: 

one to move them from pole A to pole C so that the bottom 
disk could be moved from pole A to pole B and another to 
move them off pole C so that the bottom disk could be 
moved onto pole C.

This would increase the total number of moves and result 
in a less efficient transfer.

cont’d
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Example 5 – Solution

Thus the minimum sequence of moves must include going 
from the initial position (a) to position (b) to position (c) to 
position (d).

It follows that

For each integer n ≥≥≥≥ 1, let

cont’d
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Example 5 – Solution

Note that the numbers mn are independent of the labeling 
of the poles; it takes the same minimum number of moves 
to transfer n disks from pole A to pole C as to transfer 
n disks from pole A to pole B, for example.

Also the values of mn are independent of the number of 
larger disks that may lie below the top n, provided these 
remain stationary while the top n are moved.

Because the disks on the bottom are all larger than the 
ones on the top, the top disks can be moved from pole to 
pole as though the bottom disks were not present.

cont’d
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Example 5 – Solution

Going from position (a) to position (b) requires mk –1 moves, 
going from position (b) to position (c) requires just one 
move, and going from position (c) to position (d) requires 
mk – 1 moves.

By substitution into equation (5.6.1), therefore,

The initial condition, or base, of this recursion is found by 
using the definition of the sequence.

cont’d
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Example 5 – Solution

Because just one move is needed to move one disk from 
one pole to another,

Hence the complete recursive specification of the 
sequence m1, m2, m3, . . . is as follows: 
For all integers k ≥≥≥≥ 2,

cont’d
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Example 5 – Solution

Here is a computation of the next five terms of the 
sequence:

Going back to the legend, suppose the priests work rapidly 
and move one disk every second.

Then the time from the beginning of creation to the end of 
the world would be m64 seconds.

cont’d
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Example 5 – Solution

We can compute m64 on a calculator. 
The approximate result is 

which is obtained by the estimate of 

seconds in a year (figuring 365.25 days in a year to take 
leap years into account). Surprisingly, this figure is close to 
some scientific estimates of the life of the universe!

cont’d
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Recursive Definitions of Sum and 
Product
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Recursive Definitions of Sum and Product

Addition and multiplication are called binary operations 
because only two numbers can be added or multiplied at a
time. Careful definitions of sums and products of more than
two numbers use recursion.
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Recursive Definitions of Sum and Product

The effect of these definitions is to specify an order in 
which sums and products of more than two numbers are 
computed. For example,

The recursive definitions are used with mathematical 
induction to establish various properties of general finite 
sums and products.
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Example 9 – A Sum of Sums

Prove that for any positive integer n, if a1, a2, . . . , an and 
b1, b2, . . . , bn are real numbers, then

Solution:
The proof is by mathematical induction. Let the property 
P(n) be the equation
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Example 9 – Solution

We must show that P(n) is true for all integers n ≥≥≥≥ 0.We do 
this by mathematical induction on n.

Show that P(1) is true: To establish P(1), we must show  
that

But

Hence P(1) is true.

cont’d
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Example 9 – Solution

Show that for all integers k ≥ 1, if P(k) is true then 

P(k + 1) is also true: Suppose a1, a2, . . . , ak, ak +1 and b1, 
b2, . . . , bk, bk + 1 are real numbers and that for some k ≥≥≥≥ 1

We must show that

[We will show that the left-hand side of this equation equals 

the right-hand side.]

cont’d



35

Example 9 – Solution

But the left-hand side of the equation is

cont’d
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Example 9 – Solution

which equals the right-hand side of the equation. [This is 

what was to be shown.]

cont’d


