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Strong Mathematical Induction and the Well-Ordering Principle for the Integers

Strong mathematical induction is similar to ordinary 

mathematical induction in that it is a technique for 

establishing the truth of a sequence of statements about 

integers. 

Also, a proof by strong mathematical induction consists of a 
basis step and an inductive step.

However, the basis step may contain proofs for several 

initial values, and in the inductive step the truth of the 
predicate P(n) is assumed not just for one value of n but for 

all values through k, and then the truth of P(k + 1) is 
proved.
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Strong Mathematical Induction and the Well-Ordering Principle for the Integers

Any statement that can be proved with ordinary 

mathematical induction can be proved with strong 

mathematical induction. 

The reason is that given any integer k ≥≥≥≥ b, if the truth of 

P(k) alone implies the truth of P(k + 1), then certainly the 
truth of P(a), P(a + 1), . . . , and P(k) implies the truth of 

P(k + 1). 

It is also the case that any statement that can be proved 
with strong mathematical induction can be proved with 

ordinary mathematical induction.
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Strong Mathematical Induction and the Well-Ordering Principle for the Integers

The principle of strong mathematical induction is known 

under a variety of different names including the second 

principle of induction, the second principle of finite 

induction, and the principle of complete induction.
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Applying Strong Mathematical Induction

The divisibility-by-a-prime theorem states that any integer 

greater than 1 is divisible by a prime number. 

We prove this theorem using strong mathematical 

induction.
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Example 1 – Divisibility by a Prime

Prove: Any integer greater than 1 is divisible by a prime 

number.

Solution:

The idea for the inductive step is this: If a given integer 

greater than 1 is not itself prime, then it is a product of two 

smaller positive integers, each of which is greater than 1. 

Since you are assuming that each of these smaller integers 

is divisible by a prime number, by transitivity of divisibility, 

those prime numbers also divide the integer you started 
with.
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Example 1 – Solution

Proof (by strong mathematical induction):

Let the property P(n) be the sentence

n is divisible by a prime number.

Show that P(2) is true: 

To establish P(2), we must show that

2 is divisible by a prime number.

But this is true because 2 is divisible by 2 and 2 is a prime 
number.

cont’d
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Example 1 – Solution

Show that for all integers k ≥≥≥≥ 2, if P(i) is true for all 

integers i from 2 through k, then P(k + 1) is also true:

Let k be any integer with k ≥≥≥≥ 2 and suppose that

i is divisible by a prime number for all integers

i from 2 through k.

We must show that

k + 1 is divisible by a prime number.

cont’d
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Example 1 – Solution

Case 1 (k + 1 is prime): In this case k + 1 is divisible by a 

prime number, namely itself.

Case 2 (k + 1 is not prime): In this case k + 1 = ab where 

a and b are integers with 1 < a < k + 1 and 1 < b < k + 1. 

Thus, in particular, 2 ≤≤≤≤ a ≤≤≤≤ k, and so by inductive 
hypothesis, a is divisible by a prime number p.

In addition because k + 1 = ab, we have that k + 1 is 

divisible by a.

cont’d
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Example 1 – Solution

Hence, since k + 1 is divisible by a and a is divisible by p, 

by transitivity of divisibility, k + 1 is divisible by the prime 

number p.

Therefore, regardless of whether k + 1 is prime or not, it is 

divisible by a prime number [as was to be shown].

[Since we have proved both the basis and the inductive 

step of the strong mathematical induction, we conclude that 

the given statement is true.]

cont’d
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Applying Strong Mathematical Induction

Strong mathematical induction makes possible a proof of 

the fact used frequently in computer science that every 

positive integer n has a unique binary integer 

representation. 

The proof looks complicated because of all the notation 
needed to write down the various steps. But the idea of the 

proof is simple.

It is that if smaller integers than n have unique 

representations as sums of powers of 2, then the unique 

representation for n as a sum of powers of 2 can be found 

by taking the representation for n/2 (or for (n – 1)/2 if n is 
odd) and multiplying it by 2.
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Applying Strong Mathematical Induction
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The Well-Ordering Principle for the Integers

The well-ordering principle for the integers looks very 

different from both the ordinary and the strong principles of 

mathematical induction, but it can be shown that all three 

principles are equivalent. 

That is, if any one of the three is true, then so are both of 
the others.
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Example 4 – Finding Least Elements

In each case, if the set has a least element, state what it is. 

If not, explain why the well-ordering principle is not violated.

a. The set of all positive real numbers.

b. The set of all nonnegative integers n such that n2 < n.

c. The set of all nonnegative integers of the form 46 – 7k,

where k is an integer.

Solution:

a. There is no least positive real number. For if x is any 

positive real number, then x/2 is a positive real number that 
is less than x.
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Example 4 – Solution

No violation of the well-ordering principle occurs

because the well-ordering principle refers only to sets of

integers, and this set is not a set of integers.

b. There is no least nonnegative integer n such that n2 < n

because there is no nonnegative integer that satisfies 
this inequality.

The well-ordering principle is not violated because the 
well-ordering principle refers only to sets that contain at 

least one element.

cont’d
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Example 4 – Solution

c. The following table shows values of 46 − 7k for various 

values of k.

The table suggests, and you can easily confirm, that         

46 – 7k < 0 for k ≥≥≥≥ 7 and that 46 – 7k ≥≥≥≥ 46 for k ≤≤≤≤ 0. 

Therefore, from the other values in the table it is clear that 

4 is the least nonnegative integer of the form 46 – 7k.    
This corresponds to k = 6.

cont’d
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The Well-Ordering Principle for the Integers

Another way to look at the analysis of Example 4(c) is to 

observe that subtracting six 7’s from 46 leaves 4 left over 

and this is the least nonnegative integer obtained by 

repeated subtraction of 7’s from 46. 

In other words, 6 is the quotient and 4 is the remainder for 
the division of 46 by 7. 

More generally, in the division of any integer n by any 

positive integer d, the remainder r is the least nonnegative 
integer of the form n – dk.
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The Well-Ordering Principle for the Integers

This is the heart of the following proof of the existence part 

of the quotient-remainder theorem.

Proof:

Let S be the set of all nonnegative integers of the form

where k is an integer. 
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The Well-Ordering Principle for the Integers

This set has at least one element. [For if n is nonnegative, 

then

and so n – 0�d is in S. And if n is negative, then

and so n – nd is in S.] It follows by the well-ordering 
principle for the integers that S contains a least element r. 

Then, for some specific integer k = q,

[because every integer in S can be written in this form].
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The Well-Ordering Principle for the Integers

Adding dq to both sides gives

Furthermore, r < d. [For suppose r ≥≥≥≥ d. 

Then

and so n – d(q + 1) would be a nonnegative integer in S 

that would be smaller than r. But r is the smallest integer in 

S. This contradiction shows that the supposition r ≥≥≥≥ d must 

be false.]



25

The Well-Ordering Principle for the Integers

The preceding arguments prove that there exist integers r 

and q for which

[This is what was to be shown.]

Another consequence of the well-ordering principle is the 

fact that any strictly decreasing sequence of nonnegative 
integers is finite. 

That is, if r1, r2, r3, . . . is a sequence of nonnegative 

integers satisfying

for all i ≥≥≥≥ 1, then r1, r2, r3, . . . is a finite sequence.
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The Well-Ordering Principle for the Integers

[For by the well-ordering principle such a sequence would 

have to have a least element rk. It follows that rk must be 

the final term of the sequence because if there were a term 

rk + 1, then since the sequence is strictly decreasing, rk + 1 < rk,

which would be a contradiction.] 

This fact is frequently used in computer science to prove 

that algorithms terminate after a finite number of steps.


