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Mathematical Induction I

Mathematical induction is one of the more recently 

developed techniques of proof in the history of 

mathematics.

It is used to check conjectures about the outcomes of 

processes that occur repeatedly and according to definite 
patterns.

In general, mathematical induction is a method for proving 

that a property defined for integers n is true for all values of 
n that are greater than or equal to some initial integer.
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Mathematical Induction I

The validity of proof by mathematical induction is generally 

taken as an axiom. That is why it is referred to as the 
principle of mathematical induction rather than as a

theorem.
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Mathematical Induction I

Proving a statement by mathematical induction is a        

two-step process. The first step is called the basis step, 

and the second step is called the inductive step.
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Mathematical Induction I

The following example shows how to use mathematical 

induction to prove a formula for the sum of the first n

integers.
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Example 1 – Sum of the First n Integers

Use mathematical induction to prove that

Solution:

To construct a proof by induction, you must first identify the 

property P(n). In this case, P(n) is the equation

[To see that P(n) is a sentence, note that its subject is “the 

sum of the integers from 1 to n” and its verb is “equals.”]
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Example 1 – Solution

In the basis step of the proof, you must show that the 

property is true for n = 1, or, in other words that P(1) is true. 

Now P(1) is obtained by substituting 1 in place of n in P(n). 

The left-hand side of P(1) is the sum of all the successive 

integers starting at 1 and ending at 1. This is just 1. Thus 
P(1) is

cont’d
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Example 1 – Solution

Of course, this equation is true because the right-hand side 

is

which equals the left-hand side.

In the inductive step, you assume that P(k) is true, for a 

particular but arbitrarily chosen integer k with k ≥≥≥≥ 1. [This 

assumption is the inductive hypothesis.]

cont’d
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Example 1 – Solution

You must then show that P(k + 1) is true. What are P(k) 

and P(k + 1)? P(k) is obtained by substituting k for every n

in P(n). 

Thus P(k) is

Similarly, P(k + 1) is obtained by substituting the quantity 

(k + 1) for every n that appears in P(n).

cont’d
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Example 1 – Solution

Thus P(k + 1) is

or, equivalently,

cont’d
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Example 1 – Solution

Now the inductive hypothesis is the supposition that P(k) is 

true. How can this supposition be used to show that

P(k + 1) is true? P(k + 1) is an equation, and the truth of an 

equation can be shown in a variety of ways.

One of the most straightforward is to use the inductive 
hypothesis along with algebra and other known facts to 

transform separately the left-hand and right-hand sides 

until you see that they are the same. 

cont’d
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Example 1 – Solution

In this case, the left-hand side of P(k + 1) is

1 + 2 +· · ·+ (k + 1),

which equals

(1 + 2 +· · ·+ k) + (k + 1)

But by substitution from the inductive hypothesis,

cont’d
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Example 1 – Solution
cont’d
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Example 1 – Solution

So the left-hand side of P(k + 1) is                . 

Now the right-hand side of P(k + 1) is
by multiplying out the numerator.

Thus the two sides of P(k + 1) are equal to each other, and 
so the equation P(k + 1) is true.

This discussion is summarized as follows:

cont’d
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Example 1 – Solution

Proof (by mathematical induction):

Let the property P(n) be the equation

Show that P(1) is true:

To establish P(1), we must show that

cont’d
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Example 1 – Solution

But the left-hand side of this equation is 1 and the         

right-hand side is

also. Hence P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then 

P(k + 1) is also true:

[Suppose that P(k) is true for a particular but arbitrarily 

chosen integer k ≥≥≥≥ 1.That is:] Suppose that k is any integer 

with k ≥≥≥≥ 1 such that

cont’d
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Example 1 – Solution

[We must show that P(k + 1) is true. That is:] We must 

show that

or, equivalently, that

[We will show that the left-hand side and the right-hand 

side of P(k + 1) are equal to the same quantity and thus are 

equal to each other.]

cont’d
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Example 1 – Solution

The left-hand side of P(k + 1) is

cont’d
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Example 1 – Solution

And the right-hand side of P(k + 1) is

cont’d
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Example 1 – Solution

Thus the two sides of P(k + 1) are equal to the same 

quantity and so they are equal to each other. Therefore the 

equation P(k + 1) is true [as was to be shown].

[Since we have proved both the basis step and the 

inductive step, we conclude that the theorem is true.]

cont’d
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Mathematical Induction I

For example, writing expresses the 
sum 1 + 2 + 3 +· · ·+ n in closed form.
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a. Evaluate 2 + 4 + 6 +· · ·+ 500.

b. Evaluate 5 + 6 + 7 + 8 +· · ·+ 50.

c. For an integer h ≥≥≥≥ 2, write 1 + 2 + 3 +· · ·+ (h – 1) in 

closed form.

Example 2 – Applying the Formula for the Sum of the First n Integers
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a. 

b. 

Example 2 – Solution
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c.

Example 2 – Solution
cont’d



26

In a geometric sequence, each term is obtained from the 

preceding one by multiplying by a constant factor. 

If the first term is 1 and the constant factor is r, then the 

sequence is 1, r, r2, r3, . . . , rn, . . . .

The sum of the first n terms of this sequence is given by the 
formula

for all integers n ≥≥≥≥ 0 and real numbers r not equal to 1.

Mathematical Induction I
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The expanded form of the formula is

and because r0 = 1 and r1 = r, the formula for n ≥≥≥≥ 1 can be 

rewritten as

Mathematical Induction I
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Prove that                   , for all integers n ≥≥≥≥ 0 and all real 

numbers r except 1.

Solution:
In this example the property P(n) is again an equation, 

although in this case it contains a real variable r:

Example 3 – Sum of a Geometric Sequence
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Because r can be any real number other than 1, the proof 

begins by supposing that r is a particular but arbitrarily 

chosen real number not equal to 1.

Then the proof continues by mathematical induction on n, 

starting with n = 0.

In the basis step, you must show that P(0) is true; that is, 

you show the property is true for n = 0. 

Example 3 – Solution
cont’d
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So you substitute 0 for each n in P(n):

In the inductive step, you suppose k is any integer with       

k ≥≥≥≥ 0 for which P(k) is true; that is, you suppose the 

property is true for n = k.

Example 3 – Solution
cont’d
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So you substitute k for each n in P(n):

Then you show that P(k + 1) is true; that is, you show the 
property is true for n = k + 1. 

So you substitute k + 1 for each n in P(n):

Example 3 – Solution
cont’d
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Or, equivalently,

In the inductive step for this proof we use another common 

technique for showing that an equation is true: 

We start with the left-hand side and transform it
step-by-step into the right-hand side using the inductive 

hypothesis together with algebra and other known facts.

Example 3 – Solution
cont’d
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Proof (by mathematical induction):
Suppose r is a particular but arbitrarily chosen real number 

that is not equal to 1, and let the property P(n) be the 

equation

We must show that P(n) is true for all integers n ≥≥≥≥ 0. We do 
this by mathematical induction on n.

Example 3 – Solution
cont’d
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Show that P(0) is true:

To establish P(0), we must show that

The left-hand side of this equation is r 0 = 1 and the      

right-hand side is

also because r 1 = r and r ≠≠≠≠ 1. Hence P(0) is true.

Example 3 – Solution
cont’d
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Show that for all integers k ≥ 0, if P(k) is true then

P(k + 1) is also true:

[Suppose that P(k) is true for a particular but arbitrarily 

chosen integer k ≥≥≥≥ 0. That is:] 

Let k be any integer with k ≥≥≥≥ 0, and suppose that

[We must show that P(k + 1) is true. That is:] We must 

show that

Example 3 – Solution
cont’d
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Or, equivalently, that

[We will show that the left-hand side of P(k + 1) equals the 

right-hand side.] The left-hand side of P(k + 1) is

Example 3 – Solution
cont’d
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which is the right-hand side of P(k + 1) [as was to be 

shown.]

[Since we have proved the basis step and the inductive 

step, we conclude that the theorem is true.]

Example 3 – Solution
cont’d
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Proving an Equality
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The proofs of the basis and inductive steps in Examples 1 

and 3 illustrate two different ways to show that an equation 

is true: 

(1) transforming the left-hand side and the right-hand side 
independently until they are seen to be equal, and 

(2) transforming one side of the equation until it is seen to 

be the same as the other side of the equation.

Sometimes people use a method that they believe proves 

equality but that is actually invalid.

Proving an Equality
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For example, to prove the basis step for Theorem 5.2.3, 

they perform the following steps:

Proving an Equality
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The problem with this method is that starting from a 

statement and deducing a true conclusion does not prove 

that the statement is true. 

A true conclusion can also be deduced from a false 

statement. For instance, the steps below show how to 
deduce the true conclusion that 1 = 1 from the false 

statement that 1 = 0:

Proving an Equality
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When using mathematical induction to prove formulas, be 

sure to use a method that avoids invalid reasoning, both for 

the basis step and for the inductive step.

Proving an Equality
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Deducing Additional Formulas
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The formula for the sum of a geometric sequence can be 

thought of as a family of different formulas in r, one for 

each real number r except 1.

Deducing Additional Formulas
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In each of (a) and (b) below, assume that m is an integer 

that is greater than or equal to 3. Write each of the sums in 

closed form.

a.

b.

Solution:

a.

Example 4 – Applying the Formula for the Sum of a Geometric Sequence
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b.

Example 4 – Solution
cont’d
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As with the formula for the sum of the first n integers, there 

is a way to think of the formula for the sum of the terms of a 

geometric sequence that makes it seem simple and 

intuitive. Let

Then

and so

Deducing Additional Formulas
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But

Equating the right-hand sides of equations (5.2.1) and 
(5.2.2) and dividing by r – 1 gives

This derivation of the formula is attractive and is quite 
convincing. However, it is not as logically airtight as the 

proof by mathematical induction. 

Deducing Additional Formulas
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To go from one step to another in the previous calculations, 

the argument is made that each term among those 

indicated by the ellipsis (. . .) has such-and-such an 

appearance and when these are canceled such-and-such 

occurs.

But it is impossible actually to see each such term and 

each such calculation, and so the accuracy of these claims 

cannot be fully checked.

With mathematical induction it is possible to focus exactly 

on what happens in the middle of the ellipsis and verify 

without doubt that the calculations are correct.

Deducing Additional Formulas


