
Copyright © Cengage Learning. All rights reserved.

CHAPTER 4

ELEMENTARY 

NUMBER THEORY 

AND METHODS 

OF PROOF

ELEMENTARY 

NUMBER THEORY 

AND METHODS 

OF PROOF



Copyright © Cengage Learning. All rights reserved.

Application: Algorithms

SECTION 4.8



3

Application: Algorithms

The word algorithm refers to a step-by-step method for 

performing some action.

Some examples of algorithms in everyday life are food 

preparation recipes, directions for assembling equipment or 

hobby kits, sewing pattern instructions, and instructions for 
filling out income tax forms. 

Much of elementary school mathematics is devoted to 
learning algorithms for doing arithmetic such as multidigit 

addition and subtraction, multidigit (or long) multiplication, 

and long division.



4

An Algorithmic Language



5

An Algorithmic Language

The algorithmic language used in this book is a kind of 

pseudocode, combining elements of Pascal, C, Java, and 

VB.NET, and ordinary, but fairly precise, English.

We will use some of the formal constructs of computer 

languages—such as assignment statements, loops, and so 
forth—but we will ignore the more technical details, such as 

the requirement for explicit end-of-statement delimiters, the 

range of integer values available on a particular installation, 
and so forth.



6

An Algorithmic Language

The algorithms presented in this text are intended to be 

precise enough to be easily translated into virtually any 

high-level computer language.

In high-level computer languages, the term variable is 

used to refer to a specific storage location in a computer’s 
memory.

To say that the variable x has the value 3 means that the 
memory location corresponding to x contains the number 3. 



7

An Algorithmic Language

A given storage location can hold only one value at a time. 

So if a variable is given a new value during program 

execution, then the old value is erased.

The data type of a variable indicates the set in which the 

variable takes its values, whether the set of integers, or real 
numbers, or character strings, or the set {0, 1} 

(for a Boolean variable), and so forth.



8

An Algorithmic Language

An assignment statement gives a value to a variable. It 

has the form

where x is a variable and e is an expression. This is read
“x is assigned the value e” or “let x be e.”



9

An Algorithmic Language

When an assignment statement is executed, the expression 

e is evaluated (using the current values of all the variables in 

the expression), and then its value is placed in the memory 

location corresponding to x (replacing any previous contents 

of this location).

Ordinarily, algorithm statements are executed one after 

another in the order in which they are written.



10

An Algorithmic Language

Conditional statements allow this natural order to be

overridden by using the current values of program variables 

to determine which algorithm statement will be executed

next.

Conditional statements are denoted either

where condition is a predicate involving algorithm variables 
and where s1 and s2 are algorithm statements or groups of 
algorithm statements.



11

An Algorithmic Language

We generally use indentation to indicate that statements 

belong together as a unit. 

When ambiguity is possible, however, we may explicitly bind 

a group of statements together into a unit by preceding the 

group with the word do and following it with the words end 
do.



12

An Algorithmic Language

Execution of an if-then-else statement occurs as follows:

1. The condition is evaluated by substituting the current
values of all algorithm variables appearing in it and

evaluating the truth or falsity of the resulting statement.

2. If condition is true, then s1 is executed and execution

moves to the next algorithm statement following the

if-then-else statement.

3. If condition is false, then s2 is executed and execution    

moves to the next algorithm statement following the
if-then-else statement.



13

An Algorithmic Language

Execution of an if-then statement is similar to execution of 

an if-then-else statement, except that if condition is false, 

execution passes immediately to the next algorithm 

statement following the if-then statement. 

Often condition is called a guard because it is stationed 
before s1 and s2 and restricts access to them.



14

Example 1 – Execution of if-then-else and if-then Statements

Consider the following algorithm segments:

a. b. 

What is the value of y after execution of these segments for 

the following values of x?

i.                                                     ii.



15

Example 1(a) – Solution

(i) Because the value of x is 5 before execution, the guard

condition x > 2 is true at the time it is evaluated. Hence

the statement following then is executed, and so the

value of x + 1 = 5 + 1 is computed and placed in the

storage location corresponding to y. 

So after execution, y = 6.

(ii) Because the value of x is 2 before execution, the guard
condition x > 2 is false at the time it is evaluated.

Hence the statement following else is executed. 



16

Example 1(a) – Solution

The value of x – 1 = 2 – 1 is computed and placed in the

storage location corresponding to x, and the value of 

3 ���� x = 3 ���� 1 is computed and placed in the storage location

corresponding to y. So after execution, y = 3.

cont’d



17

Example 1(b) – Solution

(i) Since x = 5 initially, the condition x > 2 is true at the time

it is evaluated. So the statement following then is

executed, and y obtains the value 25 = 32.

(ii) Since x = 2 initially, the condition x > 2 is false at the   

time it is evaluated. Execution, therefore, moves to the
next statement following the if-then statement, and the

value of y does not change from its initial value of 0.

cont’d



18

An Algorithmic Language

Iterative statements are used when a sequence of 

algorithm statements is to be executed over and over 

again. We will use two types of iterative statements: while

loops and for-next loops.

A while loop has the form

where condition is a predicate involving algorithm variables.



19

An Algorithmic Language

The word while marks the beginning of the loop, and the 

words end while mark its end. 

Execution of a while loop occurs as follows:

1. The condition is evaluated by substituting the current
values of all the algorithm variables and evaluating the

truth or falsity of the resulting statement.

2. If condition is true, all the statements in the body of the

loop are executed in order. Then execution moves back

to the beginning of the loop and the process repeats.



20

An Algorithmic Language

3. If condition is false, execution passes to the next   

algorithm statement following the loop.

The loop is said to be iterated (IT-a-rate-ed) each time the 

statements in the body of the loop are executed.

Each execution of the body of the loop is called an 

iteration (it-er-AY-shun) of the loop.



21

Example 2 – Tracing Execution of a while Loop

Trace the execution of the following algorithm segment by 

finding the values of all the algorithm variables each time 

they are changed during execution:



22

Example 2 – Solution

Since i is given an initial value of 1, the condition i ≤≤≤≤ 2 is 

true when the while loop is entered. 

So the statements within the loop are executed in order:

Then execution passes back to the beginning of the loop.



23

Example 2 – Solution

The condition i ≤≤≤≤ 2 is evaluated using the current value of i, 

which is 2. 

The condition is true, and so the statements within the loop 

are executed again:

Then execution passes back to the beginning of the loop.

cont’d



24

Example 2 – Solution

The condition i ≤≤≤≤ 2 is evaluated using the current value of i, 

which is 3. This time the condition is false, and so 

execution passes beyond the loop to the next statement of 

the algorithm.

This discussion can be summarized in a table, called a 
trace table, that shows the current values of algorithm 

variables at various points during execution.

cont’d

Trace Table



25

Example 2 – Solution

The trace table for a while loop generally gives all values 

immediately following each iteration of the loop.

(“After the zeroth iteration” means the same as “before the 

first iteration.”)

cont’d



26

An Algorithmic Language

The second form of iteration we will use is a for-next loop. 

A for-next loop has the following form:

A for-next loop is executed as follows:

1. The for-next loop variable is set equal to the value of

initial expression.



27

An Algorithmic Language

2. A check is made to determine whether the value of

variable is less than or equal to the value of final

expression.

3. If the value of variable is less than or equal to the value

of final expression, then the statements in the body of
the loop are executed in order, variable is increased by

1, and execution returns back to step 2.

4. If the value of variable is greater than the value of final

expression, then execution passes to the next algorithm

statement following the loop.



28

Example 3 – Trace Table for a for-next Loop

Convert the for-next loop shown below into a while loop. 

Construct a trace table for the loop.



29

Example 3 – Solution

The given for-next loop is equivalent to the following:

Its trace table is as follows:

Trace Table



30

A Notation for Algorithms



31

A Notation for Algorithms

We generally include the following information when 

describing algorithms formally:

1. The name of the algorithm, together with a list of input

and output variables.

2. A brief description of how the algorithm works.

3. The input variable names, labeled by data type 
(whether integer, real number, and so forth).



32

A Notation for Algorithms

4. The statements that make up the body of the algorithm,

possibly with explanatory comments.

5. The output variable names, labeled by data type.



33

The Division Algorithm



34

The Division Algorithm

For an integer a and a positive integer d, the

quotient-remainder theorem guarantees the existence of 

integers q and r such that

In this section, we give an algorithm to calculate q and r for

given a and d where a is nonnegative.



35

The Division Algorithm

Algorithm 4.8.1 Division Algorithm :

[Given a nonnegative integer a and a positive integer d, the 

aim of the algorithm is to find integers q and r that satisfy 

the conditions

This is done by subtracting d repeatedly from a until the 

result is less than d but is still nonnegative.

The total number of d’s that are subtracted is the quotient 

q. The quantity a – dq equals the remainder r.]



36

The Division Algorithm

Input: a [a nonnegative integer], d [a positive integer]

Algorithm Body:
r := a, q := 0

[Repeatedly subtract d from r until a number less than d is 

obtained. Add 1 to q each time d is subtracted.]

[After execution of the while loop, a = dq + r.]



37

The Division Algorithm

Output:

q, r [nonnegative integers]

Note that the values of q and r obtained from the division 

algorithm are the same as those computed by the div and 

mod functions built into a number of computer languages.

That is, if q and r are the quotient and remainder obtained 

from the division algorithm with input a and d, then the 
output variables q and r satisfy



38

The Euclidean Algorithm



39

The Euclidean Algorithm

The greatest common divisor of two integers a and b is the 

largest integer that divides both a and b. For example, the 

greatest common divisor of 12 and 30 is 6.

The Euclidean algorithm provides a very efficient way to 

compute the greatest common divisor of two integers.



40

Example 5 – Calculating Some gcd’s

a. Find gcd(72, 63).

b. Find gcd(1020, 630).

c. In the definition of greatest common divisor, gcd(0, 0) is

not allowed. Why not? What would gcd(0, 0) equal if it
were found in the same way as the greatest common

divisors for other pairs of numbers?

Solution:

a. 72 = 9 ���� 8 and 63 = 9 ���� 7. So 9 | 72 and 9 | 63, and no  

integer larger than 9 divides both 72 and 63.

Hence gcd(72, 63) = 9.



41

Example 5 – Solution

b. By the laws of exponents, 1020 = 220 ���� 520 and

630 = 230 ���� 330 = 220 ���� 210 ���� 330. It follows that

and by the unique factorization of integers theorem, no
integer larger than 220 divides both 1020 and 630 (because

no more than twenty 2’s divide 1020, no 3’s divide 1020,

and no 5’s divide 630).

Hence gcd(1020, 630) = 220.

cont’d



42

Example 5 – Solution

c. Suppose gcd(0, 0) were defined to be the largest  

common factor that divides 0 and 0. 

The problem is that every positive integer divides 0 and

there is no largest integer.

So there is no largest common divisor!

cont’d



43

The Euclidean Algorithm

Calculating gcd’s using the approach illustrated in Example 5 

works only when the numbers can be factored completely.

By the unique factorization of integers theorem, all numbers 

can, in principle, be factored completely. But, in practice, 

even using the highest-speed computers, the process is 
unfeasibly long for very large integers.

Over 2,000 years ago, Euclid devised a method for finding 
greatest common divisors that is easy to use and is much 

more efficient than either factoring the numbers or repeatedly 

testing both numbers for divisibility by successively larger 
integers. 



44

The Euclidean Algorithm

The Euclidean algorithm is based on the following two 

facts, which are stated as lemmas.



45

The Euclidean Algorithm

The Euclidean algorithm can be described as follows:

1. Let A and B be integers with A > B ≥≥≥≥ 0.

2. To find the greatest common divisor of A and B, first

check whether B = 0. If it is, then gcd(A, B) = A by
Lemma 4.8.1.

If it isn’t, then B > 0 and the quotient-remainder theorem
can be used to divide A by B to obtain a quotient q and

a remainder r :



46

The Euclidean Algorithm

By Lemma 4.8.2, gcd(A, B) = gcd(B, r). Thus the problem 

of finding the greatest common divisor of A and B is 

reduced to the problem of finding the greatest common

divisor of B and r.

What makes this piece of information useful is that B and r 
are smaller numbers than A and B. 

To see this, recall that we assumed



47

The Euclidean Algorithm

Also the r found by the quotient-remainder theorem satisfies

Putting these two inequalities together gives

So the larger number of the pair (B, r) is smaller than the 

larger number of the pair (A, B).

3. Now just repeat the process, starting again at (2), but use

B instead of A and r instead of B. The repetitions are 
guaranteed to terminate eventually with r = 0 because  

each new remainder is less than the preceding one and all
are nonnegative.



48

Example 6 – Hand-Calculation of gcd’s Using the Euclidean Algorithm

Use the Euclidean algorithm to find gcd(330, 156).

Solution:

1. Divide 330 by 156:

Thus 330 = 156 ���� 2 + 18 and hence

gcd(330, 156) = gcd(156, 18) by Lemma 4.8.2.



49

Example 6 – Solution

2. Divide 156 by 18:

Thus 156 = 18 ���� 8 + 12 and hence

gcd(156, 18) = gcd(18, 12) by Lemma 4.8.2.

cont’d



50

Example 6 – Solution

3. Divide 18 by 12:

Thus 18 = 12 ���� 1 + 6 and hence gcd(18, 12) = gcd(12, 6)

by Lemma 4.8.2.

cont’d



51

Example 6 – Solution

4. Divide 12 by 6:

Thus 12 = 6 ���� 2 + 0 and hence gcd(12, 6) = gcd(6, 0) by

Lemma 4.8.2.

cont’d



52

Example 6 – Solution

Putting all the equations above together gives

Therefore, gcd(330, 156) = 6.

cont’d



53

The Euclidean Algorithm

The following is a version of the Euclidean algorithm written 

using formal algorithm notation.

Algorithm 4.8.2 Euclidean Algorithm :

[Given two integers A and B with A > B ≥≥≥≥ 0, this algorithm

computes gcd(A, B). It is based on two facts:

1. if a, b, q, and r are integers with

2. ]       



54

The Euclidean Algorithm

Input: A, B [integers with A > B ≥≥≥≥ 0]

Algorithm Body:

[If b ≠≠≠≠ 0, compute a mod b, the remainder of the integer 

division of a by b, and set r equal to this value. Then repeat 

the process using b in place of a and r in place of b.]



55

The Euclidean Algorithm

[The value of a mod b can be obtained by calling the 

division algorithm.]

[After execution of the while loop,                         ] 

Output: gcd [a positive integer]


