
Copyright © Cengage Learning. All rights reserved.

CHAPTER 4

ELEMENTARY 

NUMBER THEORY 

AND METHODS 

OF PROOF

ELEMENTARY 

NUMBER THEORY 

AND METHODS 

OF PROOF



Copyright © Cengage Learning. All rights reserved.

Direct Proof and 

Counterexample I:Introduction

SECTION 4.1



3

Direct Proof and Counterexample I: Introduction

Both discovery and proof are integral parts of problem 

solving. When you think you have discovered that a certain 

statement is true, try to figure out why it is true.

If you succeed, you will know that your discovery is 

genuine. Even if you fail, the process of trying will give you 
insight into the nature of the problem and may lead to the 

discovery that the statement is false.
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Direct Proof and Counterexample I: Introduction

For complex problems, the interplay between discovery 

and proof is not reserved to the end of the problem-solving 

process but, rather, is an important part of each step.
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Definitions
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Definitions

In order to evaluate the truth or falsity of a statement, you 

must understand what the statement is about. In other 

words, you must know the meanings of all terms that occur 

in the statement. Mathematicians define terms very 

carefully and precisely and consider it important to learn 

definitions virtually word for word.
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Example 1 – Even and Odd Integers

Use the definitions of even and odd to justify your answers 

to the following questions.

a. Is 0 even?

b. Is −301 odd?

c. If a and b are integers, is 6a2b even?

d. If a and b are integers, is 10a + 8b + 1 odd?

e. Is every integer either even or odd?

Solution:

a. Yes, 0 = 2·0.

b. Yes, –301 = 2(–151) + 1.
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Example 1 – Solution

c. Yes, 6a2b = 2(3a2b), and since a and b are integers, so 

is 3a2b (being a product of integers).

d. Yes, 10a + 8b + 1 = 2(5a + 4b) + 1, and since a and b 

are integers, so is 5a + 4b (being a sum of products of 

integers).

e. The answer is yes, although the proof is not obvious. 

cont’d
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Definitions

The integer 6, which equals 2 ���� 3, is a product of two smaller 

positive integers. 

On the other hand, 7 cannot be written as a product of two 

smaller positive integers; its only positive factors are 1 and 7. 
A positive integer, such as 7, that cannot be written as a 

product of two smaller positive integers is called prime.
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Example 2 – Prime and Composite Numbers

a. Is 1 prime?

b. Is every integer greater than 1 either prime or    

composite?

c. Write the first six prime numbers.

d. Write the first six composite numbers.

Solution:

a. No. A prime number is required to be greater than 1.

b. Yes. Let n be any integer that is greater than 1. Consider 

all pairs of positive integers r and s such that n = rs. There 

exist at least two such pairs, namely r = n and 
s = 1 and r = 1 and s = n.
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Example 2 – Solution

Moreover, since n = rs, all such pairs satisfy the 

inequalities 1 ≤≤≤≤ r ≤≤≤≤ n and 1 ≤≤≤≤ s ≤≤≤≤ n. If n is prime, then the 

two displayed pairs are the only ways to write n as rs.

Otherwise, there exists a pair of positive integers r and s

such that n = rs and neither r nor s equals either 1 or n. 
Therefore, in this case 1 < r < n and 1 < s < n, and hence 

n is composite.

c. 2, 3, 5, 7, 11, 13

d. 4, 6, 8, 9, 10, 12

cont’d
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Proving Existential Statements
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Proving Existential Statements

We have known that a statement in the form

∃x ∈ D such that Q(x)

is true if, and only if,

Q(x) is true for at least one x in D.

One way to prove this is to find an x in D that makes Q(x) 

true.

Another way is to give a set of directions for finding such an 

x. Both of these methods are called constructive proofs 
of existence.
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Example 3 – Constructive Proofs of Existence

a. Prove the following: ∃ an even integer n that can be 

written in two ways as a sum of two prime numbers.

b. Suppose that r and s are integers. Prove the following: ∃

an integer k such that 22r + 18s = 2k.

Solution:

a. Let n = 10. Then 10 = 5 + 5 = 3 + 7 and 3, 5, and 7 are 
all prime numbers.

b. Let k = 11r + 9s.
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Example 3 – Solution

Then k is an integer because it is a sum of products of 

integers; and by substitution, 2k = 2(11r + 9s), which 

equals 22r + 18s by the distributive law of algebra.

cont’d
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Proving Existential Statements

A nonconstructive proof of existence involves showing 

either (a) that the existence of a value of x that makes Q(x) 

true is guaranteed by an axiom or a previously proved 

theorem or (b) that the assumption that there is no such x

leads to a contradiction.

The disadvantage of a nonconstructive proof is that it may 

give virtually no clue about where or how x may be found.
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Disproving Universal Statements 

by Counterexample
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Disproving Universal Statements by Counterexample

To disprove a statement means to show that it is false. 

Consider the question of disproving a statement of the form

∀∀∀∀x in D, if P(x) then Q(x).

Showing that this statement is false is equivalent to 

showing that its negation is true. The negation of the 
statement is existential:

∃x in D such that P(x) and not Q(x).
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But to show that an existential statement is true, we 

generally give an example, and because the example is 

used to show that the original statement is false, we call it a 

counterexample. Thus the method of disproof by 

counterexample can be written as follows:

Disproving Universal Statements by Counterexample
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Example 4 – Disproof by Counterexample

Disprove the following statement by finding a 

counterexample:

∀∀∀∀ real numbers a and b, if a2 = b2 then a = b.

Solution:

To disprove this statement, you need to find real numbers a

and b such that the hypothesis a2 = b2 is true and the 
conclusion a = b is false. 

The fact that both positive and negative integers have 

positive squares helps in the search.
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Example 4 – Solution

If you flip through some possibilities in your mind, you will 

quickly see that 1 and –1 will work (or 2 and –2, or 0.5 and 

–0.5, and so forth).

cont’d
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Proving Universal Statements



23

Proving Universal Statements

The vast majority of mathematical statements to be proved 

are universal. In discussing how to prove such statements, 

it is helpful to imagine them in a standard form:

∀∀∀∀x ∈ D, if P(x) then Q(x).

When D is finite or when only a finite number of elements 
satisfy P(x), such a statement can be proved by the method 

of exhaustion.
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Example 5 – The Method of Exhaustion

Use the method of exhaustion to prove the following 

statement:

∀∀∀∀n ∈ Z, if n is even and 4 ≤ n ≤ 26, then n can be written 

as a sum of two prime numbers.

Solution:
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Proving Universal Statements

The most powerful technique for proving a universal 

statement is one that works regardless of the size of the 

domain over which the statement is quantified.

It is called the method of generalizing from the generic 

particular. Here is the idea underlying the method:
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Example 6 – Generalizing from the Generic Particular

At some time you may have been shown a “mathematical 

trick” like the following. 

You ask a person to pick any number, add 5, multiply by 4, 

subtract 6, divide by 2, and subtract twice the original 

number. 

Then you astound the person by announcing that their final 

result was 7. How does this “trick” work?
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Let an empty box � or the symbol x stand for the number 

the person picks. 

Here is what happens when the person follows your 
directions:

Example 6 – Generalizing from the Generic Particular
cont’d
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Thus no matter what number the person starts with, the 

result will always be 7. 

Note that the x in the analysis above is particular (because 

it represents a single quantity), but it is also arbitrarily 

chosen or generic (because any number whatsoever can 
be put in its place). 

This illustrates the process of drawing a general conclusion 

from a particular but generic object.

cont’d
Example 6 – Generalizing from the Generic Particular
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Proving Universal Statements

When the method of generalizing from the generic 

particular is applied to a property of the form “If P(x) then

Q(x),” the result is the method of direct proof.

We have known that the only way an if-then statement can 

be false is for the hypothesis to be true and the conclusion 
to be false.

Thus, given the statement “If P(x) then Q(x),” if you can 

show that the truth of P(x) compels the truth of Q(x), then  
you will have proved the statement.



30

Proving Universal Statements

It follows by the method of generalizing from the generic 

particular that to show that “∀∀∀∀x, if P(x) then Q(x),” is true for 

all elements x in a set D, you suppose x is a particular but 

arbitrarily chosen element of D that makes P(x) true, and 

then you show that x makes Q(x) true.
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Example 7 – A Direct Proof of a Theorem

Prove that the sum of any two even integers is even.

Solution:

Whenever you are presented with a statement to be 
proved, it is a good idea to ask yourself whether you 

believe it to be true. 

In this case you might imagine some pairs of even integers, 
say 2 + 4, 6 + 10, 12 + 12, 28 + 54, and mentally check that 

their sums are even.
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Example 7 – Solution

However, since you cannot possibly check all pairs of even 

numbers, you cannot know for sure that the statement is 

true in general by checking its truth in these particular 

instances.

Many properties hold for a large number of examples and 
yet fail to be true in general.

To prove this statement in general, you need to show that 

no matter what even integers are given, their sum is even. 
But given any two even integers, it is possible to represent 

them as 2r and 2s for some integers r and s.

cont’d
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Example 7 – Solution

And by the distributive law of algebra, 2r + 2s = 2(r + s), 

which is even. Thus the statement is true in general.

Suppose the statement to be proved were much more 

complicated than this. What is the method you could use to 

derive a proof?

Formal Restatement: ∀∀∀∀ integers m and n, if m and n are 

even then m + n is even.

This statement is universally quantified over an infinite 

domain. Thus to prove it in general, you need to show that 
no matter what two integers you might be given, if both of 
them are even then their sum will also be even.

cont’d
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Example 7 – Solution

Next ask yourself, “Where am I starting from?” or “What am 

I supposing?” The answer to such a question gives you the 

starting point, or first sentence, of the proof.

Starting Point: Suppose m and n are particular but 

arbitrarily chosen integers that are even.

Or, in abbreviated form:

Suppose m and n are any even integers.

Then ask yourself, “What conclusion do I need to show in 

order to complete the proof?”

cont’d
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Example 7 – Solution

To Show: m + n is even.

At this point you need to ask yourself, “How do I get from 
the starting point to the conclusion?” Since both involve the 

term even integer, you must use the definition of this 

term—and thus you must know what it means for an 
integer to be even.

It follows from the definition that since m and n are even, 

each equals twice some integer.

cont’d
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Example 7 – Solution

One of the basic laws of logic, called existential 

instantiation, says, in effect, that if you know something 

exists, you can give it a name. 

However, you cannot use the same name to refer to two 

different things, both of which are currently under 
discussion.

cont’d
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Example 7 – Solution

Thus since m equals twice some integer, you can give that 

integer a name, and since n equals twice some integer, you 

can also give that integer a name:

Now what you want to show is that m + n is even.              

In other words, you want to show that m + n equals              
2 ���� (some integer). Having just found alternative 

representations for m (as 2r) and n (as 2s), it seems 

reasonable to substitute these representations in place of 
m and n:

cont’d
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Example 7 – Solution

Your goal is to show that m + n is even. By definition of 

even, this means that m + n can be written in the form

This analysis narrows the gap between the starting point 

and what is to be shown to showing that

Why is this true? First, because of the distributive law from 
algebra, which says that

and, second, because the sum of any two integers is an 
integer, which implies that r + s is an integer.

cont’d
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Example 7 – Solution

This discussion is summarized by rewriting the statement 

as a theorem and giving a formal proof of it. (In 

mathematics, the word theorem refers to a statement that is 

known to be true because it has been proved.) 

Such comments are purely a convenience for the reader 
and could be omitted entirely. For this reason they are 

italicized and enclosed in italic square brackets: [  ].

Donald Knuth, one of the pioneers of the science of 
computing, has compared constructing a computer 

program from a set of specifications to writing a 
mathematical proof based on a set of axioms.

cont’d
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Example 7 – Solution

In keeping with this analogy, the bracketed comments can 

be thought of as similar to the explanatory documentation 

provided by a good programmer. Documentation is not 

necessary for a program to run, but it helps a human 

reader understand what is going on.

Proof:

Suppose m and n are [particular but arbitrarily chosen] 

even integers. [We must show that m + n is even.]

cont’d
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Example 7 – Solution

By definition of even, m = 2r and n = 2s for some integers r 

and s. Then

Let t = r + s. Note that t is an integer because it is a sum of 

integers. Hence

It follows by definition of even that m + n is even.

[This is what we needed to show.]

cont’d
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Directions for Writing Proofs of 

Universal Statements
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Directions for Writing Proofs of Universal Statements

Think of a proof as a way to communicate a convincing 

argument for the truth of a mathematical statement.

Over the years, the following rules of style have become 

fairly standard for writing the final versions of proofs:

1. Copy the statement of the theorem to be proved on 

your paper.

2. Clearly mark the beginning of your proof with the   

word Proof.

3. Make your proof self-contained.
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Directions for Writing Proofs of Universal Statements

This means that you should explain the meaning of  

each variable used in your proof in the body of the proof. 

Thus you will begin proofs by introducing the initial 

variables and stating what kind of objects they are.

At a later point in your proof, you may introduce a new 

variable to represent a quantity that is known at that 

point to exist.

4. Write your proof in complete, gramatically correct 

sentences.

This does not mean that you should avoid using symbols 

and shorthand abbreviations, just that you should 
incorporate them into sentences.
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Directions for Writing Proofs of Universal Statements

5. Keep your reader informed about the status of each 

statement in your proof.

Your reader should never be in doubt about whether 
something in your proof has been assumed or 

established or is still to be deduced. If something is 

assumed, preface it with a word like Suppose or 
Assume.

If it is still to be shown, preface it with words like, We 

must show that or In other words, we must show that. 
This is especially important if you introduce a variable   

in rephrasing what you need to show.
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Directions for Writing Proofs of Universal Statements

6. Give a reason for each assertion in your proof.

Each assertion in a proof should come directly from the 

hypothesis of the theorem, or follow from the definition of 
one of the terms in the theorem, or be a result obtained 

earlier in the proof, or be a mathematical result that has 

previously been established or is agreed to be assumed.

Indicate the reason for each step of your proof using 

phrases such as by hypothesis, by definition of . . . , and  

by theorem . . . . 
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Directions for Writing Proofs of Universal Statements

7. Include the “little words and phrases” that make the 

logic of your arguments clear.

When writing a mathematical argument, especially a 
proof, indicate how each sentence is related to the 

previous one.

Does it follow from the previous sentence or from a 
combination of the previous sentence and earlier ones? 

If so, start the sentence by stating the reason why it 

follows or by writing Then, or Thus, or So, or Hence, or 
Therefore, or Consequently, or It follows that, and 

include the reason at the end of the sentence.
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Directions for Writing Proofs of Universal Statements

If a sentence expresses a new thought or fact that does 

not follow as an immediate consequence of the preceding   

statement but is needed for a later part of a proof, 

introduce it by writing Observe that, or Note that, or But, 

or Now.

Sometimes in a proof it is desirable to define a new 
variable in terms of previous variables. In such a case, 

introduce the new variable with the word Let.

8. Display equations and inequalities.

The convention is to display equations and inequalities 

on separate lines to increase readability, both for other 
people and for ourselves so that we can more easily 

check our work for accuracy.
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Variations among Proofs
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Variations among Proofs

It is rare that two proofs of a given statement, written by two 

different people, are identical. Even when the basic 

mathematical steps are the same, the two people may use 

different notation or may give differing amounts of 

explanation for their steps, or may choose different words 

to link the steps together into paragraph form.

An important question is how detailed to make the 

explanations for the steps of a proof. This must ultimately 

be worked out between the writer of a proof and the 
intended reader, whether they be student and teacher, 

teacher and student, student and fellow student, or 

mathematician and colleague.
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Common Mistakes
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Common Mistakes

The following are some of the most common mistakes 

people make when writing mathematical proofs.

1. Arguing from examples.

Looking at examples is one of the most helpful practices 

a problem solver can engage in and is encouraged by all 

good mathematics teachers. 

However, it is a mistake to  think that a general 

statement can be proved by showing it to be true for 

some special cases. A property referred to in a universal 
statement may be true in many instances without being 
true in general.
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Common Mistakes

2. Using the same letter to mean two different things.

Some beginning theorem provers give a new variable 

quantity the same letter name as a previously introduced 
variable.

3. Jumping to a conclusion.

To jump to a conclusion means to allege the truth of 
something without giving an adequate reason.

4. Circular reasoning.

To engage in circular reasoning means to assume what 
is to be proved; it is a variation of jumping to a conclusion.
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Common Mistakes

5. Confusion between what is known and what is still to   

be shown.

A more subtle way to engage in circular reasoning 
occurs when the conclusion to be shown is restated 

using a variable.

6. Use of any rather than some.

There are a few situations in which the words any and 

some can be used interchangeably.
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Common Mistakes

7. Misuse of the word if.

Another common error is not serious in itself, but it 

reflects imprecise thinking that sometimes leads to 
problems later in a proof. This error involves using the word 

if when the word because is really meant.
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Getting Proofs Started
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Getting Proofs Started

Believe it or not, once you understand the idea of 

generalizing from the generic particular and the method of 

direct proof, you can write the beginnings of proofs even for 

theorems you do not understand. 

The reason is that the starting point and what is to be 
shown in a proof depend only on the linguistic form of the 

statement to be proved, not on the content of the 

statement.
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Example 8 – Identifying the “Starting Point” and the “Conclusion to Be Shown”

Write the first sentence of a proof (the “starting point”) and 

the last sentence of a proof (the “conclusion to be shown”) 

for the following statement:

Every complete, bipartite graph is connected.

Solution:

It is helpful to rewrite the statement formally using a 
quantifier and a variable:

Formal Restatement:
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Example 8 – Solution

The first sentence, or starting point, of a proof supposes 

the existence of an object (in this case G) in the domain (in 

this case the set of all graphs) that satisfies the hypothesis 

of the if-then part of the statement (in this case that G is 

complete and bipartite). 

The conclusion to be shown is just the conclusion of the    

if-then part of the statement (in this case that G is 

connected).

cont’d
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Example 8 – Solution

Starting Point: Suppose G is a [particular but arbitrarily 

chosen] graph such that G is complete and 

bipartite.

Conclusion to Be Shown: G is connected.

Thus the proof has the following shape:

Proof:

Suppose G is a [particular but arbitrarily chosen] graph 

such that G is complete and bipartite.

Therefore, G is connected.

cont’d

…
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Showing That an Existential 

Statement Is False
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Showing That an Existential Statement Is False

We have known that the negation of an existential 

statement is universal. 

It follows that to prove an existential statement is false, you 

must prove a universal statement (its negation) is true.
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Example 9 – Disproving an Existential Statement

Show that the following statement is false:

There is a positive integer n such that n2 + 3n + 2 is prime.

Solution:

Proving that the given statement is false is equivalent to 

proving its negation is true. 

The negation is

For all positive integers n, n2 + 3n + 2 is not prime.

Because the negation is universal, it is proved by 

generalizing from the generic particular.
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Example 9 – Solution

Claim: The statement “There is a positive integer n such 

that n2 + 3n + 2 is prime” is false.

Proof:

Suppose n is any [particular but arbitrarily chosen] positive 
integer. [We will show that n2 + 3n + 2 is not prime.]

We can factor n2 + 3n + 2 to obtain 

n2 + 3n + 2 = (n + 1)(n + 2).

We also note that n + 1 and n + 2 are integers (because 

they are sums of integers) and that both n + 1 > 1 and 

n + 2 > 1 (because n ≥≥≥≥ 1).Thus n2 + 3n + 2 is a product of 
two integers each greater than 1, and so n2 + 3n + 2 is not 
prime.

cont’d
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Conjecture, Proof, and Disproof
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Conjecture, Proof, and Disproof

More than 350 years ago, the French mathematician Pierre 

de Fermat claimed that it is impossible to find positive 

integers x, y, and z with xn + yn = zn if n is an integer that is 

at least 3. (For n = 2, the equation has many integer 

solutions, such as 32 + 42 = 52 and 52 + 122 = 132.)

Fermat wrote his claim in the margin of a book, along with 

the comment “I have discovered a truly remarkable PROOF 

of this theorem which this margin is too small to contain.” 
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Conjecture, Proof, and Disproof

No proof, however, was found among his papers, and over 

the years some of the greatest mathematical minds tried 

and failed to discover a proof or a counterexample, for what 

came to be known as Fermat’s last theorem.

One of the oldest problems in mathematics that remains 
unsolved is the Goldbach conjecture. In Example 5 it was 

shown that every even integer from 4 to 26 can be 

represented as a sum of two prime numbers.

More than 250 years ago, Christian Goldbach (1690–1764) 

conjectured that every even integer greater than 2 can be 
so represented.
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Conjecture, Proof, and Disproof

Explicit computer-aided calculations have shown the 

conjecture to be true up to at least 1018. But there is a huge 

chasm between 1018 and infinity.

As pointed out by James Gleick of the New York Times, 

many other plausible conjectures in number theory have 
proved false. 

Leonhard Euler (1707–1783), for example, proposed in the 

eighteenth century that a4 + b4 + c4 = d4 had no nontrivial 
whole number solutions.
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Conjecture, Proof, and Disproof

In other words, no three perfect fourth powers add up to 

another perfect fourth power. For small numbers, Euler’s 

conjecture looked good.

But in 1987 a Harvard mathematician, Noam Elkies, proved 

it wrong. One counterexample, found by Roger Frye of 
Thinking Machines Corporation in a long computer search, 

is 95,8004 + 217,5194 + 414,5604 = 422,4814.


