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Arguments with Quantified Statements

The rule of universal instantiation (in-stan-she-AY-shun) 

says the following:

Universal instantiation is the fundamental tool of deductive 

reasoning. 

Mathematical formulas, definitions, and theorems are like 

general templates that are used over and over in a wide 

variety of particular situations.
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Arguments with Quantified Statements

A given theorem says that such and such is true for all 

things of a certain type. 

If, in a given situation, you have a particular object of that 

type, then by universal instantiation, you conclude that 

such and such is true for that particular object. 

You may repeat this process 10, 20, or more times in a 

single proof or problem solution.
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Universal Modus Ponens
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Universal Modus Ponens

The rule of universal instantiation can be combined with 

modus ponens to obtain the valid form of argument called

universal modus ponens.
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Universal Modus Ponens

Note that the first, or major, premise of universal modus 

ponens could be written “All things that make P(x) true 

make Q(x) true,” in which case the conclusion would follow 

by universal instantiation alone. 

However, the if-then form is more natural to use in the 
majority of mathematical situations.
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Example 1 – Recognizing Universal Modus Ponens

Rewrite the following argument using quantifiers, variables, 

and predicate symbols. Is this argument valid? Why?

If an integer is even, then its square is even.

k is a particular integer that is even.

• k2 is even.

Solution:

The major premise of this argument can be rewritten as

x, if x is an even integer then x2 is even.
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Example 1 – Solution

Let E(x) be “x is an even integer,” let S(x) be “x2 is even,” 

and let k stand for a particular integer that is even. 

Then the argument has the following form:

x, if E(x) then S(x).

E(k), for a particular k.

• S(k).

This argument has the form of universal modus ponens 

and is therefore valid.

cont’d
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Use of Universal Modus Ponens 

in a Proof



11

Use of Universal Modus Ponens in a Proof

Here is a proof that the sum of any two even integers is 

even. 

It makes use of the definition of even integer, namely, that 

an integer is even if, and only if, it equals twice some 

integer. (Or, more formally:    integers x, x is even if, and 
only if, ∃ an integer k such that x = 2k.)

Suppose m and n are particular but arbitrarily chosen even 

integers. Then m = 2r for some integer r,(1) and n = 2s for 
some integer s.(2)
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Use of Universal Modus Ponens in a Proof

Hence

Now r + s is an integer,(4) and so 2(r + s) is even.(5)

Thus m + n is even.
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Use of Universal Modus Ponens in a Proof

The following expansion of the proof shows how each of 

the numbered steps is justified by arguments that are valid 

by universal modus ponens.

(1) If an integer is even, then it equals twice some integer.

m is a particular even integer.

• m equals twice some integer r.

(2) If an integer is even, then it equals twice some integer.

n is a particular even integer.

•  n equals twice some integer s.
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Use of Universal Modus Ponens in a Proof

(3) If a quantity is an integer, then it is a real number.

r and s are particular integers.

• r and s are real numbers.

For all a, b, and c, if a, b, and c are real numbers,

then ab + ac = a(b + c).

2, r, and s are particular real numbers.

•  2r + 2s = 2(r + s).

(4) For all u and v, if u and v are integers, then u + v is
an integer.

r and s are two particular integers.

• r + s is an integer.
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Use of Universal Modus Ponens in a Proof

(5) If a number equals twice some integer, then that number

is even.

2(r + s) equals twice the integer r + s.

• 2(r + s) is even.
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Universal Modus Tollens
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Universal Modus Tollens

Another crucially important rule of inference is universal 

modus tollens. Its validity results from combining universal 

instantiation with modus tollens. 

Universal modus tollens is the heart of proof of contradiction, 

which is one of the most important methods of mathematical
argument.
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Example 3 – Recognizing the Form of Universal Modus Tollens

Rewrite the following argument using quantifiers, variables, 

and predicate symbols. Write the major premise in 

conditional form. Is this argument valid? Why?

All human beings are mortal.

Zeus is not mortal.

• Zeus is not human.

Solution:

The major premise can be rewritten as

x, if x is human then x is mortal.
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Example 3 – Solution

Let H(x) be “x is human,” let M(x) be “x is mortal,” and let Z 

stand for Zeus. 

The argument becomes

This argument has the form of universal modus tollens and 

is therefore valid.

cont’d
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Proving Validity of Arguments 

with Quantified Statements
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Proving Validity of Arguments with Quantified Statements

The intuitive definition of validity for arguments with 

quantified statements is the same as for arguments with 

compound statements. 

An argument is valid if, and only if, the truth of its 
conclusion follows necessarily from the truth of its 

premises. 

The formal definition is as follows:



22

Using Diagrams to Test for 

Validity
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Using Diagrams to Test for Validity

Consider the statement

All integers are rational numbers.

Or, formally,

integers n, n is a rational number.

Picture the set of all integers and the set of all rational 

numbers as disks. 
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Using Diagrams to Test for Validity

The truth of the given statement is represented by placing 

the integers disk entirely inside the rationals disk, as shown 

in Figure 3.4.1.

Because the two statements 

if x is in D then Q(x)” are 

logically equivalent, both 

can be represented by 

diagrams like the foregoing.

Figure 3.4.1



25

Using Diagrams to Test for Validity

To test the validity of an argument diagrammatically, 

represent the truth of both premises with diagrams. 

Then analyze the diagrams to see whether they necessarily 

represent the truth of the conclusion as well.
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Example 6 – Using Diagrams to Show Invalidity

Use a diagram to show the invalidity of the following 

argument:

All human beings are mortal.

Felix is mortal.

• Felix is a human being.
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Example 6 – Solution

The major and minor premises are represented 

diagrammatically in Figure 3.4.4.

Figure 3.4.4

Major premise Minor premise
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Example 6 – Solution

All that is known is that the Felix dot is located somewhere 

inside the mortals disk. Where it is located with respect to 

the human beings disk cannot be determined. Either one of 

the situations shown in Figure 3.4.5 might be the case.

cont’d

Figure 3.4.5
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Example 6 – Solution

The conclusion “Felix is a human being” is true in the first 

case but not in the second (Felix might, for example, be a 

cat). 

Because the conclusion does not necessarily follow from 

the premises, the argument is invalid.

cont’d
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Using Diagrams to Test for Validity

The argument of Example 6 would be valid if the major 

premise were replaced by its converse. But since a 

universal conditional statement is not logically equivalent to 

its converse, such a replacement cannot, in general, be 

made. 

We say that this argument exhibits the converse error.
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Using Diagrams to Test for Validity

The following form of argument would be valid if a conditional 

statement were logically equivalent to its inverse. But it is not, 

and the argument form is invalid. 

We say that it exhibits the inverse error.
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Example 7 – An Argument with “No”

Use diagrams to test the following argument for validity:

No polynomial functions have horizontal asymptotes.

This function has a horizontal asymptote.

• This function is not a polynomial function.
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Example 7 – Solution

A good way to represent the major premise diagrammatically 

is shown in Figure 3.4.6, two disks—a disk for polynomial 

functions and a disk for functions with horizontal 

asymptotes—that do not overlap at all. 

Figure 3.4.6
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Example 7 – Solution

The minor premise is represented by placing a dot labeled 

“this function” inside the disk for functions with horizontal 

asymptotes.

The diagram shows that “this function” must lie outside the 

polynomial functions disk, and so the truth of the conclusion 
necessarily follows from the truth of the premises.

Hence the argument is valid.

cont’d
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Using Diagrams to Test for Validity

An alternative approach to this example is to transform the 

statement “No polynomial functions have horizontal 

asymptotes” into the equivalent form “    x, if x is a 

polynomial function, then x does not have a horizontal 

asymptote.” 
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Using Diagrams to Test for Validity

If this is done, the argument can be seen to have the form

where P(x) is “x is a polynomial function” and Q(x) is 

“x does not have a horizontal asymptote.”

This is valid by universal modus tollens.



37

Creating Additional Forms of 

Argument
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Creating Additional Forms of Argument

Universal modus ponens and modus tollens were obtained 

by combining universal instantiation with modus ponens 

and modus tollens. 

In the same way, additional forms of arguments involving 

universally quantified statements can be obtained by 
combining universal instantiation with other of the valid 

argument forms discussed earlier.
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Creating Additional Forms of Argument

Consider the following argument:

This argument form can be combined with universal 

instantiation to obtain the following valid argument form.
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Example 8 – Evaluating an Argument for Tarski’s World

Consider the Tarski world shown in Figure 3.3.1.

Figure 3.3.1
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Example 8 – Evaluating an Argument for Tarski’s World

Reorder and rewrite the premises to show that the 

conclusion follows as a valid consequence from the 

premises.

1. All the triangles are blue.

2. If an object is to the right of all the squares, then it is
above all the circles.

3. If an object is not to the right of all the squares, then it is

not blue.

• All the triangles are above all the circles.

cont’d
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Example 8 – Solution

It is helpful to begin by rewriting the premises and the 

conclusion in if-then form:

1.     x, if x is a triangle, then x is blue.

2.     x, if x is to the right of all the squares, then x is above
all the circles.

3.     x, if x is not to the right of all the squares, then x is not
blue.

•      x, if x is a triangle, then x is above all the circles.
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Example 8 – Solution

The goal is to reorder the premises so that the conclusion 

of each is the same as the hypothesis of the next. 

Also, the hypothesis of the argument’s conclusion should 

be the same as the hypothesis of the first premise, and the 

conclusion of the argument’s conclusion should be the 
same as the conclusion of the last premise. 

To achieve this goal, it may be necessary to rewrite some 

of the statements in contrapositive form.

cont’d
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Example 8 – Solution

In this example you can see that the first premise should 

remain where it is, but the second and third premises 

should be interchanged. 

Then the hypothesis of the argument is the same as the 

hypothesis of the first premise, and the conclusion of the 
argument’s conclusion is the same as the conclusion of the 

third premise. 

But the hypotheses and conclusions of the premises do not 
quite line up. This is remedied by rewriting the third 

premise in contrapositive form.

cont’d
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Example 8 – Solution

Thus the premises and conclusion of the argument can be 

rewritten as follows:

1.    x, if x is a triangle, then x is blue.

3.    x, if x is blue, then x is to the right of all the squares.

2.    x, if x is to the right of all the squares, then x is above

all the circles.

•      x, if x is a triangle, then x is above all the circles.

cont’d
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Example 8 – Solution

The validity of this argument follows easily from the validity 

of universal transitivity.

Putting 1 and 3 together and using universal transitivity 

gives that

4.     x, if x is a triangle, then x is to the right of all the

squares.

And putting 4 together with 2 and using universal transitivity 

gives that

x, if x is a triangle, then x is above all the circles,

which is the conclusion of the argument.

cont’d
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Remark on the Converse and 

Inverse Errors
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Remark on the Converse and Inverse Errors

A variation of the converse error is a very useful reasoning 

tool, provided that it is used with caution. 

It is the type of reasoning that is used by doctors to make 

medical diagnoses and by auto mechanics to repair cars. 
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Remark on the Converse and Inverse Errors

It is the type of reasoning used to generate explanations for 

phenomena. It goes like this: If a statement of the form

For all x, if P(x) then Q(x)

is true, and if

Q(a) is true, for a particular a,

then check out the statement P(a); it just might be true.
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Remark on the Converse and Inverse Errors

For instance, suppose a doctor knows that 

For all x, if x has pneumonia, then x has a fever and

chills, coughs deeply, and feels exceptionally tired

and miserable.

And suppose the doctor also knows that

John has a fever and chills, coughs deeply,

and feels exceptionally tired and miserable.

On the basis of these data, the doctor concludes that a 

diagnosis of pneumonia is a strong possibility, though not a 
certainty.
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Remark on the Converse and Inverse Errors

The doctor will probably attempt to gain further support for 

this diagnosis through laboratory testing that is specifically 

designed to detect pneumonia. 

Note that the closer a set of symptoms comes to being a 

necessary and sufficient condition for an illness, the more 
nearly certain the doctor can be of his or her diagnosis.

This form of reasoning has been named abduction by 

researchers working in artificial intelligence. It is used in 
certain computer programs, called expert systems, that 

attempt to duplicate the functioning of an expert in some 
field of knowledge.


