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Statements with Multiple Quantifiers

When a statement contains more than one quantifier, we 

imagine the actions suggested by the quantifiers as being 

performed in the order in which the quantifiers occur. 

For instance, consider a statement of the form

∀x in set D, ∃y in set E such that x and y satisfy property 

P(x, y).
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Statements with Multiple Quantifiers

To show that such a statement is true, you must be able to 

meet the following challenge:

•Imagine that someone is allowed to choose any element 

whatsoever from the set D, and imagine that the person 

gives you that element. Call it x.

•The challenge for you is to find an element y in E so that 

the person’s x and your y, taken together, satisfy property 
P(x, y).
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Example 1 – Truth of a ∀∃ Statement in a Tarski World

Consider the Tarski world shown in Figure 3.3.1.

Show that the following statement is true in this world:

For all triangles x, there is a square y such that x and y
have the same color.

Figure 3.3.1
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Example 1 – Solution

The statement says that no matter which triangle someone 

gives you, you will be able to find a square of the same 

color. There are only three triangles, d, f, and i. 

The following table shows that for each of these triangles a 

square of the same color can be found.
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Statements with Multiple Quantifiers

Now consider a statement containing both ∀ and ∃, where 

the ∃ comes before the ∀:

∃ an x in D such that ∀y in E, x and y satisfy property     

P(x, y).

To show that a statement of this form is true: 
You must find one single element (call it x) in D with the 

following property:

•After you have found your x, someone is allowed to 

choose any element whatsoever from E. The person 
challenges you by giving you that element. Call it y.

•Your job is to show that your x together with the person’s y
satisfy property P(x, y).
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Statements with Multiple Quantifiers

Here is a summary of the convention for interpreting 

statements with two different quantifiers:

Interpreting Statements with Two Different Quantifiers

If you want to establish the truth of a statement of the form

∀x in D, ∃y in E such that P(x, y)

your challenge is to allow someone else to pick whatever 

element x in D they wish and then you must find an 

element y in E that “works” for that particular x.
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Statements with Multiple Quantifiers

If you want to establish the truth of a statement of the form

∃x in D such that ∀y in E, P(x, y)

your job is to find one particular x in D that will “work” no 

matter what y in E anyone might choose to challenge you 
with.
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Example 3 – Interpreting Multiply-Quantified Statements

A college cafeteria line has four stations: salads, main 

courses, desserts, and beverages.

The salad station offers a choice of green salad or fruit 

salad; the main course station offers spaghetti or fish; the 
dessert station offers pie or cake; and the beverage station 

offers milk, soda, or coffee. Three students, Uta, Tim, and 

Yuen, go through the line and make the following choices:

Uta: green salad, spaghetti, pie, milk

Tim: fruit salad, fish, pie, cake, milk, coffee

Yuen: spaghetti, fish, pie, soda
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Example 3 – Interpreting Multiply-Quantified Statements

These choices are illustrated in Figure 3.3.2.

Figure 3.3.2

cont’d
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Example 3 – Interpreting Multiply-Quantified Statements

Write each of following statements informally and find its 

truth value.

a. ∃ an item I such that ∀ students S, S chose I.

b. ∃ a student S such that ∀ items I, S chose I.

c. ∃ a student S such that ∀ stations Z, ∃ an item I in Z

such that S chose I.

d. ∀ students S and ∀ stations Z, ∃ an item I in Z such that 

S chose I.

cont’d
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Example 3 – Solution

a. There is an item that was chosen by every student. This

is true; every student chose pie.

b. There is a student who chose every available item. This 

is false; no student chose all nine items.

c. There is a student who chose at least one item from 
every station. This is true; both Uta and Tim chose at 

least one item from every station.

d. Every student chose at least one item from every station. 
This is false; Yuen did not choose a salad.
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Translating from Informal 

to Formal Language
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Most problems are stated in informal language, but solving 

them often requires translating them into more formal 

terms.

Translating from Informal to Formal Language
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Example 4 – Translating Multiply-Quantified Statements from Informal to 
Formal Language

The reciprocal of a real number a is a real number b such 

that ab = 1. The following two statements are true.

Rewrite them formally using quantifiers and variables:

a. Every nonzero real number has a reciprocal.

b. There is a real number with no reciprocal.

Solution:

a. ∀ nonzero real numbers u, ∃ a real number v such that 

uv = 1.

b. ∃ a real number c such that ∀ real numbers d, cd ≠≠≠≠ 1.

The number 0 has no 
reciprocal.
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Ambiguous Language
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Imagine you are visiting a factory that manufactures 

computer microchips. The factory guide tells you, 

There is a person supervising every detail of the 

production process.

Note that this statement contains informal versions of both 

the existential quantifier there is and the universal quantifier 

every.

Ambiguous Language



19

Which of the following best describes its meaning?

•There is one single person who supervises all the details 
of the production process.

•For any particular production detail, there is a person who 

supervises that detail, but there might be different 
supervisors for different details.

Ambiguous Language
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Once you interpreted the sentence in one way, it may have 

been hard for you to see that it could be understood in the 

other way.

Perhaps you had difficulty even though the two possible 

meanings were explained.

Although statements written informally may be open to 

multiple interpretations, we cannot determine their truth or 
falsity without interpreting them one way or another. 

Therefore, we have to use context to try to ascertain their 

meaning as best we can.

Ambiguous Language
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Negations of 

Multiply-Quantified Statements
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You can use the same rules to negate multiply-quantified 

statements that you used to negate simpler quantified 

statements. 

We have known that

∼(∀x in D, P(x)) ≡ ∃x in D such that ∼P(x).

and

∼(∃x in D such that P(x)) ≡ ∀x in D,∼P(x).

Negations of Multiply-Quantified Statements
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We apply these laws to find

∼(∀x in D, ∃y in E such that P(x, y))

by moving in stages from left to right along the sentence.

First version of negation: ∃x in D such that ∼(∃y in E such 

that P(x, y)).

Final version of negation: ∃x in D such that ∀y in E,

∼P(x, y).

Negations of Multiply-Quantified Statements
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Similarly, to find

∼(∃x in D such that ∀y in E, P(x, y)),

we have

First version of negation: ∀x in D,∼(∀y in E, P(x, y)).

Final version of negation: ∀x in D, ∃y in E such that 
∼P(x, y).

Negations of Multiply-Quantified Statements
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These facts can be summarized as follows:

Negations of Multiply-Quantified Statements
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Refer to the Tarski world of Figure 3.3.1.

Write a negation for each of the 
following statements, and determine 

which is true, the given statement or 

its negation.

a. For all squares x, there is a circle y

such that x and y have the same 
color.

b. There is a triangle x such that for all 
squares y, x is to the right of y.

Example 8 – Negating Statements in a Tarski World

Figure 3.3.1
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First version of negation: ∃ a square x such that 

∼(∃ a circle y such that x and y

have the same color).

Final version of negation: ∃ a square x such that 

∀ circles y, x and y do not have                                                                                                                
the same color.

The negation is true. Square e is black and no circle is 

black, so there is a square that does not have the same 
color as any circle.

Example 8(a) – Solution
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First version of negation: ∀ triangles x,∼ (∀ squares y, x is 

to the right of y).

Final version of negation: ∀ triangles x, ∃ a square y such 

that x is not to the right of y.

The negation is true because no matter what triangle is 

chosen, it is not to the right of square g (or square j).

Example 8(b) – Solution
cont’d
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Order of Quantifiers
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Consider the following two statements:

∀ people x, ∃ a person y such that x loves y.

∃ a person y such that ∀ people x, x loves y.

Note that except for the order of the quantifiers, these 

statements are identical. 

However, the first means that given any person, it is 

possible to find someone whom that person loves, whereas 
the second means that there is one amazing individual who 

is loved by all people.

Order of Quantifiers
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The two sentences illustrate an extremely important 

property about multiply-quantified statements:

Interestingly, however, if one quantifier immediately follows 

another quantifier of the same type, then the order of the 
quantifiers does not affect the meaning.

Order of Quantifiers
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Example 9 – Quantifier Order in a Tarski World

Look again at the Tarski world of Figure 3.3.1. Do the 

following two statements have the same truth value?

a. For every square x there is a 

triangle y such that x and y

have different colors.

b. There exists a triangle y such 

that for every square x, x and y
have different colors.

Figure 3.3.1
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Statement (a) says that if someone gives you one of the 

squares from the Tarski world, you can find a triangle that 

has a different color. This is true.

If someone gives you square g or h (which are gray), you 

can use triangle d (which is black); if someone gives you 
square e (which is black), you can use either triangle f or 

triangle i (which are both gray); and if someone gives you 

square j (which is blue), you can use triangle d (which is 

black) or triangle f or i (which are both gray).

Example 9 – Solution



34

Example 9 – Solution

Statement (b) says that there is one particular triangle in 

the Tarski world that has a different color from every one of 

the squares in the world. This is false. 

Two of the triangles are gray, but they cannot be used to 
show the truth of the statement because the Tarski world 

contains gray squares. 

The only other triangle is black, but it cannot be used either 

because there is a black square in the Tarski world.

Thus one of the statements is true and the other is false, 

and so they have opposite truth values.

cont’d
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Formal Logical Notation
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In some areas of computer science, logical statements are 

expressed in purely symbolic notation.

The notation involves using predicates to describe all 

properties of variables and omitting the words such that in 

existential statements. 

The formalism also depends on the following facts:

“∀x in D, P(x)” can be written as “∀x(x in D → P(x)),” and

“∃x in D such that P(x)” can be written as                        
“∃x(x in D ∧ P(x)).”

We illustrate the use of these facts in Example 10.

Formal Logical Notation
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Example 10 – Formalizing Statements in a Tarski World

Consider once more the Tarski world of Figure 3.3.1:

Figure 3.3.1
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Example 10 – Formalizing Statements in a Tarski World

Let Triangle(x), Circle(x), and Square(x) mean “x is a 

triangle,” “x is a circle,” and “x is a square”; let Blue(x), 

Gray(x), and Black(x) mean “x is blue,” “x is gray,” and “x is

black”; 

let RightOf(x, y), Above(x, y), and SameColorAs(x, y) mean 
“x is to the right of y,” “x is above y,” and “x has the same 

color as y”; and use the notation x = y to denote the 

predicate “x is equal to y”. 

Let the common domain D of all variables be the set of all 

the objects in the Tarski world.

cont’d
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Example 10 – Formalizing Statements in a Tarski World

Use formal, logical notation to write each of the following 

statements, and write a formal negation for each statement.

a. For all circles x, x is above f.

b. There is a square x such that x is black.

c. For all circles x, there is a square y such that x and y

have the same color.

d. There is a square x such that for all triangles y, x is to 

right of y.

cont’d
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Example 10(a) – Solution

Statement:

∀x(Circle(x) →Above(x, f)).

Negation:

∼(∀x(Circle(x) → Above(x, f))

≡ ∃x ∼ (Circle(x) → Above(x, f))

≡ ∃x(Circle(x) ∧ ∼Above(x, f))

by the law for negating a ∀ statement

by the law of negating an if-then statement
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Example 10(b) – Solution

Statement:

∃x(Square(x) ∧ Black(x)).

Negation:

∼(∃x(Square(x) ∧ Black(x))

≡ ∀x ∼ (Square(x) ∧ Black(x))

≡ ∀x(∼Square(x) ∨ ∼Black(x))

by the law for negating a ∃ statement

by De Morgan’s law

cont’d
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Example 10(c) – Solution

Statement: 

∀x(Circle(x) → ∃y(Square(y) ∧ SameColor(x, y))).

Negation: 

∼(∀x(Circle(x) → ∃y(Square(y) ∧ SameColor(x, y))))

≡ ∃x ∼ (Circle(x) → ∃y(Square(y) ∧ SameColor(x, y)))

≡ ∃x(Circle(x) ∧ ∼(∃y(Square(y) ∧ SameColor(x, y))))

≡ ∃x(Circle(x) ∧ ∀y(∼(Square(y) ∧ SameColor(x, y))))

≡ ∃x(Circle(x) ∧ ∀y(∼Square(y) ∨ ∼SameColor(x, y)))

by the law for negating a ∀ statement

by the law for negating an if-then statement

cont’d

by the law for negating a ∃ statement

by De Morgan’s law
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Example 10(d) – Solution

Statement:

∃x(Square(x) ∧ ∀y(Triangle(y) → RightOf(x, y))).

Negation:

∼(∃x(Square(x) ∧ ∀y(Triangle(y) → RightOf(x, y))))

≡ ∀x ∼ (Square(x) ∧ ∀y(Triangle(x) → RightOf(x, y)))

≡ ∀x(∼Square(x) ∨ ∼(∀y(Triangle(y) → RightOf(x, y))))

≡ ∀x(∼Square(x) ∨ ∃y(∼(Triangle(y) → RightOf(x, y))))

≡ ∀x(∼Square(x) ∨ ∃y(Triangle(y) ∧ ∼RightOf(x, y)))

by the law for negating a ∃ statement

by De Morgan’s law

cont’d

by the law for negating a ∀ statement

by the law for negating an if-then statement
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The disadvantage of the fully formal notation is that 

because it is complex and somewhat remote from intuitive 

understanding, when we use it, we may make errors that 

go unrecognized. 

The advantage, however, is that operations, such as taking 
negations, can be made completely mechanical and 

programmed on a computer.

Also, when we become comfortable with formal 

manipulations, we can use them to check our intuition, and 

then we can use our intuition to check our formal 

manipulations.

Formal Logical Notation
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Formal logical notation is used in branches of computer 

science such as artificial intelligence, program verification, 

and automata theory and formal languages.

Taken together, the symbols for quantifiers, variables, 

predicates, and logical connectives make up what is known 
as the language of first-order logic.

Even though this language is simpler in many respects 
than the language we use every day, learning it requires 

the same kind of practice needed to acquire any foreign 

language.

Formal Logical Notation
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Prolog
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The programming language Prolog (short for programming 

in logic) was developed in France in the 1970s by             

A. Colmerauer and P. Roussel to help programmers 

working in the field of artificial intelligence. 

A simple Prolog program consists of a set of statements 

describing some situation together with questions about the 

situation. Built into the language are search and inference 
techniques needed to answer the questions by deriving the 

answers from the given statements. 

This frees the programmer from the necessity of having to 

write separate programs to answer each type of question. 

Example 11 gives a very simple example of a Prolog 

program.

Prolog
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Example 11 – A Prolog Program

Consider the following picture, which shows colored blocks 

stacked on a table.

The following are statements in Prolog that describe this 
picture and ask two questions about it.

isabove(g, b1) color(g, gray) color(b3, blue)
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Example 11 – A Prolog Program

isabove(b1, w1) color(b1, blue) color(w1, white)

isabove(w2, b2) color(b2, blue) color(w2, white)

isabove(b2, b3) isabove(X, Z) if isabove(X, Y) and 
isabove(Y, Z)

?color(b1, blue) ?isabove(X, w1)

The statements “isabove(g, b1)” and “color(g, gray)” are to 

be interpreted as “g is above b1” and “g is colored gray”. 
The statement “isabove(X, Z) if isabove(X, Y) and 

isabove(Y, Z)” is to be interpreted as “For all X, Y, and Z, if 
X is above Y and Y is above Z, then X is above Z.”

cont’d
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Example 11 – A Prolog Program

The program statement

?color(b1, blue)

is a question asking whether block b1 is colored blue. 

Prolog answers this by writing

Yes.

The statement

?isabove(X, w1)

is a question asking for which blocks X the predicate “X is 

above w1” is true.

cont’d
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Example 11 – A Prolog Program

Prolog answers by giving a list of all such blocks. In this 

case, the answer is

X = b1, X = g.

Note that Prolog can find the solution X = b1 by merely 

searching the original set of given facts. However, Prolog 

must infer the solution X = g from the following statements:

isabove(g, b1),

isabove(b1,w1),

isabove(X, Z) if isabove(X, Y) and isabove(Y, Z).

cont’d
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Example 11 – A Prolog Program

Write the answers Prolog would give if the following 

questions were added to the program above.

a. ?isabove(b2, w1) b. ?color(w1, X)    c. ?color(X, blue)

Solution:

a. The question means “Is b2 above w1?”; so the answer is 

“No.”

b. The question means “For what colors X is the predicate 

‘w1 is colored X ’ true?”; so the answer is “X = white.”

cont’d
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Example 11 – Solution

c. The question means “For what blocks is the predicate ‘X

is colored blue’ true?”; so the answer is “X = b1,” “X = b2,” 

and “X = b3.”

cont’d


