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Application: Number Systems and Circuits for Addition

In elementary school, you learned the meaning of decimal 

notation: that to interpret a string of decimal digits as a 

number, you mentally multiply each digit by its place value. 

For instance, 5,049 has a 5 in the thousands place, a 0 in 

the hundreds place, a 4 in the tens place, and a 9 in the 
ones place. Thus 

5,049 = 5 ���� (1,000) + 0 ���� (100) + 4 ���� (10) + 9 ���� (1).
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Application: Number Systems and Circuits for Addition

Using exponential notation, this equation can be rewritten 

as

5,049 = 5 ���� 103 + 0 ���� 102 + 4 ���� 101 + 9 ���� 100.

More generally, decimal notation is based on the fact that 
any positive integer can be written uniquely as a sum of 

products of the form

d ���� 10n, 

where each n is a nonnegative integer and each d is one of 

the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.   
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Application: Number Systems and Circuits for Addition

The word decimal comes from the Latin root deci, meaning 

“ten.” Decimal (or base 10) notation expresses a number 

as a string of digits in which each digit’s position indicates 

the power of 10 by which it is multiplied.

The right-most position is the ones place (or 100 place), to 
the left of that is the tens place (or 101 place), to the left of 

that is the hundreds place (or 102 place), and so forth, as 

illustrated below.



6

Binary Representation of 

Numbers
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Binary Representation of Numbers

In computer science, base 2 notation, or binary notation, 

is of special importance because the signals used in 

modern electronics are always in one of only two states. 

(The Latin root bi means “two.”)

We can show that any integer can be represented uniquely 
as a sum of products of the form

d ���� 2n,

where each n is an integer and each d is one of the binary 

digits (or bits) 0 or 1.
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Binary Representation of Numbers

For example,

27 = 16 + 8 + 2 + 1

= 1 ���� 24 + 1 ���� 23 + 0 ���� 22 + 1 ���� 21 + 1 ���� 20.

The places in binary notation correspond to the various 

powers of 2. 
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Binary Representation of Numbers

The right-most position is the ones place (or 20 place), to 

the left of that is the twos place (or 21 place), to the left of 

that is the fours place (or 22 place), and so forth, as 

illustrated below.    

As in the decimal notation, leading zeros may be added or 

dropped as desired. For example,
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Binary Representation of Numbers

A list of powers of 2 is useful for doing binary-to-decimal 

and decimal-to-binary conversions. See Table 2.5.1.

Table 2.5.1

Powers of 2
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Example 2 – Converting a Binary to a Decimal Number

Represent 1101012 in decimal notation.

Solution:
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Example 2 – Solution

Alternatively, the schema below may be used.

cont’d
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Example 3 – Converting a Decimal to a Binary Number

Represent 209 in binary notation.

Solution:

Use Table 2.5.1 to write 209 as a sum of powers of 2, 
starting with the highest power of 2 that is less than 209 

and continuing to lower powers.

Table 2.5.1

Powers of 2
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Example 3 – Solution

Since 209 is between 128 and 256, the highest power of 2 

that is less than 209 is 128. Hence

20910 = 128 + a smaller number.

Now 209 − 128 = 81, and 81 is between 64 and 128, so the 

highest power of 2 that is less than 81 is 64. Hence

20910 = 128 + 64 + a smaller number.

cont’d
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Example 3 – Solution

Continuing in this way, you obtain

For each power of 2 that occurs in the sum, there is a 1 in 

the corresponding position of the binary number. 

cont’d
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Example 3 – Solution

For each power of 2 that is missing from the sum, there is a 

0 in the corresponding position of the binary number. 

Thus

cont’d
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Binary Addition and Subtraction
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Example 4 – Addition in Binary Notation

Add 11012 and 1112 using binary notation.

Solution:

Because 210 = 102 and 110 = 12, the translation of 
110 + 110 = 210 to binary notation is 

It follows that adding two 1’s together results in a carry of 1 

when binary notation is used. 
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Example 4 – Solution

Adding three 1’s together also results in a carry of 1 since 

310 = 112 (“one one base two”).

Thus the addition can be performed as follows: 

cont’d
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Example 5 – Subtraction in Binary Notation

Subtract 10112 from 110002 using binary notation.

Solution:

In decimal subtraction the fact that 1010 − 110 = 910 is used 
to borrow across several columns. For example, consider 

the following:
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Example 5 – Solution

In binary subtraction it may also be necessary to borrow 

across more than one column. But when you borrow a 12

from 102, what remains is 12.

Thus the subtraction can be performed as follows:

cont’d
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Circuits for Computer Addition
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Circuits for Computer Addition

Consider the question of designing a circuit to produce the 

sum of two binary digits P and Q. Both P and Q can be 

either 0 or 1. And the following facts are known:
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Circuits for Computer Addition

It follows that the circuit to be designed must have two 

outputs—one for the left binary digit (this is called the 

carry) and one for the right binary digit (this is called the 

sum).

The carry output is 1 if both P and Q are 1; it is 0 otherwise. 
Thus the carry can be produced using the AND-gate circuit 

that corresponds to the Boolean expression P ∧ Q. The 

sum output is 1 if either P or Q, but not both, is 1.
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Circuits for Computer Addition

The sum can, therefore, be produced using a circuit that 

corresponds to the Boolean expression for exclusive 

or : (P ∨ Q) ∧ ∼ (P ∧ Q). Hence, a circuit to add two binary 

digits P and Q can be constructed as in Figure 2.5.1. This 

circuit is called a half-adder.

Figure 2.5.1

Circuit to Add P + Q, Where P and Q Are Binary Digits



26

Circuits for Computer Addition

In order to construct a circuit that will add multidigit binary 

numbers, it is necessary to incorporate a circuit that will 

compute the sum of three binary digits. Such a circuit is 

called a full-adder. 

Consider a general addition of three binary digits P, Q, and
R that results in a carry (or left-most digit) C and a sum (or 

right-most digit) S.
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Circuits for Computer Addition

The operation of the full-adder is based on the fact that 

addition is a binary operation: Only two numbers can be 

added at one time. Thus P is first added to Q and then the 

result is added to R. For instance, consider the following 

addition:
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Circuits for Computer Addition

The process illustrated here can be broken down into steps 

that use half-adder circuits.

Step 1: Add P and Q using a half-adder to obtain a binary  

number with two digits.
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Circuits for Computer Addition

Step 2: Add R to the sum C1S1 of P and Q.

To do this, proceed as follows:

Step 2a: Add R to S1 using a half-adder to obtain the 

two-digit number C2S.

Then S is the right-most digit of the entire sum of         
P, Q, and R.
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Circuits for Computer Addition

Step 2b: Determine the left-most digit, C, of the entire sum   

as follows: First note that it is impossible for both 

C1 and C2 to be 1’s. For if C1 = 1, then P and Q 

are both 1, and so S1 = 0. Consequently, the 

addition of S1 and R gives a binary number C2S1

where C2 = 0.

Next observe that C will be a 1 in the case that  

the addition of P and Q gives a carry of 1 or in the 

case that the addition of S1 (the right-most digit of  
P + Q) and R gives a carry of 1.
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Circuits for Computer Addition

In other words, C = 1 if, and only if, C1 = 1 or

C2 = 1. It follows that the circuit shown in          

Figure 2.5.2 will compute the sum of three binary 

digits.

Figure 2.5.2

Circuit to Add P + Q + R, Where P, Q, and R Are Binary Digits
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Circuits for Computer Addition

Two full-adders and one half-adder can be used together to 

build a circuit that will add two three-digit binary numbers 

PQR and STU to obtain the sum WXYZ. This is illustrated 

in Figure 2.5.3. Such a circuit is called a parallel adder. 

Parallel adders can 
be constructed to 

add binary numbers 

of any finite length.

Figure 2.5.3

A Parallel Adder to Add PQR and STU to Obtain WXYZ
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Two’s Complements and the Computer 

Representation of Negative Integers
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Two’s Complements and the Computer Representation of Negative Integers

Typically, a fixed number of bits is used to represent 

integers on a computer, and these are required to 

represent negative as well as nonnegative integers. 

Sometimes a particular bit, normally the left-most, is used 

as a sign indicator, and the remaining bits are taken to be 
the absolute value of the number in binary notation. 

The problem with this approach is that the procedures for 

adding the resulting numbers are somewhat complicated 
and the representation of 0 is not unique.
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Two’s Complements and the Computer Representation of Negative Integers

A more common approach, using two’s complements, 

makes it possible to add integers quite easily and results in 

a unique representation for 0. The two’s complement of an 

integer relative to a fixed bit length is defined as follows:
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Two’s Complements and the Computer Representation of Negative Integers

There is a convenient way to compute two’s complements 

that involves less arithmetic than direct application of the 

definition. For an 8-bit representation, it is based on three 

facts:

1.

2. The binary representation of 

3. Subtracting an 8-bit binary number a from 111111112

just switches all the 0’s in a to 1’s and all the 1’s to 0’s. 

(The resulting number is called the one’s complement of 

the given number.)
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Two’s Complements and the Computer Representation of Negative Integers

In general,



38

Example 6 – Finding a Two’s Complement

Find the 8-bit two’s complement of 19.

Solution:

Write the 8-bit binary representation for 19, switch all the 
0’s to 1’s and all the 1’s to 0’s, and add 1.
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Example 6 – Solution

To check this result, note that

which is the two’s complement of 19.

cont’d
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Two’s Complements and the Computer Representation of Negative Integers

Observe that because

the two’s complement of the two’s complement of a number 

is the number itself, and therefore,
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Example 7 – Finding a Number with a Given Two’s Complement

What is the decimal representation for the integer with 

two’s complement 10101001?

Solution:
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Example 7 – Solution

To check this result, note that the given number is

which is the two’s complement of 87.

cont’d
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8-Bit Representation of a Number
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8-Bit Representation of a Number

Now consider the two’s complement of an integer n that 

satisfies the inequality 1 ≤ n ≤ 128. Then

and
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8-Bit Representation of a Number

It follows that the 8-bit two’s complement of an integer from 

1 through 128 has a leading bit of 1. Note also that the 

ordinary 8-bit representation of an integer from 0 through 

127 has a leading bit of 0. 

Consequently, eight bits can be used to represent both 
nonnegative and negative integers by representing each 

nonnegative integer up through 127 using ordinary 8-bit 

binary notation and representing each negative integer 

from −1 through −128 as the two’s complement of its 
absolute value.



46

8-Bit Representation of a Number

That is, for any integer a from −128 through 127,
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8-Bit Representation of a Number

The representations are illustrated in Table 2.5.2.

Table 2.5.2
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Computer Addition with 

Negative Integers
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Computer Addition with Negative Integers
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Computer Addition with Negative Integers

Case 1, (both integers are nonnegative): This case is 

easy because if two nonnegative integers from 0 through 

127 are written in their 8-bit representations and if their 

sum is also in the range 0 through 127, then the 8-bit 

representation of their sum has a leading 0 and is therefore 

interpreted correctly as a nonnegative integer. 

The example below illustrates what happens when 38 and 

69 are added.
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Computer Addition with Negative Integers

To be concrete, let the nonnegative integer be a and the 

negative integer be −b and suppose both a and −b are in 

the range −128 through 127. The crucial observation is that 

adding the 8-bit representations of a and −b is equivalent to 

computing

because the 8-bit representation of −b is the binary 

representation of 28 − b.
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Computer Addition with Negative Integers

Case 2 (a is nonnegative and −b is negative and 

|a| < |b|): In this case, observe that a = |a| < |b| = b and

and the binary representation of this number is the 8-bit 

representation of −(b − a) = a + (−b). We must be careful to 

check that 28 − (b − a) is between 27 and 28. But it is 

because

Hence in case |a| < |b|, adding the 8-bit representations of 
a and −b gives the 8-bit representation of a + (−b).
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Example 8 – Computing a + (−b) Where 0 ≤ a < b ≤ 128

Use 8-bit representations to compute 39 + (−89).

Solution:

Step 1: Change from decimal to 8-bit representations using   
the two’s complement to represent −89.

Since 3910 = (32 + 4 + 2 + 1)10 = 1001112, the          

8-bit representation of 39 is 00100111.

Now the 8-bit representation of −89 is the two’s       

complement of 89.



54

Example 8 – Solution

This is obtained as follows:

So the 8-bit representation of −89 is 10100111.

cont’d
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Example 8 – Solution

Step 2: Add the 8-bit representations in binary notation and  

truncate the 1 in the 28th position if there is one:

cont’d
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Example 8 – Solution

Step 3: Find the decimal equivalent of the result. Since its

leading bit is 1, this number is the 8-bit 

representation of a negative integer.

Note that since 39 − 89 = −50, this procedure gives 

the correct answer.

cont’d
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Computer Addition with Negative Integers

Case 3 (a is nonnegative and −b is negative and 

|b| ≤≤≤≤ |a|): In this case, observe that b = |b| ≤≤≤≤ |a| = a and

Also

So the binary representation of                                      
has a leading 1 in the ninth (28th) position. This leading 1 is 

often called “overflow” because it does not fit in the 
8-bit integer format.
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Computer Addition with Negative Integers

Now subtracting 28 from 28 + (a − b) is equivalent to 

truncating the leading 1 in the 28th position of the binary 

representation of the number. But

Hence in case |a| ≥ |b|, adding the 8-bit representations of 
a and −b and truncating the leading 1 (which is sure to be 

present) gives the 8-bit representation of a + (−b).
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Example 9 – Computing a + (−b) Where 1 ≤ b < a ≤ 127

Use 8-bit representations to compute 39 + (−25).

Solution:

Step 1: Change from decimal to 8-bit representations using  
the two’s complement to represent −25.

As in Example 8, the 8-bit representation of 39 

is 00100111. Now the 8-bit representation of −25 is 
the two’s complement of 25, which is obtained as 

follows:
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Example 9 – Solution

So the 8-bit representation of −25 obtained as  

11100111. 

Step 2: Add the 8-bit representations in binary notation and  

truncate the 1 in the 28th position if there is one:

cont’d
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Example 9 – Solution

Step 3: Find the decimal equivalent of the result:

Since 39 − 25 = 14, this is the correct answer.

cont’d
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Computer Addition with Negative Integers

Case 4 (both integers are negative): This case involves 

adding two negative integers in the range −1 through −128 

whose sum is also in this range.

To be specific, consider the sum (−a) + (−b) where a, b,

and a + b are all in the range 1 through 128. In this case,
the 8-bit representations of −a and −b are the 8-bit 

representations of 28 − a and 28 − b.

So if the 8-bit representations of −a and −b are added, the 
result is
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Computer Addition with Negative Integers

We know that truncating a leading 1 in the ninth (28th) 

position of a binary number is equivalent to subtracting 28.

So when the leading 1 is truncated from the 8-bit 

representation of (28 − a) + (28 − b), the result is                 

28 − (a + b), which is the 8-bit representation of                     
−(a + b) = (−a) + (−b).
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Example 10 – Computing (−a) + (−b) Where 1 ≤ a, b ≤ 128, and 1 ≤ a + b ≤ 128

Use 8-bit representations to compute (−89) + (−25). 

Solution:

Step 1: Change from decimal to 8-bit representations using 
the two’s complements to represent −89 and −25.

The 8-bit representations of −89 and −25 were 
shown in Examples 2.5.8 and 2.5.9 to be 

10100111 and 11100111, respectively.
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Example 10 – Solution

Step 2: Add the 8-bit representations in binary notation and 

truncate the 1 in the 28th position if there is one:

cont’d
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Example 10 – Solution

Step 3: Find the decimal equivalent of the result. Because 

its leading bit is 1, this number is the 8-bit 

representation of a negative integer.

Since (−89) + (−25) = −114, that is the correct answer.

cont’d
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Hexadecimal Notation
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Hexadecimal Notation

Hexadecimal notation is even more compact than decimal 

notation, and it is much easier to convert back and forth 

between hexadecimal and binary notation than it is 

between binary and decimal notation. 

The word hexadecimal comes from the Greek root hex-, 
meaning “six,” and the Latin root deci-, meaning “ten.” 

Hence hexadecimal refers to “sixteen,” and hexadecimal 

notation is also called base 16 notation.
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Hexadecimal Notation

Hexadecimal notation is based on the fact that any integer 

can be uniquely expressed as a sum of numbers of the 

form

where each n is a nonnegative integer and each d is one of 

the integers from 0 to 15. In order to avoid ambiguity, each 
hexadecimal digit must be represented by a single symbol. 

The integers 10 through 15 are represented by the symbols 

A, B, C, D, E, and F.
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Hexadecimal Notation

The sixteen hexadecimal digits are shown in Table 2.5.3, 

together with their decimal equivalents and, for future 

reference, their 4-bit binary equivalents.

Table 2.5.3
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Example 11 – Converting from Hexadecimal to Decimal Notation

Convert 3CF16 to decimal notation.

Solution:

Consider the following schema. 

So 3CF16 = 97510.
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Hexadecimal Notation

Now consider how to convert from hexadecimal to binary 

notation.

The following sequence of steps will give the required 

conversion from hexadecimal to binary notation.
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Example 12 – Converting from Hexadecimal to Binary Notation

Convert B09F16 to binary notation.

Solution:

and
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Example 12 – Solution

Consequently, 

and the answer is 10110000100111112. 

cont’d
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Hexadecimal Notation

To convert integers written in binary notation into 

hexadecimal notation, reverse the steps of the previous 

procedure.
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Example 13 – Converting from Binary to Hexadecimal Notation

Convert 1001101101010012 to hexadecimal notation.

Solution:

First group the binary digits in sets of four, working from 
right to left and adding leading 0’s if necessary.

0100   1101    1010     1001.
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Example 13 – Solution

Convert each group of four binary digits into a hexadecimal 

digit.

Then juxtapose the hexadecimal digits.

4DA916

cont’d


