
Copyright © Cengage Learning. All rights reserved.

CHAPTER 2

THE LOGIC OF

COMPOUND

STATEMENTS

THE LOGIC OF

COMPOUND

STATEMENTS

Copyright © Cengage Learning. All rights reserved.

SECTION 2.5

Application: Number Systems
and Circuits for Addition

3

Application: Number Systems and Circuits for Addition

In elementary school, you learned the meaning of decimal

notation: that to interpret a string of decimal digits as a

number, you mentally multiply each digit by its place value.

For instance, 5,049 has a 5 in the thousands place, a 0 in

the hundreds place, a 4 in the tens place, and a 9 in the
ones place. Thus

5,049 = 5 ���� (1,000) + 0 ���� (100) + 4 ���� (10) + 9 ���� (1).

4

Application: Number Systems and Circuits for Addition

Using exponential notation, this equation can be rewritten

as

5,049 = 5 ���� 103 + 0 ���� 102 + 4 ���� 101 + 9 ���� 100.

More generally, decimal notation is based on the fact that
any positive integer can be written uniquely as a sum of

products of the form

d ���� 10n,

where each n is a nonnegative integer and each d is one of

the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

5

Application: Number Systems and Circuits for Addition

The word decimal comes from the Latin root deci, meaning

“ten.” Decimal (or base 10) notation expresses a number

as a string of digits in which each digit’s position indicates

the power of 10 by which it is multiplied.

The right-most position is the ones place (or 100 place), to
the left of that is the tens place (or 101 place), to the left of

that is the hundreds place (or 102 place), and so forth, as

illustrated below.

6

Binary Representation of

Numbers

7

Binary Representation of Numbers

In computer science, base 2 notation, or binary notation,

is of special importance because the signals used in

modern electronics are always in one of only two states.

(The Latin root bi means “two.”)

We can show that any integer can be represented uniquely
as a sum of products of the form

d ���� 2n,

where each n is an integer and each d is one of the binary

digits (or bits) 0 or 1.

8

Binary Representation of Numbers

For example,

27 = 16 + 8 + 2 + 1

= 1 ���� 24 + 1 ���� 23 + 0 ���� 22 + 1 ���� 21 + 1 ���� 20.

The places in binary notation correspond to the various

powers of 2.

9

Binary Representation of Numbers

The right-most position is the ones place (or 20 place), to

the left of that is the twos place (or 21 place), to the left of

that is the fours place (or 22 place), and so forth, as

illustrated below.

As in the decimal notation, leading zeros may be added or

dropped as desired. For example,

10

Binary Representation of Numbers

A list of powers of 2 is useful for doing binary-to-decimal

and decimal-to-binary conversions. See Table 2.5.1.

Table 2.5.1

Powers of 2

11

Example 2 – Converting a Binary to a Decimal Number

Represent 1101012 in decimal notation.

Solution:

12

Example 2 – Solution

Alternatively, the schema below may be used.

cont’d

13

Example 3 – Converting a Decimal to a Binary Number

Represent 209 in binary notation.

Solution:

Use Table 2.5.1 to write 209 as a sum of powers of 2,
starting with the highest power of 2 that is less than 209

and continuing to lower powers.

Table 2.5.1

Powers of 2

14

Example 3 – Solution

Since 209 is between 128 and 256, the highest power of 2

that is less than 209 is 128. Hence

20910 = 128 + a smaller number.

Now 209 − 128 = 81, and 81 is between 64 and 128, so the

highest power of 2 that is less than 81 is 64. Hence

20910 = 128 + 64 + a smaller number.

cont’d

15

Example 3 – Solution

Continuing in this way, you obtain

For each power of 2 that occurs in the sum, there is a 1 in

the corresponding position of the binary number.

cont’d

16

Example 3 – Solution

For each power of 2 that is missing from the sum, there is a

0 in the corresponding position of the binary number.

Thus

cont’d

17

Binary Addition and Subtraction

18

Example 4 – Addition in Binary Notation

Add 11012 and 1112 using binary notation.

Solution:

Because 210 = 102 and 110 = 12, the translation of
110 + 110 = 210 to binary notation is

It follows that adding two 1’s together results in a carry of 1

when binary notation is used.

19

Example 4 – Solution

Adding three 1’s together also results in a carry of 1 since

310 = 112 (“one one base two”).

Thus the addition can be performed as follows:

cont’d

20

Example 5 – Subtraction in Binary Notation

Subtract 10112 from 110002 using binary notation.

Solution:

In decimal subtraction the fact that 1010 − 110 = 910 is used
to borrow across several columns. For example, consider

the following:

21

Example 5 – Solution

In binary subtraction it may also be necessary to borrow

across more than one column. But when you borrow a 12

from 102, what remains is 12.

Thus the subtraction can be performed as follows:

cont’d

22

Circuits for Computer Addition

23

Circuits for Computer Addition

Consider the question of designing a circuit to produce the

sum of two binary digits P and Q. Both P and Q can be

either 0 or 1. And the following facts are known:

24

Circuits for Computer Addition

It follows that the circuit to be designed must have two

outputs—one for the left binary digit (this is called the

carry) and one for the right binary digit (this is called the

sum).

The carry output is 1 if both P and Q are 1; it is 0 otherwise.
Thus the carry can be produced using the AND-gate circuit

that corresponds to the Boolean expression P ∧ Q. The

sum output is 1 if either P or Q, but not both, is 1.

25

Circuits for Computer Addition

The sum can, therefore, be produced using a circuit that

corresponds to the Boolean expression for exclusive

or : (P ∨ Q) ∧ ∼ (P ∧ Q). Hence, a circuit to add two binary

digits P and Q can be constructed as in Figure 2.5.1. This

circuit is called a half-adder.

Figure 2.5.1

Circuit to Add P + Q, Where P and Q Are Binary Digits

26

Circuits for Computer Addition

In order to construct a circuit that will add multidigit binary

numbers, it is necessary to incorporate a circuit that will

compute the sum of three binary digits. Such a circuit is

called a full-adder.

Consider a general addition of three binary digits P, Q, and
R that results in a carry (or left-most digit) C and a sum (or

right-most digit) S.

27

Circuits for Computer Addition

The operation of the full-adder is based on the fact that

addition is a binary operation: Only two numbers can be

added at one time. Thus P is first added to Q and then the

result is added to R. For instance, consider the following

addition:

28

Circuits for Computer Addition

The process illustrated here can be broken down into steps

that use half-adder circuits.

Step 1: Add P and Q using a half-adder to obtain a binary

number with two digits.

29

Circuits for Computer Addition

Step 2: Add R to the sum C1S1 of P and Q.

To do this, proceed as follows:

Step 2a: Add R to S1 using a half-adder to obtain the

two-digit number C2S.

Then S is the right-most digit of the entire sum of
P, Q, and R.

30

Circuits for Computer Addition

Step 2b: Determine the left-most digit, C, of the entire sum

as follows: First note that it is impossible for both

C1 and C2 to be 1’s. For if C1 = 1, then P and Q

are both 1, and so S1 = 0. Consequently, the

addition of S1 and R gives a binary number C2S1

where C2 = 0.

Next observe that C will be a 1 in the case that

the addition of P and Q gives a carry of 1 or in the

case that the addition of S1 (the right-most digit of
P + Q) and R gives a carry of 1.

31

Circuits for Computer Addition

In other words, C = 1 if, and only if, C1 = 1 or

C2 = 1. It follows that the circuit shown in

Figure 2.5.2 will compute the sum of three binary

digits.

Figure 2.5.2

Circuit to Add P + Q + R, Where P, Q, and R Are Binary Digits

32

Circuits for Computer Addition

Two full-adders and one half-adder can be used together to

build a circuit that will add two three-digit binary numbers

PQR and STU to obtain the sum WXYZ. This is illustrated

in Figure 2.5.3. Such a circuit is called a parallel adder.

Parallel adders can
be constructed to

add binary numbers

of any finite length.

Figure 2.5.3

A Parallel Adder to Add PQR and STU to Obtain WXYZ

33

Two’s Complements and the Computer

Representation of Negative Integers

34

Two’s Complements and the Computer Representation of Negative Integers

Typically, a fixed number of bits is used to represent

integers on a computer, and these are required to

represent negative as well as nonnegative integers.

Sometimes a particular bit, normally the left-most, is used

as a sign indicator, and the remaining bits are taken to be
the absolute value of the number in binary notation.

The problem with this approach is that the procedures for

adding the resulting numbers are somewhat complicated
and the representation of 0 is not unique.

35

Two’s Complements and the Computer Representation of Negative Integers

A more common approach, using two’s complements,

makes it possible to add integers quite easily and results in

a unique representation for 0. The two’s complement of an

integer relative to a fixed bit length is defined as follows:

36

Two’s Complements and the Computer Representation of Negative Integers

There is a convenient way to compute two’s complements

that involves less arithmetic than direct application of the

definition. For an 8-bit representation, it is based on three

facts:

1.

2. The binary representation of

3. Subtracting an 8-bit binary number a from 111111112

just switches all the 0’s in a to 1’s and all the 1’s to 0’s.

(The resulting number is called the one’s complement of

the given number.)

37

Two’s Complements and the Computer Representation of Negative Integers

In general,

38

Example 6 – Finding a Two’s Complement

Find the 8-bit two’s complement of 19.

Solution:

Write the 8-bit binary representation for 19, switch all the
0’s to 1’s and all the 1’s to 0’s, and add 1.

39

Example 6 – Solution

To check this result, note that

which is the two’s complement of 19.

cont’d

40

Two’s Complements and the Computer Representation of Negative Integers

Observe that because

the two’s complement of the two’s complement of a number

is the number itself, and therefore,

41

Example 7 – Finding a Number with a Given Two’s Complement

What is the decimal representation for the integer with

two’s complement 10101001?

Solution:

42

Example 7 – Solution

To check this result, note that the given number is

which is the two’s complement of 87.

cont’d

43

8-Bit Representation of a Number

44

8-Bit Representation of a Number

Now consider the two’s complement of an integer n that

satisfies the inequality 1 ≤ n ≤ 128. Then

and

45

8-Bit Representation of a Number

It follows that the 8-bit two’s complement of an integer from

1 through 128 has a leading bit of 1. Note also that the

ordinary 8-bit representation of an integer from 0 through

127 has a leading bit of 0.

Consequently, eight bits can be used to represent both
nonnegative and negative integers by representing each

nonnegative integer up through 127 using ordinary 8-bit

binary notation and representing each negative integer

from −1 through −128 as the two’s complement of its
absolute value.

46

8-Bit Representation of a Number

That is, for any integer a from −128 through 127,

47

8-Bit Representation of a Number

The representations are illustrated in Table 2.5.2.

Table 2.5.2

48

Computer Addition with

Negative Integers

49

Computer Addition with Negative Integers

50

Computer Addition with Negative Integers

Case 1, (both integers are nonnegative): This case is

easy because if two nonnegative integers from 0 through

127 are written in their 8-bit representations and if their

sum is also in the range 0 through 127, then the 8-bit

representation of their sum has a leading 0 and is therefore

interpreted correctly as a nonnegative integer.

The example below illustrates what happens when 38 and

69 are added.

51

Computer Addition with Negative Integers

To be concrete, let the nonnegative integer be a and the

negative integer be −b and suppose both a and −b are in

the range −128 through 127. The crucial observation is that

adding the 8-bit representations of a and −b is equivalent to

computing

because the 8-bit representation of −b is the binary

representation of 28 − b.

52

Computer Addition with Negative Integers

Case 2 (a is nonnegative and −b is negative and

|a| < |b|): In this case, observe that a = |a| < |b| = b and

and the binary representation of this number is the 8-bit

representation of −(b − a) = a + (−b). We must be careful to

check that 28 − (b − a) is between 27 and 28. But it is

because

Hence in case |a| < |b|, adding the 8-bit representations of
a and −b gives the 8-bit representation of a + (−b).

53

Example 8 – Computing a + (−b) Where 0 ≤ a < b ≤ 128

Use 8-bit representations to compute 39 + (−89).

Solution:

Step 1: Change from decimal to 8-bit representations using
the two’s complement to represent −89.

Since 3910 = (32 + 4 + 2 + 1)10 = 1001112, the

8-bit representation of 39 is 00100111.

Now the 8-bit representation of −89 is the two’s

complement of 89.

54

Example 8 – Solution

This is obtained as follows:

So the 8-bit representation of −89 is 10100111.

cont’d

55

Example 8 – Solution

Step 2: Add the 8-bit representations in binary notation and

truncate the 1 in the 28th position if there is one:

cont’d

56

Example 8 – Solution

Step 3: Find the decimal equivalent of the result. Since its

leading bit is 1, this number is the 8-bit

representation of a negative integer.

Note that since 39 − 89 = −50, this procedure gives

the correct answer.

cont’d

57

Computer Addition with Negative Integers

Case 3 (a is nonnegative and −b is negative and

|b| ≤≤≤≤ |a|): In this case, observe that b = |b| ≤≤≤≤ |a| = a and

Also

So the binary representation of
has a leading 1 in the ninth (28th) position. This leading 1 is

often called “overflow” because it does not fit in the
8-bit integer format.

58

Computer Addition with Negative Integers

Now subtracting 28 from 28 + (a − b) is equivalent to

truncating the leading 1 in the 28th position of the binary

representation of the number. But

Hence in case |a| ≥ |b|, adding the 8-bit representations of
a and −b and truncating the leading 1 (which is sure to be

present) gives the 8-bit representation of a + (−b).

59

Example 9 – Computing a + (−b) Where 1 ≤ b < a ≤ 127

Use 8-bit representations to compute 39 + (−25).

Solution:

Step 1: Change from decimal to 8-bit representations using
the two’s complement to represent −25.

As in Example 8, the 8-bit representation of 39

is 00100111. Now the 8-bit representation of −25 is
the two’s complement of 25, which is obtained as

follows:

60

Example 9 – Solution

So the 8-bit representation of −25 obtained as

11100111.

Step 2: Add the 8-bit representations in binary notation and

truncate the 1 in the 28th position if there is one:

cont’d

61

Example 9 – Solution

Step 3: Find the decimal equivalent of the result:

Since 39 − 25 = 14, this is the correct answer.

cont’d

62

Computer Addition with Negative Integers

Case 4 (both integers are negative): This case involves

adding two negative integers in the range −1 through −128

whose sum is also in this range.

To be specific, consider the sum (−a) + (−b) where a, b,

and a + b are all in the range 1 through 128. In this case,
the 8-bit representations of −a and −b are the 8-bit

representations of 28 − a and 28 − b.

So if the 8-bit representations of −a and −b are added, the
result is

63

Computer Addition with Negative Integers

We know that truncating a leading 1 in the ninth (28th)

position of a binary number is equivalent to subtracting 28.

So when the leading 1 is truncated from the 8-bit

representation of (28 − a) + (28 − b), the result is

28 − (a + b), which is the 8-bit representation of
−(a + b) = (−a) + (−b).

64

Example 10 – Computing (−a) + (−b) Where 1 ≤ a, b ≤ 128, and 1 ≤ a + b ≤ 128

Use 8-bit representations to compute (−89) + (−25).

Solution:

Step 1: Change from decimal to 8-bit representations using
the two’s complements to represent −89 and −25.

The 8-bit representations of −89 and −25 were
shown in Examples 2.5.8 and 2.5.9 to be

10100111 and 11100111, respectively.

65

Example 10 – Solution

Step 2: Add the 8-bit representations in binary notation and

truncate the 1 in the 28th position if there is one:

cont’d

66

Example 10 – Solution

Step 3: Find the decimal equivalent of the result. Because

its leading bit is 1, this number is the 8-bit

representation of a negative integer.

Since (−89) + (−25) = −114, that is the correct answer.

cont’d

67

Hexadecimal Notation

68

Hexadecimal Notation

Hexadecimal notation is even more compact than decimal

notation, and it is much easier to convert back and forth

between hexadecimal and binary notation than it is

between binary and decimal notation.

The word hexadecimal comes from the Greek root hex-,
meaning “six,” and the Latin root deci-, meaning “ten.”

Hence hexadecimal refers to “sixteen,” and hexadecimal

notation is also called base 16 notation.

69

Hexadecimal Notation

Hexadecimal notation is based on the fact that any integer

can be uniquely expressed as a sum of numbers of the

form

where each n is a nonnegative integer and each d is one of

the integers from 0 to 15. In order to avoid ambiguity, each
hexadecimal digit must be represented by a single symbol.

The integers 10 through 15 are represented by the symbols

A, B, C, D, E, and F.

70

Hexadecimal Notation

The sixteen hexadecimal digits are shown in Table 2.5.3,

together with their decimal equivalents and, for future

reference, their 4-bit binary equivalents.

Table 2.5.3

71

Example 11 – Converting from Hexadecimal to Decimal Notation

Convert 3CF16 to decimal notation.

Solution:

Consider the following schema.

So 3CF16 = 97510.

72

Hexadecimal Notation

Now consider how to convert from hexadecimal to binary

notation.

The following sequence of steps will give the required

conversion from hexadecimal to binary notation.

73

Example 12 – Converting from Hexadecimal to Binary Notation

Convert B09F16 to binary notation.

Solution:

and

74

Example 12 – Solution

Consequently,

and the answer is 10110000100111112.

cont’d

75

Hexadecimal Notation

To convert integers written in binary notation into

hexadecimal notation, reverse the steps of the previous

procedure.

76

Example 13 – Converting from Binary to Hexadecimal Notation

Convert 1001101101010012 to hexadecimal notation.

Solution:

First group the binary digits in sets of four, working from
right to left and adding leading 0’s if necessary.

0100 1101 1010 1001.

77

Example 13 – Solution

Convert each group of four binary digits into a hexadecimal

digit.

Then juxtapose the hexadecimal digits.

4DA916

cont’d

