## Test Yourself

Answers to Test Yourself questions are located at the end of each section.

- 1. If *R* is a relation from *A* to  $B, x \in A$ , and  $y \in B$ , the notation x R y means that \_\_\_\_\_.
- 2. If R is a relation from A to  $B, x \in A$ , and  $y \in B$ , the notation x R y means that
- 3. If R is a relation from A to  $B, x \in A$ , and  $y \in B$ , then  $(y, x) \in R^{-1}$  if, and only if, \_\_\_\_\_.
- 4. A relation on a set A is a relation from \_\_\_\_\_ to \_\_\_\_
- 5. If *R* is a relation on a set *A*, the directed graph of *R* has an arrow from *x* to *y* if, and only if, \_\_\_\_\_.

## Exercise Set 8.1\*

1. As in Example 8.1.2, the **congruence modulo 2** relation *E* is defined from **Z** to **Z** as follows: For all integers *m* and *n*,

$$m E n \Leftrightarrow m - n \text{ is even.}$$

- **a.** Is 0 *E* 0? Is 5 *E* 2? Is  $(6, 6) \in E$ ? Is  $(-1, 7) \in E$ ?
- b. Prove that for any even integer n,  $n \to 0$ .
- **H 2.** Prove that for all integers m and n, m n is even if, and only if, both m and n are even or both m and n are odd.
  - 3. The **congruence modulo 3** relation, *T*, is defined from **Z** to **Z** as follows: For all integers *m* and *n*,

$$m T n \Leftrightarrow 3 \mid (m-n)$$
.

- **a.** Is 10 T 1? Is 1 T 10? Is  $(2, 2) \in T$ ? Is  $(8, 1) \in T$ ?
- **b.** List five integers n such that n T 0.
- c. List five integers n such that n T 1.
- d. List five integers n such that n T 2.
- H e. Make and prove a conjecture about which integers are related by T to 0, which integers are related by T to 1, and which integers are related by T to 2.
- 4. Define a relation P on **Z** as follows: For all  $m, n \in \mathbf{Z}$ ,

 $m P n \Leftrightarrow m \text{ and } n \text{ have a common prime factor.}$ 

- **a.** Is 15 *P* 25?
- **b.** 22 *P* 27?
- c. Is 0 P 5?
- d. Is 8 P 8?
- Let X = {a, b, c}. Recall that P(X) is the power set of X. Define a relation R on P(X) as follows:
   For all A, B ∈ P(X),

 $A \mathbf{R} B \Leftrightarrow A \text{ has the same number of elements as } B.$ 

- **a.** Is  $\{a, b\}$  **R**  $\{b, c\}$ ?
- b. Is  $\{a\} \mathbf{R} \{a, b\}$ ?
- c. Is {*c*} **R** {*b*}?
- 6. Let  $X = \{a, b, c\}$ . Define a relation **J** on  $\mathscr{P}(X)$  as follows: For all  $A, B \in \mathscr{P}(X)$ ,

$$A \mathbf{J} B \Leftrightarrow A \cap B \neq \emptyset.$$

- **a.** Is  $\{a\}$  **J**  $\{c\}$ ?
- b. Is  $\{a, b\} \mathbf{J} \{b, c\}$ ?
- c. Is  $\{a, b\} \mathbf{J} \{a, b, c\}$ ?

Define a relation R on Z as follows: For all integers m and n.

$$m R n \Leftrightarrow 5 \mid (m^2 - n^2).$$

- **a.** Is 1 R (-9)?
- b. Is 2 R 13?
- c. Is 2 R (-8)?
- d. Is (−8) R 2?
- 8. Let A be the set of all strings of a's and b's of length 4. Define a relation R on A as follows: For all  $s, t \in A$ ,

 $s R t \Leftrightarrow s$  has the same first two characters as t.

- a. Is abaa R abba?
- **b.** Is aabb R bbaa?
- c. Is aaaa R aaab?
- d. Is baaa R abaa?
- 9. Let *A* be the set of all strings of 0's, 1's, and 2's of length 4. Define a relation *R* on *A* as follows: For all  $s, t \in A$ ,

 $s R t \Leftrightarrow t \Leftrightarrow the sum of the characters in s equals the sum of the characters in t.$ 

- **a.** Is 0121 *R* 2200?
- **b.** Is 1011 *R* 2101?
- c. Is 2212 R 2121?
- d. Is 1220 R 2111?
- 10. Let  $A = \{3, 4, 5\}$  and  $B = \{4, 5, 6\}$  and let R be the "less than" relation. That is, for all  $(x, y) \in A \times B$ ,

$$x R y \Leftrightarrow x < y.$$

State explicitly which ordered pairs are in R and  $R^{-1}$ .

11. Let  $A = \{3, 4, 5\}$  and  $B = \{4, 5, 6\}$  and let S be the "divides" relation. That is, for all  $(x, y) \in A \times B$ ,

$$x S y \Leftrightarrow x \mid y$$
.

State explicitly which ordered pairs are in S and  $S^{-1}$ .

- a. Suppose a function F: X → Y is one-to-one but not onto. Is F<sup>-1</sup> (the inverse relation for F) a function? Explain your answer.
  - b. Suppose a function F: X → Y is onto but not one-to-one. Is F<sup>-1</sup> (the inverse relation for F) a function? Explain your answer.

<sup>\*</sup>For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol # indicates that only a hint or a partial solution is given. The symbol \* signals that an exercise is more challenging than usual.

Draw the directed graphs of the relations defined in 13–18.

- **13.** Define a relation R on  $A = \{0, 1, 2, 3\}$  by  $R = \{(0, 0),$ (1, 2), (2, 2).
- 14. Define a relation S on  $B = \{a, b, c, d\}$  by  $S = \{(a, b),$ (a, c), (b, c), (d, d).
- **15.** Let  $A = \{2, 3, 4, 5, 6, 7, 8\}$  and define a relation R on A as follows: For all  $x, y \in A$ ,

$$x R y \Leftrightarrow x \mid y.$$

**H** 16. Let  $A = \{5, 6, 7, 8, 9, 10\}$  and define a relation S on A as follows: For all  $x, y \in A$ ,

$$x S y \Leftrightarrow 2 | (x - y).$$

17. Let  $A = \{2, 3, 4, 5, 6, 7, 8\}$  and define a relation T on A as follows: For all  $x, y \in A$ ,

$$x T y \Leftrightarrow 3 | (x - y).$$

18. Let  $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$  and define a relation V on A as follows: For all  $x, y \in A$ ,

$$x V y \Leftrightarrow 5 \mid (x^2 - y^2).$$

Exercises 19-20 refer to unions and intersections of relations. Since relations are subsets of Cartesian products, their unions and intersections can be calculated as for any subsets. Given two relations R and S from A to B,

$$R \cup S = \{(x, y) \in A \times B \mid (x, y) \in R \text{ or } (x, y) \in S\}$$
  
 $R \cap S = \{(x, y) \in A \times B \mid (x, y) \in R \text{ and } (x, y) \in S\}.$ 

**19.** Let  $A = \{2, 4\}$  and  $B = \{6, 8, 10\}$  and define relations R and *S* from *A* to *B* as follows: For all  $(x, y) \in A \times B$ ,

$$x R y \Leftrightarrow x | y \text{ and}$$
  
 $x S y \Leftrightarrow y - 4 = x.$ 

State explicitly which ordered pairs are in  $A \times B$ , R, S,  $R \cup S$ , and  $R \cap S$ .

20. Let  $A = \{-1, 1, 2, 4\}$  and  $B = \{1, 2\}$  and define relations R and S from A to B as follows: For all  $(x, y) \in A \times B$ ,

$$x R y \Leftrightarrow |x| = |y|$$
 and  $x S y \Leftrightarrow x - y$  is even.

State explicitly which ordered pairs are in  $A \times B$ , R, S,  $R \cup S$ , and  $R \cap S$ .

**21.** Define relations R and S on  $\mathbf{R}$  as follows:

$$R = \{(x, y) \in \mathbf{R} \times \mathbf{R} \mid x < y\} \quad \text{and}$$
$$S = \{(x, y) \in \mathbf{R} \times \mathbf{R} \mid x = y\}.$$

That is, R is the "less than" relation and S is the "equals" relation on **R**. Graph R, S,  $R \cup S$ , and  $R \cap S$  in the Cartesian plane.

22. Define relations R and S on  $\mathbf{R}$  as follows:

$$R = \{(x, y) \in \mathbf{R} \times \mathbf{R} \mid x^2 + y^2 = 4\}$$
 and  $S = \{(x, y) \in \mathbf{R} \times \mathbf{R} \mid x = y\}.$ 

Graph R, S,  $R \cup S$ , and  $R \cap S$  in the Cartesian plane.

23. Define relations R and S on  $\mathbb{R}$  as follows:

$$R = \{(x, y) \in \mathbf{R} \times \mathbf{R} \mid y = |x|\}$$
 and  $S = \{(x, y) \in \mathbf{R} \times \mathbf{R} \mid y = 1\}.$ 

Graph R, S,  $R \cup S$ , and  $R \cap S$  in the Cartesian plane.

- 24. In Example 8.1.7 the result of the query SELECT Patient\_ID#, Name FROM S WHERE Primary\_Diagnosis = X is the projection onto the first two coordinates of the intersection of the set  $A_1 \times A_2 \times A_3 \times \{X\}$  with the
  - a. Find the result of the query SELECT Patient\_ID#, Name FROM S WHERE Primary Diagnosis = pneumonia.
  - b. Find the result of the query SELECT Patient\_ID#, Name FROM S WHERE Primary\_Diagnosis = appendicitis.

## Answers for Test Yourself

1. x is related to y by R 2. x is not related to y by R 3.  $(x, y) \in R$  4. A; A 5. x is related to y by R

## 8.2 Reflexivity, Symmetry, and Transitivity

Mathematics is the tool specially suited for dealing with abstract concepts of any kind and there is no limit to its power in this field. — P. A. M. Dirac, 1902-1984

Let  $A = \{2, 3, 4, 6, 7, 9\}$  and define a relation R on A as follows: For all  $x, y \in A$ ,

$$x R y \Leftrightarrow 3 | (x - y).$$