

Example 6.3.4 Deriving a Generalized Associative Law

Caution! When doing problems similar to Examples 6.3.2–6.3.4, be sure to use the set properties exactly as they are stated.

Prove that for any sets A_1 , A_2 , A_3 , and A_4 ,

$$((A_1 \cup A_2) \cup A_3) \cup A_4 = A_1 \cup ((A_2 \cup A_3) \cup A_4).$$

Cite a property from Theorem 6.2.2 for every step of the proof.

Solution Let A_1 , A_2 , A_3 , and A_4 be any sets. Then

$$((A_1 \cup A_2) \cup A_3) \cup A_4 = (A_1 \cup (A_2 \cup A_3)) \cup A_4$$

by the associative law for \cup with A_1 playing the role of A, A_2 playing the role of B, and A_3 playing the role of C

 $= A_1 \cup ((A_2 \cup A_3) \cup A_4)$

by the associative law for \cup with A_1 playing the role of A, $A_2 \cup A_3$ playing the role of B, and A_4 playing the role of C.

Test Yourself

1. Given a proposed set identity involving set variables *A*, *B*, and *C*, the most common way to show that the equation does not hold in general is to find concrete sets *A*, *B*, and *C* that, when substituted for the set variables in the equation, _____.

- 2. When using the algebraic method for proving a set identity, it is important to _____ for every step.
- 3. When applying a property from Theorem 6.2.2, it must be used _____ as it is stated.

Exercise Set 6.3

For each of 1–4 find a counterexample to show that the statement is false. Assume all sets are subsets of a universal set U.

- **1.** For all sets A, B, and C, $(A \cap B) \cup C = A \cap (B \cup C)$.
- 2. For all sets A and B, $(A \cup B)^c = A^c \cup B^c$.
- **3.** For all sets A, B, and C, if $A \nsubseteq B$ and $B \nsubseteq C$ then $A \nsubseteq C$.
- 4. For all sets A, B, and C, if $B \cap C \subseteq A$ then $(A B) \cap (A C) = \emptyset$.

For each of 5–21 prove each statement that is true and find a counterexample for each statement that is false. Assume all sets are subsets of a universal set U.

- 5. For all sets A, B, and C, A (B C) = (A B) C.
- **6.** For all sets A and B, $A \cap (A \cup B) = A$.
- 7. For all sets A, B, and C,

$$(A - B) \cap (C - B) = A - (B \cup C).$$

- 8. For all sets A and B, if $A^c \subseteq B$ then $A \cup B = U$.
- **9.** For all sets A, B, and C, if $A \subseteq C$ and $B \subseteq C$ then $A \cup B \subseteq C$.
- 10. For all sets A and B, if $A \subseteq B$ then $A \cap B^c = \emptyset$.
- **H** 11. For all sets A, B, and C, if $A \subseteq B$ then $A \cap (B \cap C)^c = \emptyset$.
- H 12. For all sets A, B, and C,

$$A \cap (B - C) = (A \cap B) - (A \cap C).$$

13. For all sets A, B, and C,

$$A \cup (B - C) = (A \cup B) - (A \cup C).$$

- **H 14.** For all sets A, B, and C, if $A \cap C \subseteq B \cap C$ and $A \cup C \subseteq B \cup C$, then $A \subseteq B$.
- **H 15.** For all sets A, B, and C, if $A \cap C = B \cap C$ and $A \cup C = B \cup C$, then A = B.
 - 16. For all sets A and B, if $A \cap B = \emptyset$ then $A \times B = \emptyset$.
 - 17. For all sets A and B, if $A \subseteq B$ then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
 - **18.** For all sets A and B, $\mathscr{P}(A \cup B) \subseteq \mathscr{P}(A) \cup \mathscr{P}(B)$.
- **H** 19. For all sets A and B, $\mathscr{P}(A) \cup \mathscr{P}(B) \subseteq \mathscr{P}(A \cup B)$.
 - 20. For all sets A and B, $\mathscr{P}(A \cap B) = \mathscr{P}(A) \cap \mathscr{P}(B)$.
 - 21. For all sets A and B, $\mathscr{P}(A \times B) = \mathscr{P}(A) \times \mathscr{P}(B)$.
 - 22. Write a negation for each of the following statements. Indicate which is true, the statement or its negation. Justify your answers
 - **a.** \forall sets S, \exists a set T such that $S \cap T = \emptyset$. b. \exists a set S such that \forall sets T, $S \cup T = \emptyset$.
- **H 23.** Let $S = \{a, b, c\}$ and for each integer i = 0, 1, 2, 3, let S_i be the set of all subsets of S that have i elements. List the elements in S_0 , S_1 , S_2 , and S_3 . Is $\{S_0, S_1, S_2, S_3\}$ a partition of $\mathcal{P}(S)$?
- 24. Let $S = \{a, b, c\}$ and let S_a be the set of all subsets of S that contain a, let S_b be the set of all subsets of S that contain b, let S_c be the set of all subsets of S that contain C, and let S_\emptyset be the set whose only element is \emptyset . Is $\{S_a, S_b, S_c, S_\emptyset\}$ a partition of $\mathcal{P}(S)$?