- in $\frac{(4)}{(4)}$ (by definition of A B). In particular, such an element is in A.
- b. **Proof:** Suppose *A* and *B* are any sets and $x \in A B$. [We must show that $\frac{(1)}{(3)}$.] By definition of set difference, $x \in \frac{(2)}{(3)}$ and $x \notin \frac{(3)}{(3)}$. In particular, $x \in \frac{(4)}{(3)}$ [which is what was to be shown].
- 3. The following is a proof that for all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$. Fill in the blanks.

Proof: Suppose A, B, and C are sets and $A \subseteq B$ and $B \subseteq C$. To show that $A \subseteq C$, we must show that every element in a is in a b. But given any element in a, that element is in a because a because a because a c.

4. The following is a proof that for all sets *A* and *B*, if *A* ⊆ *B*, then *A* ∪ *B* ⊆ *B*. Fill in the blanks.

Proof: Suppose A and B are any sets and $A \subseteq B$. [We must show that $\underline{\text{(a)}}$.] Let $x \in \underline{\text{(b)}}$. [We must show that $\underline{\text{(c)}}$.] By definition of union, $x \in \underline{\text{(d)}}$. $\underline{\text{(e)}}$. $x \in \underline{\text{(f)}}$. In case $x \in \underline{\text{(g)}}$, then since $A \subseteq B$, $x \in \underline{\text{(h)}}$. In case $x \in B$, then clearly $x \in B$. So in either case, $x \in \underline{\text{(i)}}$ [as was to be shown].

- **5.** Prove that for all sets A and B, $(B A) = B \cap A^c$.
- **H** 6. The following is a proof that for any sets A, B, and C, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. Fill in the blanks.

Proof: Suppose A, B, and C are any sets.

(1) Proof that $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$: Let $x \in A \cap (B \cup C)$. [We must show that $x \in \frac{(a)}{(c)}$.] By definition of intersection, $x \in \frac{(b)}{(d)}$ and $x \in \frac{(c)}{(d)}$. Thus $x \in A$ and, by definition of union, $x \in B$ or $\frac{(d)}{(d)}$.

Case 1 $(x \in A \text{ and } x \in B)$: In this case, by definition of intersection, $x \in \underline{(e)}$, and so, by definition of union, $x \in (A \cap B) \cup (A \cap C)$.

Case 2 $(x \in A \text{ and } x \in C)$: In this case, $\underline{(f)}$.

Hence in either case, $x \in (A \cap B) \cup (A \cap C)$ [as was to be shown].

[So $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$ by definition of subset.]

(2) $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$:

Let $x \in (A \cap B) \cup (A \cap C)$. [We must show that <u>(a)</u>.] By definition of union, $x \in A \cap B$ <u>(b)</u> $x \in A \cap C$.

Case 1 ($x \in A \cap B$): In this case, by definition of intersection, $x \in A$ (c) $x \in B$. Since $x \in B$, then by definition of union, $x \in B \cup C$. Hence $x \in A$ and $x \in B \cup C$, and so, by definition of intersection, $x \in (d)$.

Case 2 $(x \in A \cap C)$: In this case, <u>(e)</u>.

In either case, $x \in A \cap (B \cup C)$ [as was to be shown]. [Thus $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$ by definition of subset.]

(3) Conclusion: [Since both subset relations have been proved, it follows, by definition of set equality, that (a).]

Use an element argument to prove each statement in 7–19. Assume that all sets are subsets of a universal set U.

- **H** 7. For all sets A and B, $(A \cap B)^c = A^c \cup B^c$.
 - **8.** For all sets A and B, $(A \cap B) \cup (A \cap B^c) = A$.
- H 9. For all sets A, B, and C,

$$(A - B) \cup (C - B) = (A \cup C) - B.$$

10. For all sets A, B, and C,

$$(A - B) \cap (C - B) = (A \cap C) - B.$$

- **H** 11. For all sets A and B, $A \cup (A \cap B) = A$.
 - 12. For all sets $A, A \cup \emptyset = A$.
 - **13.** For all sets A, B, and C, if $A \subseteq B$ then $A \cap C \subseteq B \cap C$.
 - 14. For all sets A, B, and C, if $A \subseteq B$ then $A \cup C \subseteq B \cup C$.
 - 15. For all sets A and B, if $A \subseteq B$ then $B^c \subseteq A^c$.
- **H** 16. For all sets A, B, and C, if $A \subseteq B$ and $A \subseteq C$ then $A \subseteq B \cap C$.
 - 17. For all sets A, B, and C, if $A \subseteq C$ and $B \subseteq C$ then $A \cup B \subseteq C$.
 - **18.** For all sets A, B, and C,

$$A \times (B \cup C) = (A \times B) \cup (A \times C).$$

19. For all sets A, B, and C,

$$A \times (B \cap C) = (A \times B) \cap (A \times C).$$

20. Find the mistake in the following "proof" that for all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

"Proof: Suppose A, B, and C are sets such that $A \subseteq B$ and $B \subseteq C$. Since $A \subseteq B$, there is an element x such that $x \in A$ and $x \in B$. Since $B \subseteq C$, there is an element x such that $x \in B$ and $x \in C$. Hence there is an element x such that $x \in A$ and $x \in C$ and so $A \subseteq C$."

H 21. Find the mistake in the following "proof."

"**Theorem:**" For all sets A and B, $A^c \cup B^c \subseteq (A \cup B)^c$.

"Proof: Suppose A and B are sets, and $x \in A^c \cup B^c$. Then $x \in A^c$ or $x \in B^c$ by definition of union. It follows that $x \notin A$ or $x \notin B$ by definition of complement, and so $x \notin A \cup B$ by definition of union. Thus $x \in (A \cup B)^c$ by definition of complement, and hence $A^c \cup B^c \subseteq (A \cup B)^c$."

22. Find the mistake in the following "proof" that for all sets A and B, $(A - B) \cup (A \cap B) \subseteq A$.

"Proof: Suppose A and B are sets, and suppose $x \in (A-B) \cup (A\cap B)$. If $x \in A$ then $x \in A-B$. Then, by definition of difference, $x \in A$ and $x \notin B$. Hence $x \in A$, and so $(A-B) \cup (A\cap B) \subseteq A$ by definition of subset."