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in (4) (by definition of A − B). In particular, such an
element is in A.

b. Proof: Suppose A and B are any sets and x ∈ A − B.
[We must show that (1) .] By definition of set difference,
x ∈ (2) and x /∈ (3) . In particular, x ∈ (4) [which
is what was to be shown].

3. The following is a proof that for all sets A, B, and C , if
A ⊆ B and B ⊆ C , then A ⊆ C . Fill in the blanks.

Proof: Suppose A, B, and C are sets and A ⊆ B and
B ⊆ C . To show that A ⊆ C , we must show that every ele-
ment in (a) is in (b) . But given any element in A, that
element is in (c) (because A ⊆ B), and so that element is
also in (d) (because (e) ). Hence A ⊆ C .

4. The following is a proof that for all sets A and B, if A ⊆ B,
then A ∪ B ⊆ B. Fill in the blanks.

Proof: Suppose A and B are any sets and A ⊆ B. [We

must show that (a) .] Let x ∈ (b) . [We must show that
(c) .] By definition of union, x ∈ (d) (e) x ∈ (f ) . In
case x ∈ (g) , then since A ⊆ B, x ∈ (h) . In case x ∈ B,
then clearly x ∈ B. So in either case, x ∈ (i) [as was to
be shown].

5. Prove that for all sets A and B, (B − A) = B ∩ Ac.

6.H The following is a proof that for any sets A, B, and C ,
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). Fill in the blanks.

Proof: Suppose A, B, and C are any sets.

(1) Proof that A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C):
Let x ∈ A ∩ (B ∪ C). [We must show that x ∈ (a) .] By
definition of intersection, x ∈ (b) and x ∈ (c) . Thus
x ∈ A and, by definition of union, x ∈ B or (d) .

Case 1 (x ∈ A and x ∈ B): In this case, by definition
of intersection, x ∈ (e) , and so, by definition of union,
x ∈ (A ∩ B) ∪ (A ∩ C).

Case 2 (x ∈ A and x ∈ C): In this case, (f ) .
Hence in either case, x ∈ (A ∩ B) ∪ (A ∩ C) [as was to be
shown].
[So A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C) by definition of
subset.]

(2) (A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C):
Let x ∈ (A ∩ B) ∪ (A ∩ C). [We must show that (a) .] By
definition of union, x ∈ A ∩ B (b ) x ∈ A ∩ C .

Case 1 (x ∈ A ∩ B): In this case, by definition of intersec-
tion, x ∈ A (c ) x ∈ B. Since x ∈ B, then by definition of
union, x ∈ B ∪ C . Hence x ∈ A and x ∈ B ∪ C , and so,
by definition of intersection, x ∈ (d ) .

Case 2 (x ∈ A ∩ C): In this case, (e) .
In either case, x ∈ A ∩ (B ∪ C) [as was to be shown]. [Thus
(A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C) by definition of subset.]

(3) Conclusion: [Since both subset relations have been
proved, it follows, by definition of set equality, that (a) .]

Use an element argument to prove each statement in 7–19.
Assume that all sets are subsets of a universal set U .

7.H For all sets A and B, (A ∩ B)c = Ac ∪ Bc.

8. For all sets A and B, (A ∩ B) ∪ (A ∩ Bc) = A.

9.H For all sets A, B, and C ,

(A − B) ∪ (C − B) = (A ∪ C) − B.

10. For all sets A, B, and C ,

(A − B) ∩ (C − B) = (A ∩ C) − B.

11.H For all sets A and B, A ∪ (A ∩ B) = A.

12. For all sets A, A ∪ ∅ = A.

13. For all sets A, B, and C , if A ⊆ B then A ∩ C ⊆ B ∩ C .

14. For all sets A, B, and C , if A ⊆ B then A ∪ C ⊆ B ∪ C .

15. For all sets A and B, if A ⊆ B then Bc ⊆ Ac.

16.H For all sets A, B, and C , if A ⊆ B and A ⊆ C then
A ⊆ B ∩ C.

17. For all sets A, B, and C , if A ⊆ C and B ⊆ C then
A ∪ B ⊆ C .

18. For all sets A, B, and C ,

A × (B ∪ C) = (A × B) ∪ (A × C).

19. For all sets A, B, and C ,

A × (B ∩ C) = (A × B) ∩ (A × C).

20. Find the mistake in the following “proof” that for all sets
A, B, and C , if A ⊆ B and B ⊆ C then A ⊆ C .

“Proof: Suppose A, B, andC are sets such that A ⊆ B and
B ⊆ C . Since A ⊆ B, there is an element x such that x ∈ A
and x ∈ B. Since B ⊆ C , there is an element x such that
x ∈ B and x ∈ C . Hence there is an element x such that
x ∈ A and x ∈ C and so A ⊆ C .”

21.H Find the mistake in the following “proof.”

“Theorem:” For all sets A and B, Ac ∪ Bc ⊆ (A ∪ B)c.

“Proof: Suppose A and B are sets, and x ∈ Ac ∪ Bc. Then
x ∈ Ac or x ∈ Bc by definition of union. It follows that
x /∈ A or x /∈ B by definition of complement, and so
x /∈ A ∪ B by definition of union. Thus x ∈ (A ∪ B)c

by definition of complement, and hence Ac ∪ Bc ⊆
(A ∪ B)c.”

22. Find the mistake in the following “proof” that for all sets A
and B, (A − B) ∪ (A ∩ B) ⊆ A.

“Proof: Suppose A and B are sets, and suppose x ∈
(A − B) ∪ (A ∩ B). If x ∈ A then x ∈ A − B. Then,
by definition of difference, x ∈ A and x /∈ B. Hence
x ∈ A, and so (A − B) ∪ (A ∩ B) ⊆ A by definition of
subset.”
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