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Test Yourself
1. Mathematical induction differs from the kind of induction

used in the natural sciences because it is actually a form of

____ reasoning.

2. Mathematical induction can be used to _____ conjectures

that have been made using inductive reasoning.

Exercise Set 5.3
1. Based on the discussion of the product

(

1− 1

2

) (

1− 1

3

)

(

1− 1

4

)

· · ·
(

1− 1

n

)

at the beginning of this section, con-

jecture a formula for general n. Prove your conjecture by

mathematical induction.

2. Experiment with computing values of the product
(

1+ 1

1

) (

1+ 1

2

) (

1+ 1

3

)

· · ·
(

1+ 1

n

)

for small values of n

to conjecture a formula for this product for general n. Prove

your conjecture by mathematical induction.

3. Observe that

1

1 ·3
=

1

3

1

1 ·3
+

1

3 ·5
=

2

5

1

1 ·3
+

1

3 ·5
+

1

5 ·7
=

3

7

1

1 ·3
+

1

3 ·5
+

1

5 ·7
+

1

7 ·9
=

4

9

Guess a general formula and prove it by mathematical

induction.

4.H Observe that

1 = 1,

1− 4 = −(1+ 2),

1− 4+ 9 = 1+ 2+ 3,

1− 4+ 9− 16 = −(1+ 2+ 3+ 4),

1− 4+ 9− 16+ 25 = 1+ 2+ 3+ 4+ 5.

Guess a general formula and prove it by mathematical

induction.

5. Evaluate the sum

n
∑

k=1

k

(k + 1)!
for n = 1, 2, 3, 4, and 5.

Make a conjecture about a formula for this sum for general

n, and prove your conjecture by mathematical induction.

6. For each positive integer n, let P(n) be the property

5n − 1 is divisible by 4.

a. Write P(0). Is P(0) true?

b. Write P(k).

c. Write P(k + 1).

d. In a proof by mathematical induction that this divisibil-

ity property holds for all integers n ≥ 0, what must be

shown in the inductive step?

7. For each positive integer n, let P(n) be the property

2n < (n + 1)!.

a. Write P(2). Is P(2) true?

b. Write P(k).

c. Write P(k + 1).

d. In a proof by mathematical induction that this inequality

holds for all integers n ≥ 2, what must be shown in the

inductive step?

Prove each statement in 8–23 by mathematical induction.

8. 5n − 1 is divisible by 4, for each integer n ≥ 0.

9. 7n − 1 is divisible by 6, for each integer n ≥ 0.

10. n3 − 7n + 3 is divisible by 3, for each integer n ≥ 0.

11. 32n − 1 is divisible by 8, for each integer n ≥ 0.

12. For any integer n ≥ 0, 7n − 2n is divisible by 5.

13.H For any integer n ≥ 0, xn − yn is divisible by x − y, where

x and y are any integers with x 6= y.

14.H n3 − n is divisible by 6, for each integer n ≥ 0.

15. n(n2 + 5) is divisible by 6, for each integer n ≥ 0.

16. 2n < (n + 1)!, for all integers n ≥ 2.

17. 1+ 3n ≤ 4n , for every integer n ≥ 0.

18. 5n + 9 < 6n , for all integers n ≥ 2.

19. n2 < 2n , for all integers n ≥ 5.

20. 2n < (n + 2)!, for all integers n ≥ 0.

21.
√
n <

1
√

1
+

1
√

2
+ · · · +

1
√
n

, for all integers n ≥ 2.

22. 1+ nx ≤ (1+ x)n , for all real numbers x > −1 and

integers n ≥ 2.

23. a. n3 > 2n + 1, for all integers n ≥ 2.

b. n! > n2, for all integers n ≥ 4.

24. A sequence a1, a2, a3, . . . is defined by letting a1 = 3 and

ak = 7ak−1 for all integers k ≥ 2. Show that an = 3 ·7n−1

for all integers n ≥ 1.

25. A sequence b0, b1, b2, . . . is defined by letting b0 = 5 and

bk = 4+ bk−1 for all integers k ≥ 1. Show that bn > 4n for

all integers n ≥ 0.
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26. A sequence c0, c1, c2, . . . is defined by letting c0 = 3 and

ck = (ck−1)
2 for all integers k ≥ 1. Show that cn = 32n for

all integers n ≥ 0.

27. A sequence d1, d2, d3, . . . is defined by letting d1 = 2 and

dk =
dk−1

k
for all integers k ≥ 2. Show that for all integers

n ≥ 1, dn =
2

n!
.

28. Prove that for all integers n ≥ 1,

1

3
=

1+ 3

5+ 7
=

1+ 3+ 5

7+ 9+ 11
= · · ·

=
1+ 3+ · · · + (2n − 1)

(2n + 1)+ · · · + (4n − 1)
.

29. As each of a group of businesspeople arrives at a meeting,

each shakes hands with all the other people present. Use

mathematical induction to show that if n people come to

the meeting then [n(n − 1)]/2 handshakes occur.

In order for a proof by mathematical induction to be valid, the

basis statement must be true for n = a and the argument of

the inductive step must be correct for every integer k ≥ a. In

30 and 31 find the mistakes in the “proofs” by mathematical

induction.

30. “Theorem:” For any integer n ≥ 1, all the numbers in a

set of n numbers are equal to each other.

“Proof (by mathematical induction): It is obviously true

that all the numbers in a set consisting of just one number

are equal to each other, so the basis step is true. For the

inductive step, let A = {a1, a2, . . . , ak, ak+1} be any set of

k + 1 numbers. Form two subsets each of size k:

B = {a1, a2, a3, . . . , ak} and

C = {a1, a3, a4, . . . , ak+1}.

(B consists of all the numbers in A except ak+1, and C

consists of all the numbers in A except a2.) By induc-

tive hypothesis, all the numbers in B equal a1 and all

the numbers in C equal a1 (since both sets have only k

numbers). But every number in A is in B or C , so all

the numbers in A equal a1; hence all are equal to each

other.”

31.H “Theorem:” For all integers n ≥ 1, 3n − 2 is even.

“Proof (by mathematical induction): Suppose the

theorem is true for an integer k, where k ≥ 1. That is,

suppose that 3k − 2 is even. We must show that 3k+1 − 2 is

even. But

3k+1 − 2 = 3k ·3− 2 = 3k(1+ 2)− 2

= (3k − 2)+ 3k ·2.

Now 3k − 2 is even by inductive hypothesis and 3k ·2 is

even by inspection. Hence the sum of the two quantities is

even (by Theorem 4.1.1). It follows that 3k+1 − 2 is even,

which is what we needed to show.”

32.H Some 5× 5 checkerboards with one square removed can be

completely covered by L-shaped trominoes, whereas other

5× 5 checkerboards cannot. Find examples of both kinds

of checkerboards. Justify your answers.

33. Consider a 4× 6 checkerboard. Draw a covering of the

board by L-shaped trominoes.

34.H a. Use mathematical induction to prove that any checker-

board with dimensions 3× 2n can be completely

covered with L-shaped trominoes for any integer n ≥ 1.

b. Let n be any integer greater than or equal to 1. Use the

result of part (a) to prove by mathematical induction

that for all integers m, any checkerboard with dimen-

sions 2m × 3n can be completely covered with L-shaped

trominoes.

35. Let m and n be any integers that are greater than or equal

to 1.

a. Prove that a necessary condition for an m × n checker-

board to be completely coverable by L-shaped trominoes

is that mn be divisible by 3.

H b. Prove that having mn be divisible by 3 is not a sufficient

condition for an m × n checkerboard to be completely

coverable by L-shaped trominoes.

36. In a round-robin tournament each team plays every other

team exactly once. If the teams are labeled T1, T2, . . . , Tn,

then the outcome of such a tournament can be represented

by a drawing, called a directed graph, in which the teams

are represented as dots and an arrow is drawn from one

dot to another if, and only if, the team represented by the

first dot beats the team represented by the second dot. For

example, the directed graph below shows one outcome of

a round-robin tournament involving five teams, A, B, C, D,

and E.

A

B

C

D
E

Use mathematical induction to show that in any round-

robin tournament involving n teams, where n ≥ 2, it is

possible to label the teams T1, T2, . . . , Tn so that Ti beats

Ti+1 for all i = 1, 2, . . . , n − 1. (For instance, one such

labeling in the example above is T1 = A, T2 = B, T3 =
C, T4 = E, T5 = D.) (Hint: Given k + 1 teams, pick one—

say T ′—and apply the inductive hypothesis to the remain-

ing teams to obtain an ordering T1, T2, . . . , Tk . Consider

three cases: T
′
beats T1, T

′
loses to the firstm teams (where

1 ≤ m ≤ k − 1) and beats the (m + 1)st team, and T
′
loses

to all the other teams.)

37.✶H On the outside rim of a circular disk the integers from

1 through 30 are painted in random order. Show that no

matter what this order is, there must be three successive

integers whose sum is at least 45.
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38.H Suppose that n a’s and n b’s are distributed around the out-

side of a circle. Use mathematical induction to prove that

for all integers n ≥ 1, given any such arrangement, it is

possible to find a starting point so that if one travels around

the circle in a clockwise direction, the number of a’s one

has passed is never less than the number of b’s one has

passed. For example, in the diagram shown below, one

could start at the a with an asterisk.

a
a

a

b

b

b
b

b

a*

a

a

b

39. For a polygon to be convex means that all of its inte-

rior angles are less than 180 degrees. Use mathematical

induction to prove that for all integers n ≥ 3, the angles

of any n-sided convex polygon add up to 180(n − 2)

degrees.

40. a. Prove that in an 8× 8 checkerboard with alternating

black and white squares, if the squares in the top right

and bottom left corners are removed the remaining board

cannot be covered with dominoes. (Hint: Mathematical

induction is not needed for this proof.)

b. Use mathematical induction to prove that for all

integers n, if a 2n × 2n checkerboard with alternat-

ing black and white squares has one white square

and one black square removed anywhere on the

board, the remaining squares can be covered with

dominoes.

Answers for Test Yourself

1. deductive 2. prove

5.4 Strong Mathematical Induction
and the Well-Ordering Principle for the Integers

Mathematics takes us still further from what is human into the region of absolute

necessity, to which not only the actual world, but every possible world, must conform.

— Bertrand Russell, 1902

Strong mathematical induction is similar to ordinary mathematical induction in that it is

a technique for establishing the truth of a sequence of statements about integers. Also,

a proof by strong mathematical induction consists of a basis step and an inductive step.

However, the basis step may contain proofs for several initial values, and in the inductive

step the truth of the predicate P(n) is assumed not just for one value of n but for all

values through k, and then the truth of P(k + 1) is proved.

Principle of Strong Mathematical Induction

Let P(n) be a property that is defined for integers n, and let a and b be fixed integers

with a ≤ b. Suppose the following two statements are true:

1. P(a), P(a + 1), . . . , and P(b) are all true. (basis step)

2. For any integer k ≥ b, if P(i) is true for all integers i from a through k, then

P(k + 1) is true. (inductive step)

Then the statement
for all integers n ≥ a, P(n)

is true. (The supposition that P(i) is true for all integers i from a through k is called

the inductive hypothesis. Another way to state the inductive hypothesis is to say

that P(a), P(a + 1), . . . , P(k) are all true.)
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