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Equating the right-hand sides of equations (5.2.1) and (5.2.2) and dividing by r − 1 gives

Sn =
rn+1 − 1

r − 1
.

This derivation of the formula is attractive and is quite convincing. However, it is

not as logically airtight as the proof by mathematical induction. To go from one step to

another in the previous calculations, the argument is made that each term among those

indicated by the ellipsis (. . .) has such-and-such an appearance and when these are can-

celed such-and-such occurs. But it is impossible actually to see each such term and each

such calculation, and so the accuracy of these claims cannot be fully checked. With math-

ematical induction it is possible to focus exactly on what happens in the middle of the

ellipsis and verify without doubt that the calculations are correct.

Test Yourself

1. Mathematical induction is a method for proving that a prop-

erty defined for integers n is true for all values of n that are

_____.

2. Let P(n) be a property defined for integers n and consider

constructing a proof by mathematical induction for the state-

ment “P(n) is true for all n ≥ a.”

(a) In the basis step one must show that _____.

(b) In the inductive step one supposes that _____ for some

particular but arbitrarily chosen value of an integer

k ≥ a. This supposition is called the _____. One then

has to show that _____.

Exercise Set 5.2

1. Use mathematical induction (and the proof of Proposi-

tion 5.2.1 as a model) to show that any amount of money

of at least 14c/ can be made up using 3c/ and 8c/ coins.

2. Use mathematical induction to show that any postage of at

least 12c/ can be obtained using 3c/ and 7c/ stamps.

3. For each positive integer n, let P(n) be the formula

12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6
.

a. Write P(1). Is P(1) true?

b. Write P(k).

c. Write P(k + 1).

d. In a proof by mathematical induction that the formula

holds for all integers n ≥ 1, what must be shown in the

inductive step?

4. For each integer n with n ≥ 2, let P(n) be the formula

n−1
∑

i=1

i(i + 1) =
n(n − 1)(n + 1)

3
.

a. Write P(2). Is P(2) true?

b. Write P(k).

c. Write P(k + 1).

d. In a proof by mathematical induction that the formula

holds for all integers n ≥ 2, what must be shown in the

inductive step?

5. Fill in the missing pieces in the following proof that

1+ 3+ 5+ · · · + (2n − 1) = n2

for all integers n ≥ 1.

Proof: Let the property P(n) be the equation

1+ 3+ 5+ · · · + (2n − 1) = n2. ← P(n)

Show that P(1) is true: To establish P(1), we must show

that when 1 is substituted in place of n, the left-hand side

equals the right-hand side. But when n = 1, the left-hand

side is the sum of all the odd integers from 1 to 2 ·1− 1,

which is the sum of the odd integers from 1 to 1, which is

just 1. The right-hand side is (a) , which also equals 1. So

P(1) is true.

Show that for all integers k ≥ 1, if P(k) is true then

P(k + 1) is true: Let k be any integer with k ≥ 1.

[Suppose P(k) is true. That is:]

Suppose 1+ 3+ 5+ · · · + (2k − 1) = (b) . ← P(k)

[This is the inductive hypothesis.]

[We must show that P(k + 1) is true. That is:]

We must show that

(c) = (d) . ← P(k + 1)

But the left-hand side of P(k + 1) is

1+ 3+ 5+ · · · + (2(k + 1)− 1)

= 1+ 3+ 5+ · · · + (2k + 1) by algebra

= [1+ 3+ 5+ · · · + (2k − 1)] + (2k + 1)

the next-to-last term is 2k − 1 because (e)

= k2 + (2k + 1) by (f)

= (k + 1)2 by algebra
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5.2 Mathematical Induction I 257

which is the right-hand side of P(k + 1) [as was to be

shown.]

[Since we have proved the basis step and the inductive step, we

conclude that the given statement is true.]

The previous proof was annotated to help make its logical

flow more obvious. In standard mathematical writing, such

annotation is omitted.

Prove each statement in 6–9 using mathematical induction. Do

not derive them from Theorem 5.2.2 or Theorem 5.2.3.

6. For all integers n ≥ 1, 2+ 4+ 6+ · · · + 2n = n2 + n.

7. For all integers n ≥ 1,

1+ 6+ 11+ 16+ · · · + (5n − 4) =
n(5n − 3)

2
.

8. For all integers n ≥ 0, 1+ 2+ 22 + · · · + 2n = 2n+1 − 1.

9. For all integers n ≥ 3,

43 + 44 + 45 + · · · + 4n =
4(4n − 16)

3
.

Prove each of the statements in 10–17 by mathematical

induction.

10. 12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6
, for all integers

n ≥ 1.

11. 13 + 23 + · · · + n3 =

[

n(n + 1)

2

]2

, for all integers n ≥ 1.

12.
1

1 ·2
+

1

2 ·3
+ · · · +

1

n(n + 1)
=

n

n + 1
, for all integers

n ≥ 1.

13.

n−1
∑

i=1

i(i + 1) =
n(n − 1)(n + 1)

3
, for all integers n ≥ 2.

14.

n+1
∑

i=1

i ·2i = n ·2n+2 + 2, for all integers n ≥ 0.

15.H

n
∑

i=1

i(i !) = (n + 1)! − 1, for all integers n ≥ 1.

16.

(

1−
1

22

)(

1−
1

32

)

· · ·

(

1−
1

n2

)

=
n + 1

2n
, for all inte-

gers n ≥ 2.

17.

n
∏

i=0

(

1

2i + 1
·

1

2i + 2

)

=
1

(2n + 2)!
, for all integers n ≥ 0.

18.✶H If x is a real number not divisible by π , then for all integers

n ≥ 1,

sin x + sin 3x + sin 5x + · · · + sin (2n − 1)x

=
1− cos 2nx

2 sin x
.

19. (For students who have studied calculus) Use mathemati-

cal induction, the product rule from calculus, and the facts

that
d(x)

dx
= 1 and that x k+ 1 = x · x k to prove that for all

integers n ≥ 1,
d(xn)

dx
= nxn− 1.

Use the formula for the sum of the first n integers and/or the for-

mula for the sum of a geometric sequence to evaluate the sums

in 20–29 or to write them in closed form.

20. 4+ 8+ 12+ 16+ · · · + 200

21. 5+ 10+ 15+ 20+ · · · + 300

22. 3+ 4+ 5+ 6+ · · · + 1000

23. 7+ 8+ 9+ 10+ · · · + 600

24. 1+ 2+ 3+ · · · + (k − 1), where k is an integer and k ≥ 2.

25. a. 1+ 2+ 22 + · · · + 225

b. 2+ 22 + 23 + · · · + 226

26. 3+ 32 + 33 + · · · + 3n , where n is an integer with n ≥ 1

27. 53 + 54 + 55 + · · · + 5k , where k is any integer with k ≥ 3.

28. 1+
1

2
+

1

22
+ · · · +

1

2n
, where n is a positive integer

29. 1− 2+ 22 − 23 + · · · + (−1)n2n , where n is a positive

integer

30.H Find a formula in n, a,m, and d for the sum (a + md)+

(a + (m + 1)d)+ (a + (m + 2)d)+ · · · + (a + (m + n)d),

where m and n are integers, n ≥ 0, and a and d are real

numbers. Justify your answer.

31. Find a formula in a, r,m, and n for the sum

arm + arm+1 + arm+2 + · · · + arm+n

where m and n are integers, n ≥ 0, and a and r are real

numbers. Justify your answer.

32. You have two parents, four grandparents, eight great-

grandparents, and so forth.

a. If all your ancestors were distinct, what would be

the total number of your ancestors for the past 40

generations (counting your parents’ generation as num-

ber one)? (Hint: Use the formula for the sum of a geo-

metric sequence.)

b. Assuming that each generation represents 25 years, how

long is 40 generations?

c. The total number of people who have ever lived is

approximately 10 billion, which equals 1010 people.

Compare this fact with the answer to part (a). What do

you deduce?

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



258 Chapter 5 Sequences, Mathematical Induction, and Recursion

Find the mistakes in the proof fragments in 33–35.

33.H Theorem: For any integer n ≥ 1,

12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6
.

“Proof (by mathematical induction): Certainly the

theorem is true for n = 1 because 12 = 1 and

1(1+ 1)(2 ·1+ 1)

6
= 1. So the basis step is true.

For the inductive step, suppose that for some integer k ≥ 1,

k2 =
k(k + 1)(2k + 1)

6
. We must show that

(k + 1)2 =
(k + 1)((k + 1)+ 1)(2(k + 1)+ 1)

6
.”

34.H Theorem: For any integer n ≥ 0,

1+ 2+ 22 + · · · + 2n = 2n+ 1 − 1.

“Proof (by mathematical induction): Let the property

P(n) be 1+ 2+ 22 + · · · + 2n = 2n+ 1 − 1.

Show that P(0) is true:

The left-hand side of P(0) is 1+ 2+ 22 + · · · + 20 = 1

and the right-hand side is 20+ 1 − 1 = 2− 1 = 1 also. So

P(0) is true.”

35.H Theorem: For any integer n ≥ 1,

n
∑

i=1

i(i !) = (n + 1)! − 1.

“Proof (by mathematical induction): Let the property

P(n) be
n
∑

i=1

i(i !) = (n + 1)! − 1.

Show that P(1) is true:When n = 1

1
∑

i=1

i(i !) = (1+ 1)! − 1

So 1(1!) = 2! − 1

and 1 = 1

Thus P(1) is true.”

36.✶ Use Theorem 5.2.2 to prove that if m and n are any positive

integers and m is odd, then
∑m−1

k=0 (n + k) is divisible by m.

Does the conclusion hold if m is even? Justify your answer.

37.✶H Use Theorem 5.2.2 and the result of exercise 10 to prove

that if p is any prime number with p ≥ 5, then the sum of

squares of any p consecutive integers is divisible by p.

Answers for Test Yourself

1. greater than or equal to some initial value 2. (a) P(a) is true (b) P(k) is true; inductive hypothesis; P(k + 1) is true

5.3 Mathematical Induction II

A good proof is one which makes us wiser.— I. Manin, A Course in Mathematical Logic, 1977

In natural science courses, deduction and induction are presented as alternative modes

of thought—deduction being to infer a conclusion from general principles using the

laws of logical reasoning, and induction being to enunciate a general principle after

observing it to hold in a large number of specific instances. In this sense, then,

mathematical induction is not inductive but deductive. Once proved by mathematical

induction, a theorem is known just as certainly as if it were proved by any other mathe-

matical method. Inductive reasoning, in the natural sciences sense, is used in mathemat-

ics, but only to make conjectures, not to prove them. For example, observe that

1−
1

2
=

1

2
(

1−
1

2

)(

1−
1

3

)

=
1

3
(

1−
1

2

)(

1−
1

3

)(

1−
1

4

)

=
1

4

This pattern seems so unlikely to occur by pure chance that it is reasonable to conjecture

(though it is by no means certain) that the pattern holds true in general. In a case like

this, a proof by mathematical induction (which you are asked to write in exercise 1 at

the end of this section) gets to the essence of why the pattern holds in general. It reveals

the mathematical mechanism that necessitates the truth of each successive case from the

previous one. For instance, in this example observe that if
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