
4.8 Application: Algorithms 225

Exercise Set 4.8

Find the value of z when each of the algorithm segments in 1

and 2 is executed.

1. i := 2

if (i > 3 or i ≤ 0)

then z := 1

else z := 0

2. i := 3

if (i ≤ 3 or i > 6)

then z := 2

else z := 0

3. Consider the following algorithm segment:

if x · y > 0 then do y := 3 · x

x := x + 1 end do

z := x · y

Find the value of z if prior to execution x and y have the

values given below.

a. x = 2, y = 3 b. x = 1, y = 1

Find the values of a and e after execution of the loops in 4

and 5:

4. a := 2

for i := 1 to 2

a :=
a

2
+

1

a

next i

5. e := 0, f := 2

for j := 1 to 4

f := f · j

e := e +
1

f

next j

Make a trace table to trace the action of Algorithm 4.8.1 for the

input variables given in 6 and 7.

6. a = 26, d = 7 7. a = 59, d = 13

8. The following algorithm segment makes change; given an

amount of money A between 1c/ and 99c/, it determines a

breakdown of A into quarters (q), dimes (d), nickels (n),

and pennies (p).

q : = A div 25

A : = A mod 25

d : = A div 10

A : = A mod 10

n : = A div 5

p : = A mod 5

a. Trace this algorithm segment for A = 69.

b. Trace this algorithm segment for A = 87.

Find the greatest common divisor of each of the pairs of integers

in 9–12. (Use any method you wish.)

9. 27 and 72 10. 5 and 9

11. 7 and 21 12. 48 and 54

Use the Euclidean algorithm to hand-calculate the greatest com-

mon divisors of each of the pairs of integers in 13–16.

13. 1,188 and 385 14. 509 and 1,177

15. 832 and 10,933 16. 4,131 and 2,431

Make a trace table to trace the action of Algorithm 4.8.2 for the

input variables given in 17 and 18.

17. 1,001 and 871 18. 5,859 and 1,232

19.H Prove that for all positive integers a and b, a | b if, and only

if, gcd(a, b) = a. (Note that to prove “A if, and only if, B,”

you need to prove “if A then B” and “if B then A.”)

20. a. Prove that if a and b are integers, not both zero, and

d = gcd(a, b), then a/d and b/d are integers with no

common divisor that is greater than one.

b. Write an algorithm that accepts the numerator and

denominator of a fraction as input and produces as out-

put the numerator and denominator of that fraction writ-

ten in lowest terms. (The algorithm may call upon the

Euclidean algorithm as needed.)

21. Complete the proof of Lemma 4.8.2 by proving the follow-

ing: If a and b are any integers with b 6= 0 and q and r are

any integers such that

a = bq + r.

then gcd(b, r) ≤ gcd(a, b).

22.H a. Prove: If a and d are positive integers and q and r are

integers such that a = dq + r and 0 < r < d , then

−a = d(−(q + 1))+ (d − r)

and 0 < d − r < d.

b. Indicate how to modify Algorithm 4.8.1 to allow for the

input a to be negative.

23. a. Prove that if a, d, q , and r are integers such that a =

dq + r and 0 ≤ r < d , then

q = ⌊a/d⌋ and r = a − ⌊a/d⌋ ·d.

b. In a computer language with a built-in-floor function,

div and mod can be calculated as follows:

a div d = ⌊a/d⌋ and a mod d = a − ⌊a/d⌋ ·d.

Rewrite the steps of Algorithm 4.8.2 for a computer lan-

guage with a built-in floor function but without div and

mod.

24. An alternative to the Euclidean algorithm uses subtraction

rather than division to compute greatest common divisors.

(After all, division is repeated subtraction.) It is based on

the following lemma:

Lemma 4.8.3

If a ≥ b > 0, then gcd(a, b) = gcd(b, a − b).

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

226 Chapter 4 Elementary Number Theory and Methods of Proof

Algorithm 4.8.3 Computing gcd’s by Subtraction

[Given two positive integers A and B, variables a and b are set

equal to A and B. Then a repetitive process begins. If a 6= 0,

and b 6= 0, then the larger of a and b is set equal to a − b (if

a ≥ b) or to b − a (if a < b), and the smaller of a and b is left

unchanged. This process is repeated over and over until eventu-

ally a or b becomes 0. By Lemma 4.8.3, after each repetition of

the process,

gcd(A, B) = gcd(a, b).

After the last repetition,

gcd(A, B) = gcd(a, 0) or gcd(A, B) = gcd(0, b)

depending on whether a or b is nonzero. But by Lemma 4.8.1,

gcd(a, 0) = a and gcd(0, b) = b.

Hence, after the last repetition,

gcd(A, B) = a if a 6= 0 or gcd(A, B) = b if b 6= 0.]

Input: A, B [positive integers]

Algorithm Body:

a := A, b := B

while (a 6= 0 and b 6= 0)

if a ≥ b then a := a − b

else b := b − a

end while

if a = 0 then gcd := b

else gcd := a

[After execution of the if-then-else statement,

gcd= gcd(A, B).]

Output: gcd [a positive integer]

a. Prove Lemma 4.8.3.

b. Trace the execution of Algorithm 4.8.3 for A = 630 and

B = 336.

c. Trace the execution of Algorithm 4.8.3 for A = 768 and

B = 348.

Exercises 25–29 refer to the following definition.

Definition: The least commonmultiple of two nonzero inte-

gers a and b, denoted lcm(a, b), is the positive integer c

such that

a. a | c and b | c

b. for all positive integers m, if a |m and b |m, then c ≤ m.

25. Find

a. lcm(12, 18) b. lcm(22 ·3 ·5, 23 ·32)

c. lcm(2800, 6125)

26. Prove that for all positive integers a and b, gcd(a, b) =

lcm(a, b) if, and only if, a = b.

27. Prove that for all positive integers a and b, a | b if, and only

if, lcm(a, b) = b.

28. Prove that for all integers a and b, gcd(a, b) | lcm(a, b).

29.H Prove that for all positive integers a and b,

gcd(a, b) · lcm(a, b) = ab.

Answers for Test Yourself

1. the expression e is evaluated (using the current values of all the variables in the expression), and this value is placed in the memory

location corresponding to x (replacing any previous contents of the location) 2. statement s1 is executed; statement s2 is executed

3. all statements in the body of the loop are executed in order and then execution moves back to the beginning of the loop and the

process repeats; execution passes to the next algorithm statement following the loop 4. the statements in the body of the loop are

executed in order, variable is increased by 1, and execution returns to the top of the loop; execution passes to the next algorithm

statement following the loop 5. integers q and r with the property that n = dq + r and 0 ≤ r < d 6. d divides both a and b; if c

is a common divisor of both a and b, then c ≤ d 7. r 8. gcd(b, r) 9. the greatest common divisor of A and B (Or: gcd(A,B))

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

227

CHAPTER5

SEQUENCES, MATHEMATICAL
INDUCTION, AND RECURSION

One of the most important tasks of mathematics is to discover and characterize regular

patterns, such as those associated with processes that are repeated. The main mathemati-

cal structure used in the study of repeated processes is the sequence, and the main mathe-

matical tool used to verify conjectures about sequences is mathematical induction. In this

chapter we introduce the notation and terminology of sequences, show how to use both

ordinary and strong mathematical induction to prove properties about them, illustrate the

various ways recursively defined sequences arise, describe a method for obtaining an

explicit formula for a recursively defined sequence, and explain how to verify the cor-

rectness of such a formula. We also discuss a principle—the well-ordering principle for

the integers—that is logically equivalent to the two forms of mathematical induction, and

we show how to adapt mathematical induction to prove the correctness of computer algo-

rithms. In the final section we discuss more general recursive definitions, such as the one

used for the careful formulation of the concept of Boolean expression, and the idea of

recursive function.

5.1 Sequences

A mathematician, like a painter or poet, is a maker of patterns.

— G. H. Hardy, A Mathematician’s Apology, 1940

Imagine that a person decides to count his ancestors. He has two parents, four grandpar-

ents, eight great-grandparents, and so forth, These numbers can be written in a row as

2, 4, 8, 16, 32, 64, 128, . . .

The symbol “. . .” is called an ellipsis. It is shorthand for “and so forth.”

To express the pattern of the numbers, suppose that each is labeled by an integer

giving its position in the row.

Position in the row 1 2 3 4 5 6 7 . . .

Number of ancestors 2 4 8 16 32 64 128 . . .

The number corresponding to position 1 is 2, which equals 21. The number corresponding

to position 2 is 4, which equals 22. For positions 3, 4, 5, 6, and 7, the corresponding

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

