#### **Example 1.3.7 Equality of Functions**

Define  $f: \mathbf{R} \to \mathbf{R}$  and  $g: \mathbf{R} \to \mathbf{R}$  by the following formulas:

$$f(x) = |x|$$
 for all  $x \in \mathbf{R}$ .  
 $g(x) = \sqrt{x^2}$  for all  $x \in \mathbf{R}$ .

Does f = g?

#### Solution

Yes. Because the absolute value of any real number equals the square root of its square,  $|x| = \sqrt{x^2}$  for all  $x \in \mathbf{R}$ . Hence f = g.

### Test Yourself

- 1. Given sets A and B, a relation from A to B is \_\_\_\_\_.
- 2. A function F from A to B is a relation from A to B that satisfies the following two properties:
  - a. for every element x of A, there is .
- b. for all elements x in A and y and z in B, if \_\_\_\_
- 3. If F is a function from A to B and x is an element of A, then F(x) is \_\_\_\_.

## Exercise Set 1.3

**1.** Let  $A = \{2, 3, 4\}$  and  $B = \{6, 8, 10\}$  and define a relation R from A to B as follows: For all  $(x, y) \in A \times B$ ,

$$(x, y) \in R$$
 means that  $\frac{y}{x}$  is an integer.

- a. Is 4R6? Is 4R8? Is  $(3,8) \in R$ ? Is  $(2,10) \in R$ ?
- b. Write R as a set of ordered pairs.
- c. Write the domain and co-domain of R.
- d. Draw an arrow diagram for R.
- 2. Let  $C = D = \{-3, -2, -1, 1, 2, 3\}$  and define a relation S from C to D as follows: For all  $(x, y) \in C \times D$ ,

$$(x, y) \in S$$
 means that  $\frac{1}{x} - \frac{1}{y}$  is an integer.

- a. Is 2 S 2? Is -1S 1? Is  $(3, 3) \in S$ ? Is  $(3, -3) \in S$ ?
- b. Write S as a set of ordered pairs.
- c. Write the domain and co-domain of S.
- d. Draw an arrow diagram for S.
- 3. Let  $E = \{1, 2, 3\}$  and  $F = \{-2, -1, 0\}$  and define a relation T from E to F as follows: For all  $(x, y) \in E \times F$ ,

$$(x, y) \in T$$
 means that  $\frac{x - y}{3}$  is an integer.

- a. Is 3T 0? Is 1T(-1)? Is  $(2, -1) \in T$ ? Is  $(3, -2) \in T$ ?
- b. Write T as a set of ordered pairs.
- c. Write the domain and co-domain of T.
- d. Draw an arrow diagram for T.
- 4. Let  $G = \{-2, 0, 2\}$  and  $H = \{4, 6, 8\}$  and define a relation *V* from *G* to *H* as follows: For all  $(x, y) \in G \times H$ ,

$$(x, y) \in V$$
 means that  $\frac{x - y}{4}$  is an integer.

a. Is 
$$2V 6$$
? Is  $(-2)V (-6)$ ? Is  $(0, 6) \in V$ ? Is  $(2, 4) \in V$ ?

- b. Write V as a set of ordered pairs.
- c. Write the domain and co-domain of V.
- d. Draw an arrow diagram for V.
- **5.** Define a relation S from  $\mathbf{R}$  to  $\mathbf{R}$  as follows: For all  $(x, y) \in \mathbf{R} \times \mathbf{R}$ ,

$$(x, y) \in S$$
 means that  $x \ge y$ .

- a. Is  $(2, 1) \in S$ ? Is  $(2, 2) \in S$ ? Is 2S3? Is (-1)S(-2)?
- b. Draw the graph of S in the Cartesian plane.
- 6. Define a relation *R* from **R** to **R** as follows: For all  $(x, y) \in \mathbf{R} \times \mathbf{R}$ ,

$$(x, y) \in R$$
 means that  $y = x^2$ .

- a. Is  $(2, 4) \in R$ ? Is  $(4, 2) \in R$ ? Is (-3) R 9? Is 9 R (-3)?
- b. Draw the graph of *R* in the Cartesian plane.
- 7. Let  $A = \{4, 5, 6\}$  and  $B = \{5, 6, 7\}$  and define relations R, S, and T from A to B as follows:

For all  $(x, y) \in A \times B$ ,

$$(x, y) \in R$$
 means that  $x \ge y$ .

$$(x, y) \in S$$
 means that  $\frac{x - y}{2}$  is an integer.  
 $T = \{(4, 7), (6, 5), (6, 7)\}.$ 

- a. Draw arrow diagrams for R, S, and T.
- b. Indicate whether any of the relations R, S, and T are functions.
- 8. Let  $A = \{2, 4\}$  and  $B = \{1, 3, 5\}$  and define relations U, V, and W from A to B as follows: For all (x, y) $\in A \times B$ ,

$$(x, y) \in U$$
 means that  $y - x > 2$ .  
 $(x, y) \in V$  means that  $y - 1 = \frac{x}{2}$ .  
 $W = \{(2, 5), (4, 1), (2, 3)\}$ .

- a. Draw arrow diagrams for U, V, and W.
- b. Indicate whether any of the relations U, V, and W are functions.
- **9.** a. Find all relations from  $\{0,1\}$  to  $\{1\}$ .
  - b. Find all functions from  $\{0,1\}$  to  $\{1\}$ .
  - c. What fraction of the relations from  $\{0,1\}$  to  $\{1\}$  are functions?
- 10. Find four relations from  $\{a, b\}$  to  $\{x, y\}$  that are not functions from  $\{a, b\}$  to  $\{x, y\}$ .
- 11. Define a relation P from  $\mathbb{R}^+$  to  $\mathbb{R}$  as follows: For all real numbers x and y with x > 0,

$$(x, y) \in P$$
 means that  $x = y^2$ .

Is *P* a function? Explain.

12. Define a relation T from  $\mathbf{R}$  to  $\mathbf{R}$  as follows: For all real numbers x and y,

$$(x, y) \in T$$
 means that  $y^2 - x^2 = 1$ .

Is T a function? Explain.

13. Let  $A = \{-1, 0, 1\}$  and  $B = \{t, u, v, w\}$ . Define a function  $F: A \to B$  by the following arrow diagram:



- a. Write the domain and co-domain of F.
- b. Find F(-1), F(0), and F(1).
- 14. Let  $C = \{1, 2, 3, 4\}$  and  $D = \{a, b, c, d\}$ . Define a function  $G: C \to D$  by the following arrow diagram:



- a. Write the domain and co-domain of G.
- b. Find G(1), G(2), G(3), and G(4).
- 15. Let  $X = \{2, 4, 5\}$  and  $Y = \{1, 2, 4, 6\}$ . Which of the following arrow diagrams determine functions from X to Y?



- b. X Y 4 1 2 4 6
- c. X Y

  4

  2

  4

  4

  5

  6
- d. X Y

  2 1

  4 2

   4

  5 6
- **16.** Let f be the squaring function defined in Example 1.3.6. Find f(-1), f(0), and  $f\left(\frac{1}{2}\right)$ .
- 17. Let g be the successor function defined in Example 1.3.6. Find g(-1000), g(0), and g(999).
- 18. Let h be the constant function defined in Example 1.3.6. Find  $h\left(-\frac{12}{5}\right)$ ,  $h\left(\frac{0}{1}\right)$ , and  $h\left(\frac{9}{17}\right)$ .
- **19.** Define functions f and g from  $\mathbf{R}$  to  $\mathbf{R}$  by the following formulas: For all  $x \in \mathbf{R}$ ,

$$f(x) = 2x$$
 and  $g(x) = \frac{2x^3 + 2x}{x^2 + 1}$ .

Does f = g? Explain.

20. Define functions H and K from  $\mathbf{R}$  to  $\mathbf{R}$  by the following formulas: For all  $x \in \mathbf{R}$ ,

$$H(x) = (x-2)^2$$
 and  $K(x) = (x-1)(x-3) + 1$ .

Does H = K? Explain.

# Answers for Test Yourself

1. a subset of the Cartesian product  $A \times B$  2. a. an element y of B such that  $(x, y) \in F$  (i.e., such that x is related to y by F) b.  $(x, y) \in F$  and  $(x, z) \in F$ ; y = z 3. the unique element of B that is related to x by F