APPENDIX B
ALGEBRA REVIEW

ExaMPLE B.1

ExaMPLE B.2

ExaMPLE B.3

In this appendix, we review basic algebra: rules for combining and simplitying
expressions; fractions; exponents; factoring: quadratic equations: inequalities;
and logarithms. For a more extensive treatment of basic algebra, see [Bleau;
Lial: Sullivan].

Grouping
Terms with a common symbol can be combined:
ac+ be = (a + b)c, ac — be = (a — b)c.

Technically, these equations are known as distributive laws.

2x 4+ 3x =24+ 3)x =5x [ ]

The distributive laws, rewritten as
ab+c¢)=ab+ ac, alb—c)=ab — ac,

can be used to simplify expressions.

200+ D) =2x+2-1=2x+2 [ ]

2004+ D 4+2(x — 1) =2x+24+2x —2 =4x [ |

Fractions

Formulas useful for adding, subtracting, and multiplying fractions are given as
Theorem B.4.

so9
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THEOREM B.4 CoMBINING FRACTIONS

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

B.9

b +b

@ =42 ==

c ¢ c

a b a-b>b
(b) = -2 =

c ¢ c
()a+b ad + bc
e — — ==

c d cd

a b ad-—bc
) = — =
()c d cd
()a b ab i
e) —« — = —

¢ d cd

Using Theorem B.4(a), we obtain

x—1+x+1_(x—l)+(x+l)_2x

- =X. |
2 2 2 2
Using Theorem B.4(b), we obtain
-1 1 -1 - 1 -2
X __x—!— :(x B) (x+):__:_1. i

2 2 2 2

Using Theorem B.4(c), we obtain

x—1+x+1_3(x—1)+2(x+1)_5x—1

|
2 3 2.3 6
Using Theorem B.4(d), we obtain
x—1 x+1 3x-1)—-2(x+1) x-35 »
2 g 2-3 6
Using Theorem B.4(e), we obtain
2 4 8 “
PR ]
Xy Xy

Exponents

If n is a positive integer and « is a real number, we define a” as

If a is a nonzero real number, we define a” = 1. If n is a negative integer and a
is a nonzero real number, we define a” as
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If a is a real number,
a*=a-a-a-a.
As a specific example,
2*=2.2.2.2=16.
If a is a nonzero real number,
1
a =
a*
As a specific example,
) 1 1
27 = — = —. | |
2416

If @ is a positive real number and 7 is a positive integer, we define a® to
be the positive number b satistying

b = a.
We call b the nth root of a.
3!/4 to nine significant digits is 1.316074013 because (1.316074013)* is approxi-

mately 3.
|

If a is a positive real number, m is an integer, and # is a positive integer,

we define
am/n = (al/n)m

The preceding equation defines a4 for all positive real numbers a and rational
numbers g. (Recall that a rational number is a number that is the quotient of
integers.)

Since 3'/# to nine significant digits is 1.316074013,
394 = (1.316074013)° = 11.84466612.
The decimal values are approximations. ]

If a is a positive real number, the definition of ¢* can be extended to
include all real numbers x (rational or irrational). The following theorem lists
five important laws of exponents.

LAaws OF EXPONENTS
Let a and b be positive real numbers, and let x and y be real numbers. Then

(a) a*Y =qg*a’

() @) =a"
a’ !

(0 = =a
a’¥

(d) a*b* = (ab)”
a® a\~x

@ 5 =(5)" =

Leta =3,x =2,and y = 4. Thena* =9, a” = 81, and a* 1 = 32+ = 729,

Now

a’v =729=9-81=da"a’,

which illustrates Theorem B.13(a). |
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ExamMpPLE B.15

ExaMPLE B.16

ExamMpPLE B.17

ExamMpPLE B.18

ExaAMPLE B.19

ExamMpPLE B.20

Leta=3,x =2,and y = 4. Then a* =9 and a*” = 3% = 6561. Now
(@) = 9" =858l =a"?,

which illustrates Theorem B.13(b). B

Ileta=3,x=2andy =4. Theng* = 9,a” = 81,and ¢* ¥ = 372 = 1/9.
Now

which illustrates Theorem B.13(c). B
Leta =3,b =4,and x = 2. Then a* = 9, b* = 16, and (ab)* = 12 = 144.

Now
a*bt =916 = 144 = (ab)",

which illustrates Theorem B.13(d). |

Leta=3,b=4,and x =2. Thena* =9, b* = 16, and

& =(2) =%

Now
@ ol o <a)~\'
br 16 \b/
which illustrates Theorem B.13(e). B
XX 2x+.r == 22x e (22))( — 4 =
Factoring

We may use the equation
x+b)x+d)=x>+B+d)x+bd

to factor an expression of the form X% Leix + 6

FAcTOR x%+3x +2.

We look for integer constants in the factorization. According to the previous
equation, x> 4 3x + 2 factors as (x + b)(x +d), where b +d = 3 and bd = 2.
If bd = 2 and b and d are integers, the only choices for b and d are 1,2 and
—1, —2. Wefind that b = 1 and d = 2 satisfy both b+d = 3 and bd = 2. Thus

43 42=0x+Dx+2). [ |
Special cases of
x+bDx+d)=x*>+O+dx+bd

are

(4 BY =3+ 2bx +5°
(x — by = x> = bz + b2
(x +b)(x — b) = x> — b.
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Using the equation (x + b)? = x? + 2bx + b, we have

(x +9)? = x? 4+ 18x + 81. )
FACTOR x? — 36.
Since 36 = 6%, we have

x? —36 = (x +6)(x — 6). m

We may use the equation
(ax + b)(cx +d) = (ac)x*> + (ad + bc)x + bd

to factor an expression of the form cox? +e1x + €.
FACTOR 6x2 —x —2.

We look for integer constants in the factorization. Using the preceding notation,
we must have

ac=6; ad + bc = —1, bd = 2.
Since ac = 6, the possibilities for ¢ and ¢ are
1,6 2,3 —-1,—-6 —2,-3.

Since bd = —2, the only possibilities for b and d are 1, —2 and —1, 2. Since we
must also have ad + bc = —1, wefindthata =2,b =1,¢c =3,andd = —2
provide a solution. Therefore, the factorization is

fit* — & — 2= x4 DB =2 &

Show that

2 ; 2
[——”(”;1)} +(n+1>3={——("+1)2(”+2)} .

We show how the left side of the equation can be rewritten as the right side
of the equation. By Theorem B.13(d) and (e), we have

nn+1)
e

n?(n + 1)?

) + (n+1)%.

2
] +@m+1)’=

Since (1 +1)? is a common factor of the right side of this equation, we may write

n?(n + 1)? n?
—(—4—)+(n—|—1)3=(n+1)2[7+(n+1)].
Since . 5 i
n n“+4n+4  (m+2)
s D= - ,
4-1—(n+ ) 3 7

it follows that

m+m1:[m+nm+mr

2
m+4f[%+wn+n}=(n+nz[ . :

Solving a Quadratic Equation
A quadratic equation is an equation of the form
ax*+bx +c=0.

A solution is a value for x that satisfies the equation.
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ExaMPLE B.25

ExaMPLE B.26

THEQOREM B.27

ExaMPLE B.28

ExXxAMPLE B.29

The value x = —3 is a solution of the quadratic equation

2x2+2x —12=0
because
2(=3%+2(-3)-12=2-9-6-12=18-18 = 0. ]

If a quadratic equation can be easily factored, its solutions may be readily
obtained.

Solve the quadratic equation
3x? — 10x + 8 = 0.
We may factor 3x% — 10x + 8 as
3x2—10x + 8 = (x — 2)(3x — 4).

For this expression to be equal to zero, either x — 2 or 3x — 4 must equal zero.
If x —2 = 0, we must have x = 2. If 3x — 4 = 0, we must have x = 4/3. Thus
the solutions of the given quadratic equation are |

x=2 and x = -. B
3

The solutions of a quadratic equation can always be obtained from the
quadratic formula.

RQUADRATIC FORMULA
The solutions of
ax’+bx+c¢=0

are
—b + +/b% — dac <
x = :
2a
The quadratic formula gives the solutions of
¥ =g—=1=0
as
~(-DxJ(=1)2~4-1-(-1) 1£/1TF4 1.5
%= = = :
2-1 2 2
Thus the solutions are
1 5 1—+5
X = ++/5 and x = 45 |

Inequalities

If ¢ is less than b, we write a < b. If a is less than or equal to b, we write a < b.
If a is greater than b, we write a > b. If a is greater than or equal to b, we write
a>b.

Suppose that a = 2, b = 8, ¢ = 2. We have

a < b, b >a, a<bh, b>a, a <c, a>c. [ |

Important laws of inequalities are given as Theorem B.30.
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THEDREM B.30 LAwWS OF INEQUALITIES

(a) If a < b and c is any number whatsoever, then a + ¢ < b 4+ c.
(b) If a < b and c is any number whatsoever, thena + ¢ < b + c.
(¢c) If @ > b and c is any number whatsoever, then a + ¢ > b + c.
(d) If a > b and c is any number whatsoever, then a + ¢ > b 4 c.
(e) If a < b and ¢ > 0, then ac < bc.

(f) Ifa < b and ¢ > 0, then ac < bc.

(g) Ifa < band ¢ < 0, then ac > bc.

(h) If a < band ¢ < 0, then ac > bc.

(i) Ifa > b and ¢ > 0, then ac > bc.

(j) Ifa > b and ¢ > 0, then ac > bc.

(k) Ifa > band ¢ < 0, then ac < bc.

() Ifa > b and ¢ < 0, then ac < bc.
(m) Ifa <band b < c,thena < c.

(n) Ifa <bandb < c,thena < c.

(0) Ifa <bandb < c,thena < c.

(p) Ifa <bandb < c,thena <c.

(q) Ifa > bandb > c,thena > c.

(r) fa>bandb > c,thena > c.

(s) Ifa >band b > c,thena > c.

(t) Ifa>band b > c,thena > c. &

Solve the inequality
X==d1% 6

By Theorem B.30(a), we may add 5 to both sides of the inequality to obtain
the solution
x < 11. E

Solve the inequality
3x +4 < x +10.

By Theorem B.30(a), we may add —x to both sides of the inequality to
obtain
2x +4 < 10.

Again, by Theorem B.30(a), we may add —4 to both sides of the inequality to
obtain
2% < 6

Finally, we may use Theorem B.30(e) to multiply both sides of the inequality by
1/2 and obtain the solution
x < 3. B

Show thatifn > 2m and m > 2p, thenn > 4p.
We may use Theorem B.30(i) to multiply both sides of m > 2p by 2 to
obtain
2m > 4p.

Since
n > 2m,

we may use Theorem B.30(q) to obtain

n>4p. |
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ExamMPLE B.34

ExaAMPLE B.35

EXAMPLE B.36

THEODREM B.37

Show that
n+2  4n+1)>?

<
n+1 (@2n+1)?

for every positive integer 7.
Since (n + 1)(2n + 1) is positive, by Theorem B.30(e),
n+2 4(n + 1)*
DR+ 1) —— <@+ Dn+1)? ——,
(n+1)2rn+1) = <@®+DCn+1) on T 1)

which can be rewritten as
Qn+1D*n+2) < (n+Ddn +1)%
Expanding each side of the inequality, we obtain
4n’ +120% + 9n +2 < 40’ + 12n% + 12n + 4.

By Theorem B.30(a), we may add —4n® — 12n*> — 9n — 2 to both sides of the
inequality to obtain
0<3n+2.

This last inequality is true for all positive integers n because the right side is
always at least 5. Since the steps are reversible (i.e., beginning with 0 < 3n + 2
we can obtain the original inequality using Theorem B.30), we have proved the
given inequality. |

Logarithms

Throughout this subsection, b is a positive real number not equal to 1. If x is a
positive real number, the logarithm to the base b of x is the exponent to which b
must be raised to obtain x. We denote the logarithm to the base b of x aslog,, .x.
Thus if we let y = log, x, the definition states that b = x.

We have log, 8 = 3 because 2° = 8. |

Given
2 =n,

where n is a positive integer, solve for x.
Let lg denote the logarithm to the base 2. Then from the definition of
logarithm,
2=,

Again, from the definition of logarithm,
x =lg(lgn). [
The following theorem lists important laws of logarithms.

LAws OF LOGARITHMS
Suppose that b > 0 and b # 1. Then

(a) b'o%~ = x

(b) log,(xy) = log, x + log, y
X

(c) log, (;) = log;, x — log,, y

(d) log, (x”) = ylog, x

1
(e) Ifa > 0 and a # 1, we have log, x = ogp X

log, a
(f) fx >y > 0, then log, x > log,, y. E
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Theorem B.37(e) is known as the change-of-base formula for logarithms.
If we know how to compute logarithms to the base b, we can perform the com-
putation on the right side of the equation to obtain the logarithm to the base a.
Theorem B.37(f) says that the logarithm function is an increasing function.

Let b =2 and x = 8. Then log, x = 3. Now
poBY =23 =8 =1y,
which illustrates Theorem B.37(a). [

Letb =2,x = 8,and y = 16. Then log, x = 3, log, y = 4, and log,(xy) =
log, 128 = 7. Now

log,(xy) =7 =3 +4 =log, x + log, y,

which illustrates Theorem B.37(b). B

Letb =2, x =8,and y = 16. Then log, x = 3, log, y =4, and
X 1
log,, (—) =log, - = —1.
y 2

X
log,, (;) = —1 =log, x —log,

Now

which illustrates Theorem B.37(c). H

Letb =2,x =4,and y = 3. Then log;, x = 2 and
log, (x)") =log, 64 = 6.
Now
logy (7) =6 =32 = ylog,

which illustrates Theorem B.37(d). )

Suppose that we have a calculator that has a logarithm key that computes log-
arithms to the base 10 but does not have a key that computes logarithms to the
base 2. We use Theorem B.37(e) to compute log, 40.

Using our calculator, we compute
log;,40 = 1.602060, log,,2 = 0.301030.

Theorem B.37(e) now gives

log;p40 _ 1.602060

= = 5.321928. 5
log,,2  0.301030

log, 40 =
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ExamMpPLE B.43 Show thatif k and n are positive integers satisfying
Wl e g Zk,

then
k—1<lgn <k,

where lg denotes the logarithm to the base 2.
By Theorem B.37(f), the logarithm function is increasing. Therefore,

lg (21"“1) <lgn <lg (2]‘) .

By Theorem B.37(d),
g (") = (k- 1ig2.
Since
Ig2 =log,2 =1,
we have ‘
g =tk-1Dig2=k~-1.
Similarly,
lg(2") = k.
The given inequality now follows. [ |
t
In Exercises 1-3, simplify the given expression by combining 13. 1000° |
like terms. 14. Which expressions are equal? i
1. 8x —12x (a) 3%310
2. 8y +3a—4y —9a (b)y 3H
3. 6(a+b)—8(a~b) ()13
3103
In Exercises 4-6, combine the given fractions. &) 4ﬂ104 *
: i (e) 2°20° ‘
8x—4b  Tx+b |
4. = + = (f) 34() "
- 2
8x —4b  Tx+b (g) 2187
5. 7 T 15. Show that 5" +4 - 5" = 5"*! for every positive integer 7.
6. 8x — 4b . xtb In Exercises 16—24, expand the given expression.
3 3

7. Show that

1 1 1

n o on+1 nn+1)

Use this fact to show that

n

Z 1 _n
iG+1) n+1

i=1

Find the value of each expression in Exercises 8-13 without
using a calculator.

8. 3¢
9, )34
10. (=3)*
1. (-3~
12, 110

16. (x +3)(x +5)
17. (x =3)(x +4)
18. (2x +3)(3x —4)
19. (x +4)?

20. (x —4)?

21 (3x + 4)?

22. (x —2)(x +2)
23, x+a)(x —a)
24. (2x —3)(2x +3)

In Exercises 25-36, factor the given expression.
25. x2 4 6x+5

26. x? —3x — 10

27. x> +6x+9

28. x> —8x +16

29. x? — 81

M
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30. x2 — 4b? 50. Show that
31 2x%2+11x +5

3. 6x24+x—15 <3>"‘2<5> <3>
] 3 AN E
33, 4x2 —12x + 9 2 2 2

49
34. 4)c? =9 ) for every integer n > 2.
35. 9a” — 4b 51. Show that
36. 12x2 — 50x + 50
37. Show that 2n+1 .

mLn? . (mr 1y
m+D)!'+nm+1D)n+ D=1 +2)!

. o for every positive integer n.
for every positive integer 7.

2 2 : S
38. Show that 52. Show that 6n° < 6n~+4n -1 for every positive integer 7.

53. Show that 6n”>+4n-+1 < 11n? for every positive integer .
nn+1)0C2n+1)

2
6 Sk Find the value of each expression in Exercises 54-58 without
nm+Dn+2)2n+3) using a calculator (1g means log, ).
h 6 54. 1g64
for every positive integer n. S5. 1g i
 39. Show that 56, 1g2
\&
n 1 n+1 57, 2ls10
+ = 1000
2n+1 @Qn+1)Q2n+3) 2n+3 58. Ig2
for every positive integer 7. Given that 1g3 = 1.584962501 and 1g5 = 2.321928095, find
40. Show that the value of each expression in Exercises 59-63 (lg means
log, ).
7(3 . 211—1 —4. 511—1) _ 10(3 ) 211—2 2 fs 5;1-2) 59, 1g6
=3.2"—-4.5" 60. 1230
61. 1g59049

for every positive integer 7.

(4L ‘\Simplify 2r(n — D" ' —r2(n — 2)r" 2. 62. 120.6

63. 1g0.0375
In Exercises 42—-44, solve the quadratic equation.

42, x> ~6x+8=0 Use a calculator with a logarithm key to find the value of each
43. 6x2 —Tx+2=0 expression in Exercises 64-07.
4. 2x* —4x +1=0 64. logs 47
In Exercises 45-47, solve the given inequality. 65. log, 0.30881
45. 2x +3 <9 66. log, 8.888'"
46. 2x —8 > 3x +1 67. log,,(log;, 1054)
x—=3 4x+3
47. G =< ) In Exercises 6870, use a calculator with a logarithm key to
48. Showthat 3" i <n? L
X
49. Show that 68. 5* =11
69. 576" =811
A+ax)(A+x)>14(a+ Dx 20, 511 = 1000
for any x and a = 0. 71. Show that x'0% Y = ylogn ¥,




10.

11.

. Let L be the vertical line through p.

. The statement follows from the fact that such an algo-

rithm can be modified without changing its asymptotic
worst-casc time to determine whether the input contains
duplicates and. by Theorem 11.2.1, any algorithm that
determines whether duplicates exist has worst-case time
Q(nlgn). Duplicates exist if and only if the distance be-
tween every output pair is zero: thus. we need only check
one pair to determine whether there are duplicates or not.

By the choice of
p. no points of S lie to the right of L. If p is the only
point of S on L. p is a hull point. If other points of §
lie on L, they all lie below p. In this case. if we rotate
L clockwise slightly about p. L will contain only p and
all other points of S will be to the left of L. Again we
conclude that p is a hull point.

Let L be the line segment joining p and ¢. Let L’ be
the line through p perpendicular to L. There can be no
other point r of S on L" or on the side of L” opposite
¢. for if there were such a point r. the distance from r
to ¢ would exceed the distance from p to ¢, which is
impossible. Thus p is a hull point. Similarly. ¢ is a hull
point.

The points [sorted with respect to (1.2)] are (1.2). (11.3).
(8.4). (14.7).(5.4). (11.7).(17.10).(7.6). (8.7). (12.10).
(8.9). (5.9). (3.7). (3.11). (1.5). (1.9). The following
table shows each triple that is examined in the while loop.
whether it makes a left turn. and the action taken with
respect to the triple:

Discard
Left Middle
Triple Turn?  Poinr?
(1.2),(11.3), (8,4) Yes No
(11.3).(8.4),(14.7) No Yes
(1.2).(11.3).(14.7) Yes No
(11.3). (14.7). (5.4) Yes No
(14.7).(5.4).(11.7) No Yes
(11.3). (14.7).(11.7) Yes No
(14.7).(11.7).(17.10)  No Yes
(11.3).(14.7).(17.10)  No Yes
(1.2).(11.3). (17.10) Yes No
(11.3).(17.10).(7.6) Yes No
(17.10).(7.6).(8.7) No Yes
(11.3).(17.10).(8.7) Yes No
(17.10).(8.7). (12.10)  No Yes
(11.3). (17.10). (12.10)  Yes No
(17.10). (12.10). (8.9)  Yes No
(12.10).(8.9).(5.9) No Yes
(17.10). (12.10).(5.9)  Yes No
(12.10), (5.9). (3.7) Yes No
(5.9). (3.7). (3.11) No Yes
(12.10).(5.9). (3. 11 ) No Yes
(17.10). (12.10). (3.11) No Yes
(11.3).(17.10). (3.11) Yes No
(17.10). (3,11),(1.5) Yes No
(3.11).(1.5). (1.9) No Yes
(17.10).(3.11).(1.9) Yes No

The convex hullis (1.2).(11.3). (17.10), (3.11), (1.9).
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12. Run the part of Graham’s Algorithm thatfollows the sort
on the remaining points.

Appendix A
1. /2+ua 4+h 1+4c¢
<6+d 9+e 3—!—.)")
l+g —14+h 6+
2. S 7 7)
-7 10 =1
5. (3 18 27)
0 12 -6

—3d

35 —56
—18 13)
1810
B -6)
231

14. 2x3.3x3,3x2

18 47)
9 43

@)

5=(’
( l% 38
-li )
= (
(i

z
e :b
S
Con
-l‘a O\ o2e] LN

177 215 331)
80 93 323

18 65
34 23
17. Let A = (byy). 1, = ((l,‘k). Al, = (¢;). Then

n
Cip = Zbr‘i”.ik = bjrtgr = bix.
J=1
Therefore, Al, = A. Similarly, /,A = A.
20. The solutionis X = A~'C.

Appendix B
1. —4x
{—13
4. 15\—1—]—) = Sx — b
a
> 1 I n+l=n 1
“noon+1 nn+1) -—n(n+l)
We may use this equation to compute Z;’zl '.—(-’.171—) as
follows:

n

1
;i(i-l—l)

1 1
+ — -
n—1 n

1 1
1 11+1—1_ n
- _n—+—1: n+1  n+1




606 HINTS AND SOLUTIONS TO SELECTED EXERCISES

8. 81 48. i <nfori =1,...,n. Summing these inequalities, we
1i. 181 obtain
14. (a), (c), and (g) are equal. (b) and (f) are equal. (d) and i ol o b
(e) are equal. i<n-n=n".
i=1

16. x2 +8x + 15

51. Multiply by (n + 2)n%(n + 1)* to get
19. x? +8x + 16 ply by ( mn=( ) tog

35 ielesif @n+1D(n+1)* > 2(n + 2)n?
25, (x+5x+1) or

s AN2 .
A8, (=) 20° + 50 +4n + 1 > 21 + 45
3. x+1D(x+3)
34. 2x +3)2x —3) o P +dn+1>0

3.+ DI+ + 1D+ D =m+ DL+ @0+ 1] =

(n+ DI +2) = (n+2)! which is true if n > 1.

54. 6
°. 73.2"1—4.5" 103272 — 4.5
57. 10
=P +3: 2 = 10 93) 57+ 4 -5 &= 10 5:4) 59. 2.584962501
2k 211—2 .12 4 51172(_100) 62. —0736965594

64. 2.392231208
67. 0.480415248
68. 1.489896102

71. Letu = log, y and v = log, x. By definition, b* = y
and b¥ = x. Now

e 2n—2(22 A 3) o 5n~2(52 . 4)
L3 4+ 5P

42. Factoring gives (x — 4)(x — 2) = 0, which has solutions
x=4,2.

45. 2x < 6. x <3 3 xlog;7 Vo= ylt — (bv)u — pU — (bu)v = yv — legb x
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