Review of Kinematic Equations

Review of Kinematic Equations

When velocity is constant ($a=0$):

$$
\Delta x=v t
$$

Review of Kinematic Equations

When acceleration is constant:

$$
\begin{aligned}
& v=v_{\mathrm{o}}+a t \\
& \Delta x=x-x_{\mathrm{o}}=\bar{v} t=\left(\frac{v+v_{0}}{2}\right) t \\
& x=x_{\mathrm{o}}+v_{0} t+\frac{1}{2} a t^{2} \\
& v^{2}=v_{\mathrm{o}}^{2}+2 a\left(x-x_{0}\right)
\end{aligned}
$$

Free Fall

All objects moving under the influence of gravity only are said to be in free fall.

Free Fall

All objects moving under the influence of gravity only are said to be in free fall. Free fall does not depend on the object's original motion.

Free Fall

All objects moving under the influence of gravity only are said to be in free fall.

Free fall does not depend on the object's original motion. All objects falling near the earth's surface fall with a constant acceleration.

Free Fall

All objects moving under the influence of gravity only are said to be in free fall.

Free fall does not depend on the object's original motion.
All objects falling near the earth's surface fall with a constant acceleration.
This acceleration is called the
"acceleration due to gravity", and indicated by g.

Near the surface of the earth:

$$
g=9.80 \mathrm{~m} / \mathrm{s}^{2}
$$

Near the surface of the earth:
$g=9.80 \mathrm{~m} / \mathrm{s}^{2}$

If air resistance can be ignored
and
the vertical displacement is small compared to the radius of the earth.

Near the surface of the earth:
$g=9.80 \mathrm{~m} / \mathrm{s}^{2}$

If "up" is taken as the $+y$ direction, then the acceleration is

$$
a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2} .
$$

Near the surface of the earth:
$g=9.80 \mathrm{~m} / \mathrm{s}^{2}$

If "up" is taken as the $+y$ direction, then the acceleration is
$a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$.
The change of velocity (Δv) is in the direction of the acceleration.

Free fall for an object initially at rest

If the origin is at the object's initial position, the kinematic equations are

$$
\begin{aligned}
& v=v_{0}-g t \\
& y=-\frac{1}{2} g t^{2} \quad\left(y_{0}=0\right) \\
& v^{2}=-2 g y
\end{aligned}
$$

