line are called supplementary. An angle which is congruent to one of its supplementary angles is called a right angle. The interior of an angle (or of a triangle) is defined in part d of Section III-3. III, 4. Let \times (h,k) be an angle [in a plane α] and a' a line [in a plane α'] and let a definite side of a' [in α'] be given. Let h' be a ray on the line a' that emanates from the point O'. Then there exists [in the plane α'] one and only one ray k' such that the angle \times (h,k) is congruent or equal to the angle \times (h',k') and at the same time all interior points of the angle \times (h',k') lie on the given side of a'. Symbolically, \times (h,k) \cong \times (h',k'). Every angle is congruent to itself, i.e., \times (h,k) \cong \times (h,k) is always true. Following standard practice, if A and B are points (other than O) on rays h and k, respectively, we shall usually write *AOB or *BOA rather than *(h,k). III,5. If for two triangles $\triangle ABC$ and $\triangle A'B'C'$ the congruences $\overline{AB} \cong \overline{A'B'}, \quad \overline{AC} \cong \overline{A'C'}, \quad *BAC \cong *B'A'C'$ hold, then the congruence $\angle ABC \cong \angle A'B'C'$ is also satisfied. Note: from an interchange of the letters B and C in III, 5, it follows that under the same hypotheses $\angle ACB \cong \angle A'C'B'$ holds also. From now on, we shall write AB = CD to indicate $\overline{AB} \cong \overline{CD}$. It is a consequence of Hilbert's postulates that real numbers (lengths) can be assigned to segments in such a way that segments are congruent if and only if they have the same length, and so that if the distance between two points A and B is defined to be the length of \overline{AB} , then the usual properties of a distance function hold. (We shall not go into the details here.) In this text, we shall use AB to denote the distance from A to B. Thus AB = CD indicates both congruence of segments and (equivalently) equality of distance. Theorem B-13 The point B' whose existence is asserted in Axiom III, 1 is unique (for a given side of A'). Proof. Suppose there were two (distinct) such points, B' and B" Choose any point C not on A'B', and apply III,5 to $\Delta A'B'C$ and $\Delta A'B''C$ to show that $A'CB' \cong A'C'B''$. Then deduce a contradiction to the uniqueness asserted in III,4.