Definition B-2

Given three distinct points A, B, and C not all on the same line, Δ ABC is the union of the three segments \overline{AB} , \overline{BC} , and \overline{CA} .

II,4. Let A, B, C be three points that do not lie on a line and let a be a line [in the plane ABC] which does not meet any of the points A, B, C. If the line a passes through a point of the segment AB, it also passes through a point of segment AC, or through a point of segment BC.

Let us use the notation (ABC) to indicate that B is between A and C. The following are consequences of the axioms in Groups I and II. Other consequences are deduced in the exercises of Section III-3.

Theorem B-3

Given distinct points A and C, there exists a point D such that (ADC) (Fig. B-1).

Proof: By I,3, let E be a point not on AC. By II,2, there is a point F such that (AEF), and $F \neq C$ by I,2. Again by II,2, there is a point G such that (FCG), and by II,4, line \overrightarrow{EG} , which cannot pass through A, C, or F (why not?) but meets \overrightarrow{AF} , must meet \overrightarrow{AC} or \overrightarrow{CF} in a point D. But \overrightarrow{EG} cannot meet \overrightarrow{CF} , for this would violate I,2. (G is not on FC by II,3.) Hence D is on \overrightarrow{AC} or (ADC).

Theorem B-4

Of any three distinct points A, B, C on a line, at least one of them is between the other two (Fig. B-2).

Proof. Suppose (BAC) and (ACB) both do not hold. We shall show (ABC). By II-2, there exist points D and G such that (BDG). By II,4 (applied to ΔBCG), AD meets CG in E: (CEG). Similarly, CD meets AG in F: (AFG). Applying II,4 to ΔAEG (since CF meets AG), CF must meet AE in a point between A and E. Because CF

Figure B - 1.