Applied and Computational Math Concentration Formula Sheet for Part II of the comprehensive exam

MAT 451 - Probability

I. Probability

1. The Additive Law of Probability: The probability of the union of two events A and B is

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

2. Bayes Theorem: If events E_1, \ldots, E_k form a partition of sample space S and $E \subseteq S$,

$$P(E_i \mid E) = \frac{P(E \mid E_i)P(E_i)}{P(E)} = \frac{P(E \mid E_i)P(E_i)}{\sum_{j=1}^{k} P(E \mid E_j)P(E_j)}$$

II. Discrete Distributions

Discrete Distributions X	P(x)	Values of x	Mgf
Binomial	$P(x) = \binom{n}{x} p^x (1-p)^{n-x}$	$x = 0, 1, 2, \dots, n$	$\left[pe^{t} + (1-p) \right]^{n}$
Geometric	$P(x) = p \ (1-p)^{x-1}$	$x = 1, 2, \cdots$	$\left[\frac{pe^{t}}{1-(1-p)e^{t}}\right]$
Negative Binomial	$P(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}$	$x = \{r, r+1, \ldots\}$	$\left[\frac{pe^{t}}{1-(1-p)e^{t}}\right]^{r}$
Poisson	$P(x) = \frac{\lambda^x e^{-\lambda}}{x!}$	$x = 0, 1, 2, \cdots$	$\exp\left[\lambda(e^t-1)\right]$
Hypergeometric	$P(x) = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}$	x is an integer 0, 1,,n subject to the restrictions $x \le r$ and $n - x \le N - r$	Undefined

III. Continuous Distributions

Continuous Distributions X	f(x)	Values of x	Mgf
Normal	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\left(\frac{1}{2\sigma^2}\right)(x-\mu)^2\right]$	$-\infty \le X \le \infty$	$\exp\left[\mu t + \frac{t^2 \sigma^2}{2}\right]$
Gamma	$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}$	$x \ge 0$	$(1-\beta t)^{-\alpha}$
Exponential	$f(x) = \frac{1}{\beta} e^{-x/\beta}$	$x \ge 0$	(1 - \beta t)^{-1}
Chi-square	$f(x) = \frac{1}{\Gamma(\nu/2)2^{\nu/2}} x^{(\nu/2)-1} e^{-x/2}$	$x \ge 0$	$(1-2t)^{-\nu/2}$
Beta	$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$	0 ≤ x ≤1	Does not exist in closed form

The Gamma function
$$\Gamma(\alpha) = \int_{0}^{\infty} u^{\alpha-1} e^{-u} du$$

The moment-generating function $m(t) = E(e^{tX})$

IV. Useful Theorems

1. Tchebysheff's Theorem: Let X be a random variable with mean μ and finite variance σ^2 . Then, for any constant k,

$$P(|X - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}$$

2. Central Limit Theorem

Suppose X_1, \dots, X_n are i.i.d random variables with mean μ and variance σ^2 . If \bar{X}_n is defined by

$$\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$$
 and $Z_n = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}}$

Then, as $n \to \infty$, $Z_n \to N(0,1)$

MAT 484 – Mathematical Modeling

Absorbing Markov Chains: Suppose that the system has a absorbing states and b non-absorbing (transient) states. Arrange the transition matrix T so that the first b columns contain the transition probabilities associated to the non-absorbing states:

$$T = \left(\begin{array}{cc} A_{b \times b} & O_{b \times a} \\ B_{a \times b} & I_{a \times a} \end{array} \right)$$

Then the limiting steady-state matrix $L = \lim_{n \to \infty} T^n$ exists and it has the following structure:

$$L = \begin{pmatrix} O_{b \times b} & O_{b \times a} \\ B_{a \times b} (I_{b \times b} - A_{b \times b})^{-1} & I_{a \times a} \end{pmatrix}$$

Zero-sum games: For a matrix game with pay-off matrix

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right)$$

the optimal mixed strategies for the row player [p1,p2] and column player [q1,q2] are given by

$$p_{1} = \frac{a_{22} - a_{21}}{a_{11} + a_{22} - a_{12} - a_{21}} \qquad p_{2} = \frac{a_{11} - a_{12}}{a_{11} + a_{22} - a_{12} - a_{21}}$$

$$q_{1} = \frac{a_{22} - a_{12}}{a_{11} + a_{22} - a_{12} - a_{21}} \qquad q_{2} = \frac{a_{11} - a_{21}}{a_{11} + a_{22} - a_{12} - a_{21}}$$

The value of the game is $v = \frac{a_{11}a_{22} - a_{12}a_{21}}{a_{11} + a_{22} - a_{12} - a_{21}}$