
ISBN 0-321-33025-0

Chapter 10Chapter 10Chapter 10Chapter 10

Implementing
Subprograms

Copyright © 2006 Addison-Wesley. All rights reserved. 1-2

Chapter 10 Topics

• The General Semantics of Calls and Returns

• Implementing “Simple” Subprograms

• Implementing Subprograms with Stack-Dynamic
Local Variables

• Nested Subprograms

• Blocks

• Implementing Dynamic Scoping

Copyright © 2006 Addison-Wesley. All rights reserved. 1-3

The General Semantics of Calls and
Returns

• The subprogram call and return operations
of a language are together called its
subprogram linkage

• A subprogram call has numerous actions
associated with it
– Parameter passing methods

– Static local variables

– Execution status of calling program

– Transfer of control

– Subprogram nesting

Copyright © 2006 Addison-Wesley. All rights reserved. 1-4

Implementing “Simple”
Subprograms: Call Semantics

• Save the execution status of the caller

• Carry out the parameter-passing process

• Pass the return address to the callee

• Transfer control to the callee

Copyright © 2006 Addison-Wesley. All rights reserved. 1-5

Implementing “Simple”
Subprograms: Return Semantics

• If pass-by-value-result parameters are
used, move the current values of those
parameters to their corresponding actual
parameters

• If it is a function, move the functional value
to a place the caller can get it

• Restore the execution status of the caller

• Transfer control back to the caller

Copyright © 2006 Addison-Wesley. All rights reserved. 1-6

Implementing “Simple”
Subprograms: Parts

• Two separate parts: the actual code and the
noncode part (local variables and data that
can change)

• The format, or layout, of the noncode part
of an executing subprogram is called an
activation record

• An activation record instance is a concrete
example of an activation record (the
collection of data for a particular
subprogram activation)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-7

An Activation Record for “Simple”
Subprograms

Copyright © 2006 Addison-Wesley. All rights reserved. 1-8

Code and Activation
Records of a Program
with “Simple”
Subprograms

Copyright © 2006 Addison-Wesley. All rights reserved. 1-9

Implementing Subprograms with
Stack-Dynamic Local Variables

• More complex activation record

– The compiler must generate code to cause
implicit allocation and de-allocation of local
variables

– Recursion must be supported (adds the
possibility of multiple simultaneous activations
of a subprogram)

Copyright © 2006 Addison-Wesley. All rights reserved. 1-10

Typical Activation Record for a Language
with Stack-Dynamic Local Variables

Copyright © 2006 Addison-Wesley. All rights reserved. 1-11

Implementing Subprograms with Stack-
Dynamic Local Variables: Activation Record

• The activation record format is static, but
its size may be dynamic

• The dynamic link points to the top of an
instance of the activation record of the
caller

• An activation record instance is dynamically
created when a subprogram is called

• Run-time stack

Copyright © 2006 Addison-Wesley. All rights reserved. 1-12

An Example: C Function

void sub(float total, int part)

{

int list[4];

float sum;

…

}

[4]

[3]

[2]

[1]

[0]

Copyright © 2006 Addison-Wesley. All rights reserved. 1-13

An Example Without Recursion

void A(int x) {

int y;

...

C(y);

...

}

void B(float r) {

int s, t;

...

A(s);

...

}

void C(int q) {

...

}

void main() {

float p;

...

B(p);

...

}

main calls B
B calls A
A calls C

Copyright © 2006 Addison-Wesley. All rights reserved. 1-14

An Example Without Recursion

Copyright © 2006 Addison-Wesley. All rights reserved. 1-15

Dynamic Chain and Local Offset

• The collection of dynamic links in the stack at a
given time is called the dynamic chain, or call
chain

• Local variables can be accessed by their offset
from the beginning of the activation record. This
offset is called the local_offset

• The local_offset of a local variable can be
determined by the compiler at compile time

Copyright © 2006 Addison-Wesley. All rights reserved. 1-16

An Example With Recursion

• The activation record used in the
previous example supports recursion,
e.g.

int factorial (int n) {

<-----------------------------1

if (n <= 1) return 1;

else return (n * factorial(n - 1));

<-----------------------------2

}

void main() {

int value;

value = factorial(3);

<-----------------------------3

}

Copyright © 2006 Addison-Wesley. All rights reserved. 1-17

Activation Record for factorial

Copyright © 2006 Addison-Wesley. All rights reserved. 1-18

Nested Subprograms

• Some non-C-based static-scoped
languages (e.g., Fortran 95, Ada,
JavaScript) use stack-dynamic local
variables and allow subprograms to be
nested

• All variables that can be non-locally
accessed reside in some activation record
instance in the stack

• The process of locating a non-local
reference:
1. Find the correct activation record instance

2. Determine the correct offset within that
activation record instance

Copyright © 2006 Addison-Wesley. All rights reserved. 1-19

Locating a Non-local Reference

• Finding the offset is easy

• Finding the correct activation record
instance

– Static semantic rules guarantee that all non-
local variables that can be referenced have been
allocated in some activation record instance that
is on the stack when the reference is made

Copyright © 2006 Addison-Wesley. All rights reserved. 1-20

Static Scoping

• A static chain is a chain of static links that
connects certain activation record instances

• The static link in an activation record
instance for subprogram A points to one of
the activation record instances of A's static
parent

• The static chain from an activation record
instance connects it to all of its static
ancestors

Copyright © 2006 Addison-Wesley. All rights reserved. 1-21

Example Pascal Program

program MAIN_2;

var X : integer;

procedure BIGSUB;

var A, B, C : integer;

procedure SUB1;

var A, D : integer;

begin { SUB1 }

A := B + C; <-----------------------1

end; { SUB1 }

procedure SUB2(X : integer);

var B, E : integer;

procedure SUB3;

var C, E : integer;

begin { SUB3 }

SUB1;

E := B + A: <--------------------2

end; { SUB3 }

begin { SUB2 }

SUB3;

A := D + E; <-----------------------3

end; { SUB2 }

begin { BIGSUB }

SUB2(7);

end; { BIGSUB }

begin

BIGSUB;

end; { MAIN_2 }

Copyright © 2006 Addison-Wesley. All rights reserved. 1-22

Example Pascal Program (continued)

• Call sequence for MAIN_2

MAIN_2 calls BIGSUB

BIGSUB calls SUB2

SUB2 calls SUB3

SUB3 calls SUB1

Copyright © 2006 Addison-Wesley. All rights reserved. 1-23

Stack Contents at
Position 1

Copyright © 2006 Addison-Wesley. All rights reserved. 1-24

Displays

• An alternative to static chains

• Static links are stored in a single array
called a display

• The contents of the display at any given
time is a list of addresses of the accessible
activation record instances

Copyright © 2006 Addison-Wesley. All rights reserved. 1-25

Blocks

• Blocks are user-specified local scopes for variables
• An example in C
{int temp;

temp = list [upper];

list [upper] = list [lower];

list [lower] = temp

}

• The lifetime of temp in the above example begins
when control enters the block

• An advantage of using a local variable like temp is
that it cannot interfere with any other variable with
the same name

Copyright © 2006 Addison-Wesley. All rights reserved. 1-26

Implementing Blocks

• Two Methods:

1. Treat blocks as parameter-less subprograms
that are always called from the same location

– Every block has an activation record; an instance is
created every time the block is executed

2. Since the maximum storage required for a
block can be statically determined, this amount
of space can be allocated after the local
variables in the activation record

Copyright © 2006 Addison-Wesley. All rights reserved. 1-27

Implementing Dynamic Scoping

• Deep Access: non-local references are
found by searching the activation record
instances on the dynamic chain

• Shallow Access: put locals in a central place
– One stack for each variable name

– Central table with an entry for each variable
name

Copyright © 2006 Addison-Wesley. All rights reserved. 1-28

Using Shallow Access to Implement
Dynamic Scoping

Copyright © 2006 Addison-Wesley. All rights reserved. 1-29

Summary

• Subprogram linkage semantics requires
many action by the implementation

• Simple subprograms have relatively basic
actions

• Stack-dynamic languages are more
complex

• Subprograms with stack-dynamic local
variables and nested subprograms have two
components
– actual code

– activation record

Copyright © 2006 Addison-Wesley. All rights reserved. 1-30

Summary (continued)

• Activation record instances contain formal
parameters and local variables among other
things

• Static chains are the primary method of
implementing accesses to non-local
variables in static-scoped languages with
nested subprograms

• Access to non-local variables in dynamic-
scoped languages can be implemented by
use of the dynamic chain or thru some
central variable table method

