concepts of .
Programming

Chapter 10 Languages

Implementing
Subprograms

SEVENTH EDITION

Robert W. Sebesta

ISBN 0-321-33025-0

Chapter 10 Topics

- The General Semantics of Calls and Returns
- Implementing “Simple” Subprograms

- Implementing Subprograms with Stack-Dynamic
Local Variables

- Nested Subprograms

The General Semantics of Calls and
Returns

- The subprogram call and return operations
of a language are together called its
subprogram linkage

- A subprogram call has numerous actions
associated with it

- Parameter passing methods

- Static local variables

- Execution status of calling program
- Transfer of control

- Subprogram nesting

Copyright © 2006 Addison-Wesley. All rights reserved.

1-3

Implementing “Simple”
Subprograms: Call Semantics

- Save the execution status of the caller

- Carry out the parameter-passing process
- Pass the return address to the callee

- Transfer control to the callee

Implementing “Simple”
Subprograms: Return Semantics

. If pass-by-value-result parameters are
used, move the current values of those
narameters to their corresponding actual

narameters

f it is a function, move the functional value
to a place the caller can get it

- Restore the execution status of the caller
- Transfer control back to the caller

Copyright © 2006 Addison-Wesley. All rights reserved. 1-5

Implementing “Simple”
Subprograms: Parts

- Two separate parts: the actual code and the
noncode part (local variables and data that
can change)

- The format, or layout, of the noncode part
of an executing subprogram is called an
activation record

- An activation record instance is a concrete
example of an activation record (the
collection of data for a particular
subprogram activation)

Copyright © 2006 Addison-Wesley. All rights reserved.

1-6

An Activation Record for “Simple”
Subprograms

Local variables

Parameters

Return address

Code and Activation
Records of a Program p==-
with “Simple”
Subprograms

MAIN{

il

Local variables

Local variables

Parameters

Return address

Local variables

Parameters

Return address

Local variables

Parameters

i Return address

Implementing Subprograms with
Stack-Dynamic Local Variables

- More complex activation record

- The compiler must generate code to cause
implicit allocation and de-allocation of local
variables

- Recursion must be supported (adds the
possibility of multiple simultaneous activations

Typical Activation Record for a Language
with Stack-Dynamic Local Variables

Local variables

Parameters T

Dynamic link Stack top

Return address

Implementing Subprograms with Stack-
Dynamic Local Variables: Activation Record

- The activation record format is static, but
its size may be dynamic

- The dynamic link points to the top of an
instance of the activation record of the
caller

- An activation record instance is dynamically

created when a subprogram is called
» Run-time stack

Copyright © 2006 Addison-Wesley. All rights reserved.

An Example: C Function

volid sub(float

{

int list([4];

float sum;

total,

int part)

Local

Local

Local

Local

Local

Local

Parameter

Parameter

Dynamic link

Return address

Return address

sum

list

list

list

list

list

part

total

An Example Without Recursion

void A(int x) {
int y;

C(y);

}
void B(float r) {

int s, t;

main calls B

A(s);

ARI
fora

Local

Local

Parameter

H

w

Dynamic linke——

Return (to MAIN)

ool
.

Local

Top

ARI
for B

AR {
for MAIN

-

ARI
for C
~<—Top
Local ¥
Parameter X
Dynamic link e+— i
for A
Static link
Return (to B)
Local T
Local S
Parameter ARI
Dynamic linkeL—., forB
Return (to MAIN)
ARI
Local
o for MAIN

ARI = activation record instance

-

B

An Example Without Recursion

Parameter

Dynamic link e

Static link

Return (to &)

Local

Parameter

Dynamic link e

Static link

Return (to B)

Local

Local

Parameter

Dynamic link e

Return (to MAIN)

Local

Top

Dynamic Chain and Local Offset

- The collection of dynamic links in the stack at a
given time is called the dynamic chain, or call
chain

- Local variables can be accessed by their offset
from the beginning of the activation record. This
offset is called the /ocal_offset

- The local_offset of a local variable can be
determined by the compiler at compile time

Copyright © 2006 Addison-Wesley. All rights reserved.

An Example With Recursion

- The activation record used in the
previous example supports recursion,

e.d.

Activation Record for factorial

Functional value

Parameter n

Dynamic link

Return address

Return address

Nested Subprograms

Some non-C-based static-scoped
languages (e.g., Fortran 95, Ada,
JavaScript) use stack-dynamic local

variables and allow subprograms to be
nested

- All variables that can be non-locally
accessed reside in some activation record
instance in the stack

- The process of locating a non-local
reference:

1. Find the correct activation record instance

2. Determine the correct offset within that
activation record instance

Copyright © 2006 Addison-Wesley. All rights reserved. 1-18

Locating a Non-local Reference

- Finding the offset is easy

- Finding the correct activation record
Instance

- Static semantic rules guarantee that all non-
local variables that can be referenced have been
allocated in some activation record instance that

Static Scoping

. A static chain is a chain of static links that
connects certain activation record instances

- The static link in an activation record
instance for subprogram A points to one of
the activation record instances of A's static

parent

- The static chain from an activation record
instance connects it to all of its static
ancestors

Copyright © 2006 Addison-Wesley. All rights reserved. 1-20

Example Pascal Program

program MAIN_2;
var X : integer;
procedure BIGSUB;
var A, B, C : integer;
procedure SUBL;
var A, D : integer;
begin { SUB1 }
B s= B # Cp <Lemmmmmmmmmmeemmeeea—=== 1
end; { SUB1 }
procedure SUB2 (X : integer);
var B, E : integer;
procedure SUB3;

Example Pascal Program (continued)

- Call sequence for MaIn_2

MATN_ 2 calls B1csuB
B1GsUB calls sus2
suB2 calls sus3
sue3 calls sus1

Stack Contents at
Position 1

ARI for
SUB1

ARI for J

SUB3

ARI for |

A

Local TTOP
Local A
Dynamic link .
Static link 7 it b
Return (to SUB3
Local E
Local c
Dynamic link L
Static link *-----
Return (to SUB2
Local E
Local B
Parameter 7| X

Dynamic link

Static link

Return (to BIGSUB)

Local

Local

Local

Dynamic link

Static link

Return (to MAIN 2)

Local

Y e e

Displays

- An alternative to static chains

- Static links are stored in a single array
called a display

- The contents of the display at any given
time is a list of addresses of the accessible

Blocks

Blocks are user-specified local scopes for variables
- An example in C

{int temp;

temp = list [upper];

list [upper] = 1list [lower];

list [lower] = temp

}

Implementing Blocks

- Two Methods:

1. Treat blocks as parameter-less subprograms
that are always called from the same location
- Every block has an activation record; an instance is

created every time the block is executed

2. Since the maximum storage required for a
block can be statically determined, this amount
of space can be allocated after the local
variables in the activation record

Copyright © 2006 Addison-Wesley. All rights reserved. 1-26

Implementing Dynamic Scoping

- Deep Access: non-local references are
found by searching the activation record
instances on the dynamic chain

- Shallow Access: put locals in a central place
- One stack for each variable name

Using Shallow Access to Implement
Dynamic Scoping

A B
A C A

MAIN 6|MAIN 6| B C A
u X Z A

(The names in the stack cells indicate the

program units of the variable declaration.)

Summary

- Subprogram linkage semantics requires
many action by the implementation

- Simple subprograms have relatively basic
actions

.- Stack-dynamic languages are more
complex

- Subprograms with stack-dynamic local
variables and nested subprograms have two
components
- actual code
- activation record

Copyright © 2006 Addison-Wesley. All rights reserved. 1-29

Summary (continued)

- Activation record instances contain formal
parameters and local variables among other
things

. Static chains are the primary method of
implementing accesses to non-local
variables in static-scoped languages with
nested subprograms

- Access to non-local variables in dynamic-
scoped languages can be implemented by
use of the dynamic chain or thru some
central variable table method

Copyright © 2006 Addison-Wesley. All rights reserved. 1-30

