The Language of Mathematics

  1. Sets : A set is a collection of objects.

The set with no elements is called the empty (or null) set and is denoted f Two sets X and Y are equal iff X and Y have the same elements.

i.e. X = Y iff whenever x Î X then x Î Y and whenever x Î Y ,

then x Î X.

If X and Y are sets and if every element of X is an element of Y, then we say that X is a subset of Y, denoted as X Í Y. If A and Y are not equal, then X is proper subset of Y.

The set of all subsets of a set X , is called the power set of X, denoted as P(X). If |X| = n , then |P(X)| = 2 n

Set Operations :

Union : X È Y = {x | x Î X or x Î Y }

Intersection : X Ç Y = {x | x Î X and x Î Y }

X and Y are disjoint if X Ç Y = f

Difference : X - Y = {x | x Î X and x Ï Y }

 

Sometimes we are dealing with sets all of which are subsets of a set U. The set U is called the universal set or a universe. The set U must be explicitly given or inferred from the context. Given the universal set U and a subset X of U, the set U - X is called the complement of X and is written as Xc .(sometimes, as X' ).

|A È B | = |A| + |B| - |A Ç B |

 

Theorem 2.1.10 page 59 :

Let U be a universal set and let A,B, and C be subset of U. The following properties hold:

 

  1. Associative laws : (A È B ) È C = A È ( B È C ) and (A Ç B ) Ç C = A Ç ( B Ç C )
  2. Commutative laws : A È B = B È A and A Ç B = B Ç A.
  3. Distributive laws : A Ç (B È C) =( A Ç B ) È (A Ç C ) and A È ( B Ç C ) = (A È B ) Ç ( A È C )
  4. Identity laws : A È f = A and A Ç U = A
  5. Complement laws : A È Ac = U and A Ç Ac = f
  6. Idempotent laws : A È A = A and A Ç A = A
  7. Bound laws : A È U = U and A Ç f = f
  8. Absorption laws : A È ( A Ç B ) = A and A Ç ( A È B ) = A
  9. Involution laws : (Ac)c = A
  10. 0/1 laws : (f )c = U and (U)c = f
  11. De Morgan's laws for sets: (A È B ) c = Ac Ç B c and (A Ç B ) c = Ac È B c

Definition : If X and Y are sets, we let X ´ Y denote the set of all ordered pairs (x,y) wher x Î X and y Î Y. And X ´ Y is called the Cartesian product of X and Y.

Definition : n-tuple (x1,...,xn) Î P i=1 to n XI with xi Î Xi .