Master's Method
Solving Recurrences for Divide and Conquer Algorithms

The Master's Method:

If T(n) = aT(n/b) + O(nk) for some constants a,b,k and T(1) = O(1), then

Proof:

T(n) = a T(n/b) + O(nk)      (1)
       = a [aT(n/b2) + O((n/b)k)] + O(nk)     (2)
       = a [a[aT(n/b3) + O((n/b*b)k)] + O((n/b)k) ] + O(nk)    (3)
       = ...
       = aiT(n/bi) +S j=0i-1 aj O((n/bj)k)  (i)
       = aiT(n/bi) + O(nk) S j=0i-1 O((a/bk)j) 

Let i = logbn (n = bi) and T(1) = O(1), 
T(n) = alogb n T(1) + O(nk) S j=0logb n -1O((a/bk)j)  
     = nlogb a + O(nk)S j=0logb n -1O((a/bk)j)