
Predicate Logic

Predicate Logic

Predicate logic is an extension of propositional logic
that permits concisely reasoning about whole classes
of entities.

Propositional logic treats simple propositions
(sentences) as atomic entities.

In contrast, predicate logic distinguishes the subject
of a sentence from its predicate.

� Remember these English grammar terms?

Topic #3 – Predicate Logic

Other Applications

Predicate logic is the foundation of the
field of mathematical logic, which
culminated in Gödel’s incompleteness
theorem, which revealed the ultimate
limits of mathematical thought:
� Given any finitely describable, consistent
proof procedure, there will still be some
true statements that can never be proven
by that procedure.

I.e., we can’t discover all mathematical
truths, unless we sometimes resort to
making guesses.

Topic #3 – Predicate Logic

Practical Applications

Basis for clearly expressed formal
specifications for any complex system.

Basis for automatic theorem provers
and many other Artificial Intelligence
systems.

Supported by some of the more
sophisticated database query engines
and container class libraries
(these are types of programming tools).

Topic #3 – Predicate Logic

More About Predicates

Convention: Lowercase variables x, y, z...
denote objects/entities; uppercase variables
P, Q, R… denote propositional functions
(predicates).

Keep in mind that the result of applying a
predicate P to an object x is the proposition
P(x). But the predicate P itself (e.g. P=“is
sleeping”) is not a proposition (not a
complete sentence).

� E.g. if P(x) = “x is a prime number”,
P(3) is the proposition “3 is a prime number.”

Topic #3 – Predicate Logic

Propositional Functions

Predicate logic generalizes the
grammatical notion of a predicate to
also include propositional functions of
any number of arguments, each of
which may take any grammatical role
that a noun can take.

� E.g. let P(x,y,z) = “x gave y the grade z”,
then if
x=“Mike”, y=“Mary”, z=“A”, then P(x,y,z)
= “Mike gave Mary the grade A.”

Topic #3 – Predicate Logic

Quantifier Expressions
Quantifiers provide a notation that allows us to
quantify (count) how many objects in the
universe of disclosure satisfy a given predicate.

“∀” is the FOR∀LL or universal quantifier.
∀x P(x) means for all x in the u.d., P holds.

“∃” is the ∃XISTS or existential quantifier.
∃x P(x) means there exists an x in the u.d.
(that is, 1 or more) such that P(x) is true.

Topic #3 – Predicate Logic

Free and Bound Variables

An expression like P(x) is said to have a
free variable x (meaning, x is
undefined).

A quantifier (either ∀ or ∃) operates on
an expression having one or more free
variables, and binds one or more of
those variables, to produce an
expression having one or more bound
variables.

Topic #3 – Predicate Logic

Example of Binding

P(x,y) has 2 free variables, x and y.

∀x P(x,y) has 1 free variable, and one bound
variable. [Which is which?]

“P(x), where x=3” is another way to bind x.

An expression with zero free variables is a
bona-fide (actual) proposition.

An expression with one or more free variables
is still only a predicate: ∀x P(x,y)

Topic #3 – Predicate Logic

Quantifier Equivalence Laws

Definitions of quantifiers: If u.d.=a,b,c,…
∀x P(x) ⇔ P(a) ∧ P(b) ∧ P(c) ∧ …
∃x P(x) ⇔ P(a) ∨ P(b) ∨ P(c) ∨ …

From those, we can prove the laws:
∀x P(x) ⇔ ¬∃x ¬P(x)
∃x P(x) ⇔ ¬∀x ¬P(x)

Which propositional equivalence laws can
be used to prove this?

Topic #3 – Predicate Logic

Review: Predicate Logic
Objects x, y, z, …

Predicates P, Q, R, … are functions
mapping objects x to propositions P(x).

Multi-argument predicates P(x, y).

Quantifiers: [∀x P(x)] :≡ “For all x’s,
P(x).”
[∃x P(x)] :≡ “There is an x such that
P(x).”

Universes of discourse, bound & free
vars.

Nesting of Quantifiers
Example: Let the u.d. of x & y be people.

Let L(x,y)=“x likes y” (a predicate w. 2 f.v.’s)

Then ∃y L(x,y) = “There is someone whom x
likes.” (A predicate w. 1 free variable, x)

Then ∀x (∃y L(x,y)) =
“Everyone has someone whom they like.”

(A __________ with ___ free variables.)

Topic #3 – Predicate Logic

Quantifier Exercise

If R(x,y)=“x relies upon y,” express the
following in unambiguous English:

∀x(∃y R(x,y))=

∃y(∀x R(x,y))=

∃x(∀y R(x,y))=

∀y(∃x R(x,y))=

∀x(∀y R(x,y))=

Everyone has someone to rely on.

There’s a poor overburdened soul whom

everyone relies upon (including himself)!

There’s some needy person who relies

upon everybody (including himself).

Everyone has someone who relies upon them.

Everyone relies upon everybody,

(including themselves)!

Topic #3 – Predicate Logic

Natural language is ambiguous!

“Everybody likes somebody.”

� For everybody, there is somebody they
like,

� ∀x ∃y Likes(x,y)

� or, there is somebody (a popular person)
whom everyone likes?

�∃y ∀x Likes(x,y)

“Somebody likes everybody.”

� Same problem: Depends on context,
emphasis.

[Probably more likely.]

Topic #3 – Predicate Logic

More to Know About Binding

∀x ∃x P(x) - x is not a free variable in
∃x P(x), therefore the ∀x binding isn’t used.

(∀x P(x)) ∧ Q(x) - The variable x is outside of
the scope of the ∀x quantifier, and is
therefore free. Not a complete proposition!

(∀x P(x)) ∧ (∃x Q(x)) – This is legal, because
there are 2 different x’s!

Topic #3 – Predicate Logic

More Equivalence Laws

∀x ∀y P(x,y) ⇔ ∀y ∀x P(x,y)

∃x ∃y P(x,y) ⇔ ∃y ∃x P(x,y)

∀x (P(x) ∧ Q(x)) ⇔ (∀x P(x)) ∧ (∀x Q(x))

∃x (P(x) ∨ Q(x)) ⇔ (∃x P(x)) ∨ (∃x Q(x))

Topic #3 – Predicate Logic

Calculus Example

One way of precisely defining the calculus
concept of a limit, using quantifiers:

()

() ()









<−→<−

∀>∃>∀

⇔=
→

εδ

δε

|)(|||

::0:0

)(lim

Lxfax

x

Lxf
ax

Topic #3 – Predicate Logic

Example

Definitions: H(x) :≡ “x is human”;
M(x) :≡ “x is mortal”; G(x) :≡ “x is a god”

Premises:

� ∀x H(x) → M(x) (“Humans are mortal”)
and

� ∀x G(x) → ¬M(x) (“Gods are immortal”).

Show that ¬∃x (H(x) ∧ G(x))
(“No human is a god.”)

Topic #3 – Predicate Logic

The Derivation

∀x H(x)→M(x) and ∀x G(x)→¬M(x).

∀x ¬M(x)→¬H(x) [Contrapositive.]

∀x [G(x)→¬M(x)] ∧ [¬M(x)→¬H(x)]

∀x G(x)→¬H(x) [Transitivity of →→→→.]

∀x ¬G(x) ∨ ¬H(x) [Definition of →→→→.]

∀x ¬(G(x) ∧ H(x)) [DeMorgan’s law.]

¬∃x G(x) ∧ H(x) [An equivalence law.]

Topic #3 – Predicate Logic

Predicate Logic

From these sections you should have
learned:

� Predicate logic notation & conventions

� Conversions: predicate logic ↔ clear
English

� Meaning of quantifiers, equivalences

� Simple reasoning with quantifiers

Topic #3 – Predicate Logic

