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Predicate Logic

Predicate logic is an extension of propositional logic 
that permits concisely reasoning about whole classes
of entities.

Propositional logic treats simple propositions
(sentences) as atomic entities.

In contrast, predicate logic distinguishes the subject
of a sentence from its predicate.

� Remember these English grammar terms?
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Other Applications

Predicate logic is the foundation of the
field of mathematical logic, which 
culminated in Gödel’s incompleteness 
theorem, which revealed the ultimate 
limits of mathematical thought:
� Given any finitely describable, consistent 
proof procedure, there will still be some
true statements that can never be proven
by that procedure.

I.e., we can’t discover all mathematical 
truths, unless we sometimes resort to 
making guesses.
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Practical Applications

Basis for clearly expressed formal 
specifications for any complex system.

Basis for automatic theorem provers
and many other Artificial Intelligence 
systems.

Supported by some of the more 
sophisticated database query engines
and container class libraries 
(these are types of programming tools).
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More About Predicates

Convention:  Lowercase variables x, y, z...
denote objects/entities; uppercase variables 
P, Q, R… denote propositional functions 
(predicates).

Keep in mind that the result of applying a 
predicate P to an object x is the proposition 
P(x).  But the predicate P itself (e.g. P=“is 
sleeping”) is not a proposition (not a 
complete sentence).

� E.g. if P(x) = “x is a prime number”,
P(3) is the proposition “3 is a prime number.”
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Propositional Functions

Predicate logic generalizes the 
grammatical notion of a predicate to 
also include propositional functions of 
any number of arguments, each of 
which may take any grammatical role 
that a noun can take.

� E.g. let P(x,y,z) = “x gave y the grade z”, 
then if
x=“Mike”, y=“Mary”, z=“A”, then P(x,y,z) 
= “Mike gave Mary the grade A.”
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Quantifier Expressions
Quantifiers provide a notation that allows us to 
quantify (count) how many objects in the 
universe of disclosure satisfy a given predicate.

“∀” is the FOR∀LL or universal quantifier.
∀x P(x) means for all x in the u.d., P holds.

“∃” is the ∃XISTS or existential quantifier.
∃x P(x) means there exists an x in the u.d. 
(that is, 1 or more) such that P(x) is true.
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Free and Bound Variables

An expression like P(x) is said to have a 
free variable x (meaning, x is 
undefined).

A quantifier (either ∀ or ∃) operates on 
an expression having one or more free 
variables, and binds one or more of 
those variables, to produce an 
expression having one or more bound
variables.
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Example of Binding

P(x,y) has 2 free variables, x and y.

∀x P(x,y) has 1 free variable, and one bound 
variable.  [Which is which?]

“P(x), where x=3” is another way to bind x.

An expression with zero free variables is a 
bona-fide (actual) proposition.

An expression with one or more free variables 
is still only a predicate: ∀x P(x,y)
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Quantifier Equivalence Laws

Definitions of quantifiers: If u.d.=a,b,c,…
∀x P(x) ⇔ P(a) ∧ P(b) ∧ P(c) ∧ …
∃x P(x) ⇔ P(a) ∨ P(b) ∨ P(c) ∨ …

From those, we can prove the laws:
∀x P(x) ⇔ ¬∃x ¬P(x)
∃x P(x) ⇔ ¬∀x ¬P(x)

Which propositional equivalence laws can 
be used to prove this?  
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Review: Predicate Logic
Objects x, y, z, …

Predicates P, Q, R, … are functions 
mapping objects x to propositions P(x).

Multi-argument predicates P(x, y).

Quantifiers: [∀x P(x)] :≡ “For all x’s, 
P(x).”
[∃x P(x)] :≡ “There is an x such that 
P(x).”

Universes of discourse, bound & free 
vars.



Nesting of Quantifiers
Example: Let the u.d. of x & y be people.

Let L(x,y)=“x likes y” (a predicate w. 2 f.v.’s)

Then ∃y L(x,y) = “There is someone whom x
likes.” (A predicate w. 1 free variable, x)

Then ∀x (∃y L(x,y)) =
“Everyone has someone whom they like.”

(A __________ with ___ free variables.)
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Quantifier Exercise

If R(x,y)=“x relies upon y,” express the 
following in unambiguous English:

∀x(∃y R(x,y))=

∃y(∀x R(x,y))=

∃x(∀y R(x,y))=

∀y(∃x R(x,y))=

∀x(∀y R(x,y))=

Everyone has someone to rely on.

There’s a poor overburdened soul whom 

everyone relies upon (including himself)!

There’s some needy person who relies 

upon everybody (including himself).

Everyone has someone who relies upon them.

Everyone relies upon everybody, 

(including themselves)!
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Natural language is ambiguous!

“Everybody likes somebody.”

� For everybody, there is somebody they 
like,

� ∀x ∃y Likes(x,y)

� or, there is somebody (a popular person) 
whom everyone likes?

�∃y ∀x Likes(x,y)

“Somebody likes everybody.”

� Same problem: Depends on context, 
emphasis.

[Probably more likely.]
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More to Know About Binding

∀x ∃x P(x) - x is not a free variable in 
∃x P(x), therefore the ∀x binding isn’t used.

(∀x P(x)) ∧ Q(x) - The variable x is outside of 
the scope of the ∀x quantifier, and is 
therefore free.  Not a complete proposition!

(∀x P(x)) ∧ (∃x Q(x)) – This is legal, because 
there are 2 different x’s!
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More Equivalence Laws

∀x ∀y P(x,y) ⇔ ∀y ∀x P(x,y)

∃x ∃y P(x,y) ⇔ ∃y ∃x P(x,y)

∀x (P(x) ∧ Q(x)) ⇔ (∀x P(x)) ∧ (∀x Q(x))

∃x (P(x) ∨ Q(x)) ⇔ (∃x P(x)) ∨ (∃x Q(x))
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Calculus Example

One way of precisely defining the calculus 
concept of a limit, using quantifiers:
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Example

Definitions:  H(x) :≡ “x is human”; 
M(x) :≡ “x is mortal”; G(x) :≡ “x is a god”

Premises:

� ∀x H(x) → M(x) (“Humans are mortal”) 
and

� ∀x G(x) → ¬M(x) (“Gods are immortal”).

Show that ¬∃x (H(x) ∧ G(x))
(“No human is a god.”)
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The Derivation

∀x H(x)→M(x) and ∀x G(x)→¬M(x).

∀x ¬M(x)→¬H(x)   [Contrapositive.]

∀x [G(x)→¬M(x)] ∧ [¬M(x)→¬H(x)]

∀x G(x)→¬H(x)       [Transitivity of →→→→.]

∀x ¬G(x) ∨ ¬H(x)    [Definition of →→→→.]

∀x ¬(G(x) ∧ H(x))     [DeMorgan’s law.]

¬∃x G(x) ∧ H(x)       [An equivalence law.]
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Predicate Logic

From these sections you should have 
learned:

� Predicate logic notation & conventions

� Conversions: predicate logic ↔ clear 
English

� Meaning of quantifiers, equivalences

� Simple reasoning with quantifiers
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