Predicate Logic



Predicate Logic

@ Predicate logicis an extension of propositional logic
that permits concisely reasoning about whole c/asses
of entities.

# Propositional logic treats simple propositions
(sentences) as atomic entities.

# In contrast, predicate logic distinguishes the subject
of a sentence from its predicate.

= Remember these English grammar terms?



Other Applications

#Predicate lo %m is the foundation of the
field of mathematical logic, which
culminated in Godel's incompleteness
theorem, which revealed the ultimate
limits of mathematical thought:
= Given any finitely describable, consistent

proof procedure, there will still be some

true statements that can never be proven
by that procedure.

#/.e., we can't discover a// mathematical
truths, unless we sometimes resort to
making guesses.



Practical Applications

#Basis for clearly expressed formal
specifications for any complex system.

#Basis for automatic theorem provers
and many other Artificial Intelligence
systems.

#Supported by some of the more
sophisticated gatabase guery engines
and container class libraries
(these are types of programming tools).



More About Predicates

4 Convention: Lowercase variables x, y, ...
denote objects/entities; uppercase variables
P, O, R... denote propositional functions
(predicates).

# Keep in mind that the resu/t of applying a
predicate Pto an object xis the proposition
A x). But the predicate Pitself (e.g. P="is
sleeping”) is not a proposition (not a
complete sentence).

s £.g. if AX) = "xis a prime number”,
A3) is the proposition ™3 is a prime number.”




Propositional Functions

#Predicate logic generalizes the
grammatical notion of a predicate to
also include propositional functions of
any number of arguments, each of
which may take any grammatical role
that a noun can take.

m £.g. let Ax,y,2) = “xgave ythe grade 7,
then if
x="Mike", y="Mary”, z="A", then Ax,y,2)
= “"Mike gave Mary the grade A.”



Quantifier Expressions

#® Quantifiers provide a notation that allows us to
qguantify (count) Aow many objects in the
universe of disclosure satisfy a given predicate.

#"V" is the FORYLL or universal quantifier.
Vx A x) means for all x in the u.d., Pholds.

#"3" is the IXISTS or existential quantifier.
dx A x) means there exists an xin the u.d.
(that is, 1 or more) such that A x) is true.




Free and Bound Variables

#An expression like A x) is said to have a
free variable x (meaning, xis
undefined).

#A quantifier (either ¥ or 3) operates on
an expression having one or more free
variables, and binds one or more of
those variables, to produce an
expression having one or more bound
variables.



Example of Binding

4 A x y) has 2 free variables, xand .

#VXx A X)) has 1 free variable, and one bound
variable. [Which is which?]

# " A x), where x=3" is another way to bind x.

# An expression with zero free variables is a
bona-fide (actual) proposition.

4 An expression with one or more free variables
is still only a predicate: vx Ax,))




Quantifier Equivalence Laws

#Definitions of quantifiers: If u.d.=a,b,c,...
Vx Ax) & Ra) A Ab) A AC) A ...
dx Ax) & Aa) v Ab) v Kc) v ...
#From those, we can prove the laws:
VX AX) & —3Ax—AX)
Ax AX) & =VXx—=AX)

#Which propositional equivalence laws can
be used to prove this?

DelMc ‘gan’s



Review: Predicate Logic

#0bjects x, y, Z, ...

#Predicates P, Q, R, ... are functions
mapping objects x to propositions Ax).

#Multi-argument predicates A, )).

#Quantifiers: [Vx Ax)] :="For all Xs,
AX)."

[3x AX)] :="There is an x such that
Ax)."

#Universes of discourse, bound & free
vars.




Nesting of Quantifiers

Example: Let the u.d. of x& y be people.
Let L(x,y)="xlikes ¥’ (a predicate w. 2 f.v.’s)

Then 3y L(x,y) = “There is someone whom x
likes.” (A predicate w. 1 free variable, x)

Then Vx 3y L(xy)) =
“Everyone has someone whom they like.”

Proposilion ., @ ¢ variavies )




Quantifier Exercise

If R(x,y)="xrelies upon y,” express the
following in unambiguous English:

\/ )((3 y R( X, y)) — Everyone has someone to rely on.

There’s a poor overburdened soul whom
EU/(VX R(X/y) ) everyone relies upon (including himself)!

= )((VV R( )(/y)) There’s some needy person who relies
\\ upon everybody (including himself).

VU IX R(X )
J’( R( % Everyone has someone who relies upon them.
V)((VV R(X/y ) Everyone relies upon everybody,

(including themselves)!



Natural language is ambiguous!

4 "Everybody likes somebody.”

= For everybody, there is somebody they
like,
Y IREN TS
= or, there is somebody (a popular person)
whom everyone likes?
*AyVx Likes(x,))
#:"Somebody likes everybody.”

= Same problem: Depends on context,
emphasis.

[Probably more likely.]



More to Know About Binding

#Vx3Ix Ax) - xis not a free variable in
dx , therefore the V.x binding isn’t used.

& (Vx AX) A Q(x) - The variable xis outside of
the scope of the Vx quantifier, and is
therefqre free. Not a complete proposition!

& (VX AX) A (HéQ()O) — This is legal, because

there are 2 different xs!




More Equivalence Laws

®VXVYAXY) & VyVxRXY)

®Ix3Iy Axy)  yIx AxY)

SR A M
@ VX (AX) A AX) & (VX AX) A (VX AX))

®3x (AX) v AX) < (X AX) v (3x AX))



Calculus Example

# One way of precisely defining the calculus
concept of a /imit, using quantifiers:

(hm £(x) = L)(:

X—>da

(Ve>0:30>0:Vx: A
(x—akd)=(f(x)-Lke),




Example

# Definitions: A(x) :=“xis human”;
MXx) :="xis mortal”; ({x) :="xis a god”
# Premises:

s VX HXx) > Mx) ("Humans are mortal”)
and

s VX ((X) — =M x) ("Gods are immortal™).

# Show that —3x (HX) A (X))
("No human is a god.”)



The Derivation

& VX HXx)—»Mx) and Vx G xX)——MXx).

#& VX Mx)—»—Hx) [Contrapositive.]

& VX [ X)>=MX)] A [2MX)—>—HX)]

& VX A X)—>—HX) [Transitivity of —.]
#&VXx-GEx) v—-Hx) [Definition of —.]
#VXxX-(EX) A Hx)) [DeMorgan’s law.]

& —3Jdx G(X) A H{X) [An equivalence law.]



Predicate Logic

#From these sections you should have
learned:

= Predicate logic notation & conventions

= Conversions: predicate logic «» clear
English

= Meaning of quantifiers, equivalences

= Simple reasoning with quantifiers



