

Predicate Logic

Predicate Logic

- ◆ *Predicate logic* is an extension of propositional logic that permits concisely reasoning about whole *classes* of entities.
- ◆ Propositional logic treats simple *propositions* (sentences) as atomic entities.
- ◆ In contrast, *predicate* logic distinguishes the *subject* of a sentence from its *predicate*.
 - Remember these English grammar terms?

Other Applications

- ◆ Predicate logic is the foundation of the field of *mathematical logic*, which culminated in *Gödel's incompleteness theorem*, which revealed the ultimate limits of mathematical thought:
 - Given any finitely describable, consistent proof procedure, there will still be *some* true statements that can *never be proven* by that procedure.
- ◆ *I.e.*, we can't discover *all* mathematical truths, unless we sometimes resort to making *guesses*.

Practical Applications

- ◆ Basis for clearly expressed formal specifications for any complex system.
- ◆ Basis for *automatic theorem provers* and many other Artificial Intelligence systems.
- ◆ Supported by some of the more sophisticated *database query engines* and *container class libraries* (these are types of programming tools).

More About Predicates

- ◆ Convention: Lowercase variables $x, y, z\dots$ denote objects/entities; uppercase variables $P, Q, R\dots$ denote propositional functions (predicates).
- ◆ Keep in mind that the *result of applying* a predicate P to an object x is the *proposition* $P(x)$. But the predicate P **itself** (e.g. P ="is sleeping") is **not** a proposition (not a complete sentence).
 - *E.g.* if $P(x)$ = "x is a prime number", $P(3)$ is the *proposition* "3 is a prime number."

Propositional Functions

- ◆ Predicate logic *generalizes* the grammatical notion of a predicate to also include propositional functions of **any** number of arguments, each of which may take **any** grammatical role that a noun can take.
 - *E.g.* let $P(x,y,z)$ = “ x gave y the grade z ”, then if x =“Mike”, y =“Mary”, z =“A”, then $P(x,y,z)$ = “Mike gave Mary the grade A.”

Quantifier Expressions

- ◆ *Quantifiers* provide a notation that allows us to *quantify* (count) *how many* objects in the universe of disclosure satisfy a given predicate.
- ◆ “ \forall ” is the **FOR \forall LL** or *universal* quantifier.
 $\forall x P(x)$ means *for all* x in the u.d., P holds.
- ◆ “ \exists ” is the **\exists XISTS** or *existential* quantifier.
 $\exists x P(x)$ means there exists an x in the u.d. (that is, 1 or more) such that $P(x)$ is true.

Free and Bound Variables

- ◆ An expression like $P(x)$ is said to have a *free variable* x (meaning, x is undefined).
- ◆ A quantifier (either \forall or \exists) *operates* on an expression having one or more free variables, and *binds* one or more of those variables, to produce an expression having one or more *bound variables*.

Example of Binding

- ◆ $P(x,y)$ has 2 free variables, x and y .
- ◆ $\forall x P(x,y)$ has 1 free variable, and one bound variable. [Which is which?]
- ◆ “ $P(x)$, where $x=3$ ” is another way to bind x .
- ◆ An expression with zero free variables is a bona-fide (actual) proposition.
- ◆ An expression with one or more free variables is still only a predicate: $\forall x P(x,y)$

Quantifier Equivalence Laws

- ◆ Definitions of quantifiers: If u.d.=a,b,c,...

$$\forall x P(x) \Leftrightarrow P(a) \wedge P(b) \wedge P(c) \wedge \dots$$

$$\exists x P(x) \Leftrightarrow P(a) \vee P(b) \vee P(c) \vee \dots$$

- ◆ From those, we can prove the laws:

$$\forall x P(x) \Leftrightarrow \neg \exists x \neg P(x)$$

$$\exists x P(x) \Leftrightarrow \neg \forall x \neg P(x)$$

- ◆ Which *propositional* equivalence laws can be used to prove this?

DeMorgan's

Review: Predicate Logic

- ◆ Objects x, y, z, \dots
- ◆ Predicates P, Q, R, \dots are functions mapping objects x to propositions $P(x)$.
- ◆ Multi-argument predicates $P(x, y)$.
- ◆ Quantifiers: $[\forall x P(x)] :=$ “For all x ’s, $P(x)$.”
 $[\exists x P(x)] :=$ “There is an x such that $P(x)$.”
- ◆ Universes of discourse, bound & free vars.

Nesting of Quantifiers

Example: Let the u.d. of x & y be people.

Let $L(x,y)$ = “ x likes y ” (a predicate w. 2 f.v.’s)

Then $\exists y L(x,y)$ = “There is someone whom x likes.” (A predicate w. 1 free variable, x)

Then $\forall x (\exists y L(x,y))$ =
“Everyone has someone whom they like.”

(A **Proposition** with 1 free variables.)

Quantifier Exercise

If $R(x, y)$ = “ x relies upon y ,” express the following in unambiguous English:

$\forall x(\exists y R(x, y)) =$ Everyone has *someone* to rely on.

$\exists y(\forall x R(x, y))$ There’s a poor overburdened soul whom *everyone* relies upon (including himself)!

$\exists x(\forall y R(x, y))$ There’s some needy person who relies upon *everybody* (including himself).

$\forall y(\exists x R(x, y))$ Everyone has *someone* who relies upon them.

$\forall x(\forall y R(x, y))$ *Everyone* relies upon *everybody*, (including themselves)!

Natural language is ambiguous!

- ◆ “Everybody likes somebody.”
 - For everybody, there is somebody they like,
 - ◆ $\forall x \exists y \text{Likes}(x, y)$ [Probably more likely.]
 - or, there is somebody (a popular person) whom everyone likes?
 - ◆ $\exists y \forall x \text{Likes}(x, y)$
- ◆ “Somebody likes everybody.”
 - Same problem: Depends on context, emphasis.

More to Know About Binding

- ◆ $\forall x \exists x P(x)$ - x is not a free variable in $\exists x P(x)$, therefore the $\forall x$ binding isn't used.
- ◆ $(\forall x P(x)) \wedge Q(x)$ - The variable x is outside of the *scope* of the $\forall x$ quantifier, and is therefore free. Not a complete proposition!
- ◆ $(\forall x P(x)) \wedge (\exists x Q(x))$ – This is legal, because there are 2 different x 's!

More Equivalence Laws

- ◆ $\forall x \forall y P(x, y) \Leftrightarrow \forall y \forall x P(x, y)$
- ◆ $\exists x \exists y P(x, y) \Leftrightarrow \exists y \exists x P(x, y)$
- ◆ $\forall x (P(x) \wedge Q(x)) \Leftrightarrow (\forall x P(x)) \wedge (\forall x Q(x))$
- ◆ $\exists x (P(x) \vee Q(x)) \Leftrightarrow (\exists x P(x)) \vee (\exists x Q(x))$

Calculus Example

- ◆ One way of precisely defining the calculus concept of a *limit*, using quantifiers:

$$\left(\lim_{x \rightarrow a} f(x) = L \right) \Leftrightarrow \left(\begin{array}{l} \forall \varepsilon > 0 : \exists \delta > 0 : \forall x : \\ (|x - a| < \delta) \rightarrow (|f(x) - L| < \varepsilon) \end{array} \right)$$

Example

- ◆ Definitions: $H(x) := "x \text{ is human}"$;
 $M(x) := "x \text{ is mortal}"$; $G(x) := "x \text{ is a god}"$
- ◆ Premises:
 - $\forall x H(x) \rightarrow M(x)$ ("Humans are mortal")
and
 - $\forall x G(x) \rightarrow \neg M(x)$ ("Gods are immortal").
- ◆ Show that $\neg \exists x (H(x) \wedge G(x))$
("No human is a god.")

The Derivation

- ◆ $\forall x H(x) \rightarrow M(x)$ and $\forall x G(x) \rightarrow \neg M(x)$.
- ◆ $\forall x \neg M(x) \rightarrow \neg H(x)$ **[Contrapositive.]**
- ◆ $\forall x [G(x) \rightarrow \neg M(x)] \wedge [\neg M(x) \rightarrow \neg H(x)]$
- ◆ $\forall x G(x) \rightarrow \neg H(x)$ **[Transitivity of \rightarrow .]**
- ◆ $\forall x \neg G(x) \vee \neg H(x)$ **[Definition of \rightarrow .]**
- ◆ $\forall x \neg(G(x) \wedge H(x))$ **[DeMorgan's law.]**
- ◆ $\neg \exists x G(x) \wedge H(x)$ **[An equivalence law.]**

Predicate Logic

- ◆ From these sections you should have learned:
 - Predicate logic notation & conventions
 - Conversions: predicate logic \leftrightarrow clear English
 - Meaning of quantifiers, equivalences
 - Simple reasoning with quantifiers