
Parallelism in Dynamic Well-Spaced Point Sets

Umut A. Acar
Max-Planck Institute for

Software Systems
Kaiserslautern, Germany

umut@mpi-sws.org

Andrew Cotter
Toyota Technological Institute

Chicago, IL
cotter@ttic.edu

Benoît Hudson
Autodesk, Inc.

Montreal, QC, Canada
benoit.hudson@autodesk.com

Duru Türkoğlu
Dept. of Computer Science

University of Chicago
Chicago, IL

duru@cs.uchicago.edu

ABSTRACT
Parallel algorithms and dynamic algorithms possess an inter-
esting duality property: compared to sequential algorithms,
parallel algorithms improve run-time while preserving work,
while dynamic algorithms improve work but typically offer
no parallelism. Although they are often considered sepa-
rately, parallel and dynamic algorithms employ similar de-
sign techniques. They both identify parts of the computa-
tion that are independent of each other. This suggests that
dynamic algorithms could be parallelized to improve work
efficiency while preserving fast parallel run-time.

In this paper, we parallelize a dynamic algorithm for well-
spaced point sets, an important problem related to mesh re-
finement in computational geometry. Our parallel dynamic
algorithm computes a well-spaced superset of a dynamically
changing set of points, allowing arbitrary dynamic modifica-
tions to the input set. On an EREW PRAM, our algorithm
processes batches of k modifications such as insertions and
deletions in O(k log ∆) total work and in O(log ∆) parallel
time using k processors, where ∆ is the geometric spread of
the data, while ensuring that the output is always within a
constant factor of the optimal size. EREW PRAM model is
quite different from actual hardware such as modern multi-
processors. We therefore describe techniques for implement-
ing our algorithm on modern multi-core computers and pro-
vide a prototype implementation. Our empirical evaluation
shows that our algorithm can be practical, yielding a large
degree of parallelism and good speedups.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’11, June 4–6, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0743-7/11/06 ...$10.00.

General Terms
Algorithms, Theory, Performance, Experimentation

Keywords
Well-spaced point sets, Voronoi diagrams, mesh refinement,
parallel batch dynamic updates, self-adjusting computation,
multithreading

1. INTRODUCTION
In many applications, algorithms are repeatedly invoked

on sequences of data that are related to or derived from each
other. For example, in computer aided design, one might
create an incrementally evolving model which undergoes rel-
atively small changes at each iteration. After adjusting the
design, the user may invoke features that send the design
as input to an algorithm that requires expensive computa-
tions, e.g., a geometric algorithm such as a mesh generator.
To take advantage of the resulting similarity between the
inputs, researchers have developed so called dynamic algo-
rithms that update the output by performing significantly
less work than a complete re-computation. Except for a few
(e.g, [19, 25]), dynamic algorithms are typically sequential
(see [11, 14, 13] for some surveys) and allow the input to un-
dergo only a single modification, e.g., insertion or deletion,
at a time.

The interaction between parallel and dynamic algorithms
is not well understood, but appears to be strong. For ex-
ample, they are duals in terms of their effect on work and
run-time: when compared to sequential algorithms, paral-
lel algorithms improve parallel run-time but not the work
(total computation), whereas dynamic algorithms improve
work by only updating parts of the output affected by a
change, but offer no parallelism. The design and analysis
of parallel and dynamic algorithms are also deeply related.
Both parallel and dynamic algorithms identify independent
parts of the computation in order to achieve either a high
degree of parallelism or efficient dynamic updates when the
input is modified. These relationships suggest that dynamic
and parallel algorithms may be designed to improve both
work and parallel run-time. Such algorithms accept arbi-
trarily changing input data sets (as opposed to permitting
single, unitary changes to the input), and respond to them
in both work-optimal and parallel-time-optimal fashion by

performing only the amount of work necessary to update the
previous output in accordance with the modified input.

In this paper, we present parallel construction and par-
allel dynamic update algorithms for the well-spaced point-
sets problem. Given an input set of points N, the problem
requires computing the asymptotically smallest well-spaced
superset M ⊃ N by inserting additional so called Steiner
points, to ensure that the Voronoi cells of the final Voronoi
diagram all have bounded aspect ratio (Section 2). Well-
spaced point sets are closely related to mesh generation, an
important problem in computational geometry [10, 6, 21, 27,
16], where the goal is to cover a domain with simplices (i.e.
triangles in 2D and tetrahedra in 3D) such that all simplices
have good quality, in the sense that their face and dihedral
angles are bounded away from 0◦ and 180◦. Well-spaced
point sets directly yield quality meshes in 2D, and can be
used to obtain quality meshes in 3D with the help of a sliver
removal algorithm [9].

Our construction algorithm builds a well-spaced superset
of a given point set, and our dynamic algorithm updates it
as the input is modified. Both return well-spaced point sets
that are size-optimal, in the sense that their size is within a
constant factor of the size of the smallest well-spaced super-
set. Our dynamic update algorithm allows arbitrary mod-
ifications to the input, e.g., single or batch insertions, or
deletions, or their combinations. We present our algorithms
in the EREW PRAM model, where no concurrent memory
accesses take place. Our construction algorithm matches
the best prior parallel off-line algorithms [17] in efficiency:
it builds a superset of a given set of n points in O(n log ∆)
work and O(log ∆) parallel time using n processors, where
∆ is the geometric spread, defined as the ratio of the di-
ameter to the closest pair distance of the input set. Our
update algorithm performs a batch of k updates (insertions
and deletions) in O(k log ∆) work and O(log ∆) parallel time
using k processors. These bounds assume that vertex coordi-
nates fit inside a machine word, and that common arithmetic
operations on these words require only constant time.

The starting point for our algorithms is the aforemen-
tioned similarity between the design of dynamic and paral-
lel algorithms: that the very independence exploited by a
dynamic algorithm may be utilized to extract parallelism.
Indeed, we start with a previously proposed dynamic algo-
rithm for well-spaced point sets [4] and parallelize it for the
EREW PRAM model (Section 4). Parallelization of the dy-
namic algorithm involves some major modifications to the
quadtree data structure used for point location (Section 3)
and careful exploitation of locality properties of the geomet-
ric operations used by the dynamic algorithm. This yields
a parallel dynamic update algorithm that accepts arbitrary
modifications to the input and updates the output correctly
and efficiently. To support such parallel dynamic updates,
we utilize a computation graph to represent the dependencies
in the computation, allowing quick identification and re-use
of those tasks which are unaffected by a modification. We
show that it is possible to provide lock-free mutually exclu-
sive access to the computation graph by taking advantage
of certain locality properties (Section 5).

The approach of developing a construction algorithm and
then providing a dynamic update algorithm based on change
propagation is inspired by recent advances on self-adjusting
computation (e.g., [2, 15, 20]). In self-adjusting computa-
tion, programs can respond automatically to modifications

Figure 1: M = {a, b, c, d, v}
NNM(v) = |va|. Thick solid
and dashed boundaries dis-
play Vorρ

M
(v) and Vorβ

M
(v).

Shaded region is the (ρ, β)
picking region. c and d are
β-clipped but not ρ-clipped
Voronoi neighbors of v.

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

a

c

d

b

v

to their data by invoking a general-purpose change propaga-
tion algorithm [1]. The data structures required by change
propagation can be constructed automatically by observing
execution. Our computation graphs are abstract representa-
tions of these data structures. Similarly our dynamic update
algorithm is an adaptation of the change propagation algo-
rithm for the problem of well-spaced point sets. Nearly all of
that work, however, consider sequential computations. The
results in this paper show that they can effectively be par-
allelized in this particular problem. Previous work applied
these techniques effectively to other computational geometry
problems such as kinetic three-dimensional convex hulls [3]
and sequential dynamic and kinetic well-spaced point sets [4,
5]. Our approach can also be viewed as a dynamization tech-
nique, which has been used effectively for a relatively broad
range of algorithms (e.g., [26, 8, 12, 24]).

Since our algorithms are based on the EREW PRAM
model, and since our bounds are asymptotic, it is not di-
rectly clear if our algorithms yield the desired efficiency
in practice, e.g., on modern multi-core computers with a
modest number of processors. For example, in the EREW
PRAM model, processors execute in lockstep, emulation of
which in multi-core systems would require global synchro-
nization. Similarly, in our EREW algorithms, exclusivity of
memory accesses is ensured at the cost of a large amount
of sequentialization, although much less suffices in prac-
tice, largely because concurrent reads are permissible. We
therefore present practical adaptations of our construction
and dynamic update algorithms to multi-core systems (Sec-
tion 6). We also provide prototype implementations. Our
experiments with 2D and 3D synthetic and real-world data
sets give some evidence that the proposed techniques work
effectively in practice (Section 7).

2. PRELIMINARIES
Our algorithms maintain a well-spaced superset M of a set

of input points N that can be dynamically modified by in-
sertion/deletion of a set of points N

∗. Without loss of gener-
ality, we scale and shift the point set N such that B = [0, 1]d

becomes a bounding box. We use the term point to refer
to any point in B and vertex to refer to the input and out-
put points. For any vertex set M ⊂ B, the Voronoi cell of v
in M, written VorM(v), consists of points x ∈ B such that
for all u ∈ M, |vx| ≤ |ux|. The nearest-neighbor distance
of v, written NNM(v), is the distance from v to the near-
est other vertex in M. Following Talmor [27], a vertex is
ρ-well-spaced if its Voronoi cell is contained within the ball
of radius ρNNM(v) centered at v; M is ρ-well-spaced if every
vertex in M is ρ-well-spaced. The β-clipped Voronoi cell of v,
written Vorβ

M
(v), is the intersection of VorM(v) with the ball

of radius β NNM(v) centered at v [18]. For any β > ρ, we

define the (ρ, β) picking region of v, written Vor
(ρ,β)
M

(v), as

Vorβ
M
(v)\Vorρ

M
(v), the region of the Voronoi cell bounded by

concentric balls of radius ρNNM(v) and β NNM(v). A ver-
tex u is a (β-clipped) Voronoi neighbor of v if the (β-clipped)
Voronoi cell of v contains a point equidistant from v and u.
Figure 1 illustrates these definitions.

3. QUADTREE
To permit the rapid calculation of such things as nearest

neighbors and clipped Voronoi cells, we use a point loca-
tion data structure based on the balanced quadtree of Bern,
Eppstein, and Gilbert [6]. In two dimensions, under the
assumptions that every vertex coordinate is a b-bit integer
and that arithmetic and bitwise operations on b-bit integers
require constant time, earlier work [7] has shown how to con-
struct a balanced quadtree on a set of n vertices in O(n log n)
work and O(log n) parallel time on an EREW PRAM, as-
suming that b ∈ O(log n). We extend this construction to
arbitrary dimensions, and describe how k dynamic vertices
may be inserted into (or deleted from) an existing quadtree
in O(k log ∆) work and O(log ∆) parallel time, with the as-
sumption that b ∈ O(log ∆), which states that we do not
use much higher arithmetic precision than is necessary to
distinguish the input points.

We define a d-dimensional balanced quadtree to be the
minimal quadtree which satisfies the following properties:

• Crowding: every leaf node of the quadtree contains at
most one vertex, and if it does, none of its neighbors
contains a vertex.

• Grading: all neighbors of any internal node must exist
in the quadtree.

Here, we define the neighbors of a quadtree node to be the

nodes in each of the 3d−1 cardinal and diagonal directions,
at the same level. To support fast traversals and access,
a quadtree node keeps pointers to its parent, children, and
neighbors. Additionally, every leaf node, which we refer to
as a square, contains a pointer to an input vertex it may con-
tain, and a list of Steiner vertices. In a balanced quadtree
satisfying these properties, the set of squares partitions the
space defined by the quadtree in such a way that two adja-
cent squares (i.e, two squares that share a common border)
are either neighbors, or at consecutive levels.

Our quadtree supports the QTClippedVoronoi(v, β) func-
tion, which returns the β-clipped Voronoi cell of v in O(1)
time [18] and the QTInsert and QTDelete operations for
modifying the vertex set. Each takes as input a balanced
quadtree on a set of vertices N, and a set N

∗ of k dynamic
vertices to either insert into, or delete from, this quadtree.
QTInsert and QTDelete return the set of leaf nodes of the
original quadtree that are internal nodes of the resulting
quadtree and the leaf nodes that are removed from the orig-
inal quadtree respectively. Our main result about this data
structure, which we give without proof due to space limita-
tions, states that the QTInsert and QTDelete functions may
be effectively parallelized.

Theorem 3.1. Given a set N
∗ of k vertices and a quadtree

Q, the functions QTInsert and QTDelete update the quadtree
by performing O(k log ∆) work in O(log ∆) parallel time on
an EREW PRAM.

The QTInsert and QTDelete functions start by construct-
ing, in Bern et al.’s terminology [7], a “framework” (a hy-
pothetical quadtree) on N

∗, the primary purpose of which

is to define an “ownership” relation between dynamic ver-
tices and quadtree nodes such that every node containing a
dynamic vertex is “owned” by exactly one dynamic vertex.
The functions then insert/delete the vertices N

∗ into/from
the quadtree and finish by enforcing the crowding, grading
and minimality properties in several passes, each of which is
performed in parallel.

To repair the quadtree, we use k processors, each of which
is identified with a dynamic vertex p ∈ N

∗. As we prove in
lemmas 3.2 and 3.3, insertion or deletion of a vertex p only
affects a local neighborhood of the quadtree nodes which
contain p. Each processor is responsible for repairing the
portion of the quadtree affected by its vertex, potentially in
all b levels. The ownership relation defined by the frame-
work, and a careful ordering on parallel operations defined
by a coloring scheme, ensure exclusive accesses to memory,
and that each affected node will be repaired by only one pro-
cessor. By ensuring that there are a constant number of col-
ors, and permitting no two operations of different colors to
execute concurrently, these passes satisfy the requirements
of an EREW PRAM model, with only a constant factor
overhead in runtime.
Framework construction. The construction of the frame-
work, which is performed at the start of every QTInsert

and QTDelete operation, is very similar to the unbalanced
quadtree construction of Bern et al. (section 2 of [7]).

We begin by sorting the dynamic vertices N
∗ in Morton’s

Z-order [23, 7]. Using this sorted list, we will define an
auxiliary data structure for each vertex which contains the
information needed by the framework.

We say that a dynamic vertex “owns” a quadtree square if
it is the first dynamic vertex (in the sorted array N

∗) which
is contained within the boundaries of this square. Every
dynamic vertex owns at least one square, but a vertex may
own multiple squares–in particular, if it owns a square at
level `, then it owns a smaller square at every level `′ > `.
Similarly, we say that one dynamic vertex p is a “parent”
of p′ if p is the owner of the parent square (in the quadtree)
of the minimum-level square owned by p′.

The framework keeps track of this parent-child relation-
ship between vertices. For convenience, we will treat this
data structure as a set of fields vertices themselves, although
its lifetime is only that of the insertion or deletion of the ver-
tices, not of the quadtree itself:

• Level: Level (in the quadtree) of the minimum-level
square owned by this vertex

• Parent: Index of the parent vertex, in the sorted list
N

∗

• Nodes: Array of pointers, indexed by level, to the
quadtree squares owned by this vertex. Initialized to
null

The level of the ith dynamic vertex is the number of high-
order bits of the coordinates of N [i] and N [i − 1] which are
identical, plus one. The first vertex in the sorted list is
at level 0. Once the levels have been found, the parent
fields may be populated. One may verify that the parent
index i of a vertex at index j is the largest i < j such that
N [i] .level < N [j] .level.

The final step in this construction is to “link up” this
framework to the quadtree proper by populating the nodes
fields. This is accomplished using a set of parallel processes,

one for each dynamic vertex, which execute in lockstep.
Each iterates through the levels of the quadtree in a top-
down manner (from the root towards the leaves), and finds
the quadtree node owned by its dynamic vertex at the cur-
rent level by inspecting the children (in the quadtree) of the
node owned by its parent dynamic vertex at the previous
level. If a QTInsert operation is being performed, then the
new dynamic vertices are inserted into the appropriate leaf
nodes once they are encountered, and these leaves split as
necessary in order to ensure that each leaf node contains
at most one vertex. If a QTDelete operation is being per-
formed, then the dynamic vertices are removed from these
leaf nodes, but no quadtree nodes are merged–minimality
will be enforced later.

During this top-down pass, we use a coloring scheme (de-
scribed in detail below) to ensure that concurrent memory
accesses cannot occur. During a QTDelete operation, two
processes could access the same memory location only if
they simultaneously work on nodes which share a parent.
The fact that QTSplit is called during a QTInsert operation
slightly complicates things, since we must update neighbor
pointers when nodes are split, making it necessary for us to
choose a coloring scheme which guarantees that no two pro-
cesses may concurrently work on nodes whose parents share
a neighbor.
Crowding and Grading Passes. The sole purpose of the
framework is to make it possible to iterate, in parallel, over
the quadtree nodes owned by dynamic vertices. With the
framework in place, we repair the quadtree in a series of
top-down and bottom-up passes over the quadtree. Dur-
ing these passes, a distinct process is associated with each
dynamic vertex. These processes then, in lockstep, iterate
through first the levels, and then the colors. In parallel, each
performs a local constant-time operation on a node which it
owns at the current level, if it is of the current color.

The coloring scheme is of vital importance to ensuring
that concurrent memory accesses cannot occur during a pass
over the quadtree. We assign a color to each quadtree node
by taking each coordinate of the node modulo κ. Two nodes
at the same level which are of the same color will be at least
κ − 1 squares away from each other. The following two
lemmas show that a small constant κ (7, in fact) suffices,
when enforcing the crowding and grading properties.

Lemma 3.2. Let ϕ be a node that is must be split due to
crowding. Then there is a vertex p ∈ N

∗ that lies either
inside ϕ or one of its neighbors.

Proof. Follows immediately from the definition of the
crowding property.

Lemma 3.3. (Lemma 1 of Moore [22]) Let ϕ be a node
that is split due to grading. Then a descendant of one of its
neighbors must have been split due to crowding.

Due to space limitations, we omit details on the passes
which are performed in order to enforce the crowding, grad-
ing and minimality properties after some number of inser-
tions or deletions. Briefly, we proceed by first enforcing the
crowding property in a single top-down pass. We then per-
form a bottom-up pass in which it is determined which nodes
must be split or merged in order to satisfy the grading prop-
erty and minimality, and finally a top-down pass in which
these splits/merges are actually performed.

4. PARALLEL ALGORITHM
Given a set of vertices N, we can construct a ρ-well-spaced

superset of N by repeatedly “filling” the vertices until the
set becomes ρ-well-spaced. To fill a vertex v, we apply a fill
operation to v that inserts Steiner vertices within the (ρ, β)
picking region of v (Figure 1), making v ρ-well-spaced. This
approach, while correct, is not efficient because we may fill
vertices many times.

To create an efficient parallel algorithm, we first notice
that the Steiner vertices inserted when filling a vertex are
always at least ρ times the nearest neighbor distance from
the vertex, and therefore that inserting a Steiner vertex does
not affect the well-spacedness of those vertices with nearest
neighbor distances less than ρ times that of the vertex be-
ing filled. We can thus partition the vertices into groups,
called ranks, such that vertices with nearest neighbor dis-
tances within a factor of ρ of each other are in the same rank.
The vertices will then be filled in rank order. We observe
that the vertices in each rank need not be filled sequentially,
because filling a vertex only affects a local neighborhood.
This allows us to partition the vertices in each rank into a
constant number of colors, in such a way that we can fill ver-
tices of the same color in parallel, while sequentially ordering
the vertices of different colors. Each processor maintains an
independent queue of pending operations, and fills the ver-
tices sequentially in rank and color order. We show that the
ranks and colors can be carefully picked to ensure that all
memory reads and writes are exclusive.

This partial ordering takes advantage of independence of
operations. We make this independence concrete by record-
ing dependencies between vertices in a computation graph.
In order to handle batch dynamic updates to the input, we
employ a change-propagation mechanism that updates parts
of the computation affected by dynamic modifications.
Construction Algorithm. The construction algorithm
(Figure 2) revolves around two operations, Fill and Dis-

patch. As was briefly described above, the Fill operation
inserts Steiner vertices to make a vertex ρ-well-spaced. A
Dispatch operation computes the rank of a vertex, which
we define as the base ρ logarithm of its nearest neighbor
distance, and keeps it up to date as Steiner vertices are in-
serted. We say both operations act on a vertex (the first
argument). The unique dispatch operation acting on a ver-
tex v runs before the fill operations acting on v, and sched-
ules fill operations for the vertex and its β-clipped Voronoi
neighbors at the current rank, ensuring correct ordering of
fill operations. We define time as a triple consisting of a
rank, a flag indicating a dispatch (D) or fill (F), and a color.

Given a set of input vertices N, we assign one processor
to each vertex p ∈ N, each of which locally maintains an op-
eration array Ω indexed by time, and executes ParallelWS

in order to construct a ρ-well-spaced superset of its input N.
ParallelWS starts by constructing a quadtree in parallel by
inserting vertices into an empty quadtree. It then enqueues
a dispatch operation for its assigned vertex p and proceeds
by, at each rank, iterating through each color, executing the
dispatch operations for that color, and then doing the same
for the rank’s fill operations. Both sets of operations use
κO colors; we discuss the choice of κO in detail later in this
section. The dispatch and fill operations also modify the
computation graph. Consider a dispatch or a fill operation
acting on a vertex v at time t, represented by the node (v, t);
this operation inserts edges ((v, t), (w, tw)) as described in

ParallelWS (p,N) =

QTInsert(p, N, nil)

tp ← Enqueue(p, |square of p|,D,Ω)

Add edge (p, 0) −→ (p, tp)

for r = rank of tp to
j

logρ

√
d

k

do

for c = 1 to κd
O do

t← (r, D, c)

for each v ∈ Ω[t] do Dispatch(v, t, Ω)

for c = 1 to κd
O

do

t← (r, F, c)

for each v ∈ Ω[t] do Fill(v, t, Ω)

Dispatch (v, t, Ω) =

(u, CV)← QTClippedVoronoi(v, β, t)

tv ← Enqueue(v, |vu|, F, Ω)

Add edge (v, t) −→ (v, tv)

for each CV -neighbor w of v do

tw ← Enqueue(w, |wv|, F, Ω)

Add edge (v, t) −→ (w, tw)

Fill (v, t,Ω) =

(u, CV)← QTClippedVoronoi(v, β, t)

while v is not ρ-well-spaced do

Pick w ∈ CV s.t. |vw| ≥ ρ · |vu|
Insert w as a Steiner vertex

tw ← Enqueue(w, |wv|, D, Ω)

Add edge (v, t) −→ (w, tw)

Update CV with w

Enqueue (v, nnv, T, Ω) =

rv ←
¨

logρ nnv
˝

, cv ← color(v, rv)

tv ← (rv , T, cv)

if @ edge · −→ (v, tv) then

Ω[tv]← Ω[tv] ∪ {v}
return tv

Figure 2: The pseudo-code of the parallel algorithm.

the pseudo-code. Here tw is the time of the (potential) op-
eration scheduled to act on w. In order to keep track of de-
pendencies through the quadtree, a QTClippedVoronoi call
executed by the operation acting on v records the node (v, t)
in every square s that it accesses.
Dynamic Update Algorithm. We describe our parallel
algorithm (pseudo-code in Figure 3) for updating the well-
spaced output after a batch insertion/deletion of vertices
into/from the input. Given a set of dynamic vertices N

∗ to
be inserted or deleted, we assign one processor to each vertex
p ∈ N

∗, each of which participates in the dynamic update by
executing Insert/Delete and then Propagate. Each proces-
sor locally maintains three arrays of operations Ω	, Ω⊕, Ω⊗

that hold (respectively) the obsolete, fresh, and inconsis-
tent operations, which are (respectively) to be deleted, ex-
ecuted, and re-executed. The Insert and Delete functions
take a set of vertices N

∗ along with the quadtree Q, and
insert/delete N

∗ into/from Q, receiving a set of obsolete
squares Σ	. Next, each enqueues the dispatch operation
for the vertex p assigned to its processor into the obsolete or
fresh operation arrays, and proceeds to execute Propagate.
This function starts by inserting the readers of the obsolete
squares into the array of inconsistent operations by iterating
through each quadtree depth, using κS colors (details later
in this section) in order to ensure that the operation queues

of different processors are disjoint. It then enqueues an ob-
solete dispatch operation for each vertex contained in an
obsolete square, and enqueues a fresh dispatch operation for
the same vertex at the new square. After the initializations,
Propagate proceeds in time order. At each rank, it starts
by fixing the dispatch operations. Iterating through colors,
Fix undoes the operations in the obsolete and inconsistent
arrays, and updates the inconsistent operation array by re-
moving the obsolete operations. It then finishes fixing the
dispatch operations by performing those in the inconsistent
and fresh arrays. Next, Propagate fixes the fill operations
by having Fix undo and perform them in a similar fashion.
For fill operations, Fix also marks readers of those squares
whose Steiner vertex lists have changed to be inconsistent.

During the update, the dispatch and fill operations, as
well as the undo operations, all maintain the computation
graph. Undos remove the edges originating from the vertex
on which these operations act. In order to propagate and
repair the effects of inconsistencies that arise while inserting
or removing Steiner vertices, we rely on the MarkReaders

operation. MarkReaders marks dispatch and fill operations
that are scheduled in the future, and whose clipped Voronoi
computations access the inconsistent square, to be inconsis-
tent themselves.
Coloring for Dynamism and Parallelism. To update
the output when the input point set changes, our dynamic
algorithm identifies the operations made inconsistent by the
changes, and re-executes them. When an operation is re-
executed, it can make another operation inconsistent by in-
serting a Steiner vertex. For efficient updates, it is therefore
crucial that such dependency chains be short–of no more
than logarithmic length. Since there are logarithmically
many ranks, it suffices to ensure that the dependencies be-
tween operations in the same rank are of constant length.
At any given rank r, both dispatches and fills access only the
quadtree squares within a ball of radius O(ρr). Their modifi-
cations to the computation graph are local as well, since they
insert edges only towards vertices within this ball. This al-
lows us to partition the work at a given rank into a constant
number of color classes in such a way that dependencies
occur only between the operations of different colors, guar-
anteeing efficient dynamic updates as well as exclusive reads
and writes: operations at the same color class are indepen-
dent, in that they neither access the same quadtree squares
nor access the same nodes in the computation graph.

`(r)

κ`(r)

Figure 4: Illustration of a
coloring scheme (κ = 2).

More formally, we define
two squares of the same
size to be related if there is
a dispatch or fill operation
that accesses both of them.
We show that there exists
a constant number of col-
ors (κd

S) coloring squares of
the same size such that no
two squares are related if
they have the same color
(Lemma 5.2). This ensures that in the initialization of the
dynamic update, different processors do not simultaneously
mark operations reading an obsolete square to be inconsis-
tent. We say that two dispatch or fill operations executed
at the same rank interfere if the squares accessed by the
operations are related. We disallow interference by using a
coloring scheme that partitions the space based on a param-

Fix (r, T) =

for c = 1 to κd
O

do

t← (r, T, c)

for each v ∈ Ω	[t] do Undo(v, t)

Remove unflagged vertices from Ω⊗[t]

for each v ∈ Ω⊗[t] do Undo(v, t)

for each v ∈ Ω⊕[t] ∪ Ω⊗[t] do

if T = D then Dispatch(v, t,Ω⊕)

if T = F then

Fill(v, t, Ω⊕)

for each inserted Steiner w do

MarkReaders(square of w, t)

Undo (v, t) =

Unflag v at time t

for each edge (v, t) −→ (w, tw) do

Remove edge (v, t) −→ (w, tw)

if @ edge · −→ (w, tw) then

Ω	[tw]← Ω	[tw] ∪ {w}
if t = (·, F, ·) then

MarkReaders(square of w, t)

Delete w from its square

MarkReaders (s, t) =

for each v reading s at time t′ > t do

if v at time t′ is not flagged then

Flag v at time t′

Ω⊗[t′]← Ω⊗[t′] ∪ {v}

Insert (p, N∗,Q) =

Ω	, Ω⊕,Ω⊗ ← ∅
Σ	 ← QTInsert(p,N∗,Q)

tp ← Enqueue(p, |square of p|,D, Ω⊕)

Add edge (p, 0) −→ (p, tp)

Delete (p, N∗,Q) =

Ω	, Ω⊕,Ω⊗ ← ∅
Σ	 ← QTDelete(p,N∗,Q)

Remove edge (p, 0) −→ (p, ·)
Enqueue(p, |square of p|, D,Ω)

Propagate (p, Σ) =

for each quadtree depth ` do

for c = 1 to κd
S

do

for each s ∈ Σ	 at depth ` do

if color of s is c then

MarkReaders(s, 0)

for each s ∈ Σ	 and v 6= p ∈ s do

if v is an input vertex then

Remove edge (v, 0) −→ (v, ·)
Enqueue(v, |s|,D,Ω)

tv ← Enqueue(v, |square of v|, D,Ω⊕)

Add edge (v, 0) −→ (v, tv)

rmin ← min rank in Ω	 ∪ Ω⊕ ∪ Ω⊗

for r = rmin to
j

logρ

√
d

k

do

Fix(r, D), Fix(r, F)

Figure 3: The pseudo-code of the parallel dynamic update algorithm.

eter κO and a real valued function `(r) defined on ranks. At
each rank r, we partition the space into d-dimensional hy-
percubes or tiles with side length `(r). We color tiles such
that they are colored periodically in each dimension with

period κO, using κd
O colors in total. An operation at rank r

that acts on a vertex v has color c ∈ {1, 2, . . . , κd
O} if v lies

in a c colored tile. Figure 4 illustrates a coloring scheme in
2D. By choosing `(r) small enough and κO large enough, we
prove that two operations at the same rank do not interfere
with each other if they have the same color (Lemma 5.3).

5. PARALLEL WORK AND DEPTH
We show that the work is efficiently distributed among the

processors, of which there is one for each input vertex (con-
struction), or each dynamic vertex being inserted or deleted
(dynamic update). First, we prove that our parallel algo-
rithms can be implemented on an EREW PRAM, i.e., the
operations executed at any time step perform only exclu-
sive reads and writes (Lemma 5.4). Then, we prove that
a processor performs operations only on the vertices that
are relatively close to its input vertex (Lemma 5.5). Tak-
ing advantage of this property, we prove that each processor
spends O(1) time at each time-step.

The design of the parallel algorithms we present in Sec-
tion 4 is inspired by the algorithms developed by Acar et
al. [4]. Some of their results are useful in proving the results
we state here. In particular, they prove that the nearest
neighbor distance of a vertex at rank r is bounded below by
Ω(ρr) and that any operation acting on that vertex accesses

a region within a ball of radius at most O(ρr). These bounds
allow us to show the existence of a constant size coloring
scheme and that our algorithms are suitable for the EREW
PRAM model. For construction and dynamic updates, the
theorems on correctness follow similarly.

Theorem 5.1. The superset of points that ParallelWS

constructs and that Insert and Delete maintains are ρ-well-
spaced and size-optimal.

Proof. The major difference between our algorithms and
the algorithms of Acar et al. is the order in which the ver-
tices are processed, due to difference in the coloring schemes.
This does not affect the correctness of our algorithms, so the
correctness theorems of Acar et al. [4] continue to apply.

Lemma 5.2. We can color the squares of a given size with

κd
S ∈ O(1) colors in such a way that two squares are not

related if they have the same color.

Proof. Hudson and Türkoğlu prove that once the ver-
tices the nearest neighbors of which are within distance
O(ρr) are ρ-well-spaced the clipped Voronoi cell computa-
tions only read squares s that have side length |s| ∈ Ω(ρr)
and within distance O(ρr) of v [18]. The balanced condition
on the quadtree ensures that these squares have side lengths
of size O(ρr), thus, Θ(ρr). In other words, squares of a cer-
tain size ` can be read by operations at constantly many
different ranks; let the maximum of those be r. Since any
operation at rank r reads squares within a hypercube whose
size (side length) is O(ρr), in every dimension, a constant
number of squares of size ` cover this hypercube. Setting κS

to be this constant completes our proof.

Lemma 5.3. There exists a coloring scheme with `(r) ∈
Ω(ρr) and κO ∈ O(1) such that any two dispatch or fill op-
erations executed at the same time step do not interfere.

Proof. Consider an operation op acting on v at rank r.
Consider another operation op′ acting on a vertex w at
rank r′ that reads a common square. Assuming that the
set of squares op′ reads is S, we would like to show that
there is no vertex v′ 6= v at the same time step as v that
reads a square from S. The arguments used in the proof of

Lemma 5.2 show us |ws| ∈ O(ρr′

) = O(ρr) and |vs| ∈ O(ρr).
Using the triangle inequality, we get |wv| ≤ αρr for some
constant α. Acar et al. proves that the nearest neighbor
distance of v is bounded from below by Ω(ρr) [4], let `(r) be
this bound. To ensure independence, a coloring scheme with
(κO−1)`(r) > 2αρr suffices because any vertex v′ that could
interfere with v has to be within 2αρr distance of v. Since
`(r) ∈ Ω(ρr), there exists a coloring parameter κO ∈ O(1)
that satisfies the above inequality.

Lemma 5.4. The ParallelWS, Insert and Delete func-
tions perform exclusive reads and exclusive writes at every
parallel step.

Proof. The Insert and Delete functions start by mod-
ifying the quadtree. Theorem 3.1 ensures that the quadtree
modifications obey the restrictions of the EREW PRAM
model. These functions then call Propagate. The initial
loop iterates over each quadtree depth ` (or size) and square
color c and marks the readers of the squares (at depth `
and color c) of every processor. Since the square lists Σ	

of each processor are disjoint, Lemma 5.2 ensures that two
squares at the same depth and color are not related, guar-
anteeing exclusive memory accesses. The next loop satisfies
the EREW conditions by disjointness of the squares.

We are left to prove that the main loop performs opera-
tions in an exclusive manner. We show this in two parts:
first we prove that two distinct operations executing at the
same time do not interfere with each other, second that mul-
tiple processors do not try to execute the same operation.
For the first part, we observe that fill, dispatch, and undo op-
erations only read squares visited by its QTClippedVoronoi

call and may only enqueue operations that read a common
square. The definition of operation interference captures
this observation: two independent operations cannot read
or write into the same memory locations. Lemma 5.3 shows
the existence of a coloring scheme that enables us to process
only independent operations at each time step.

The second part is more technical. In order to ensure
that no two distinct processors enqueue the same operation
into their schedule, we check the existence of edges in the
computation graph. Consider an operation op acting on w
at time tw that is already scheduled in Ω⊕. We guarantee
that no other processor schedules the same vertex at the
same time by checking incoming edges onto (w, tw). If one
exists, we do not schedule. For undo operations, we follow a
similar pattern, and do not schedule an operation acting on
w at time tw to be undone until all edges towards (w, tw) are
cleared. Hence, obsolete and fresh operation arrays on all
processors contain at most one copy of any vertex. For the
inconsistent lists we ensure the same property using flags:
the only function that enqueues into inconsistent lists makes
sure that the same vertex is not scheduled into two different
inconsistent lists. These arguments complete our proof.

Lemma 5.5. Given the operation schedule Ω associated
with an input vertex p, each vertex v scheduled in Ω at rank r
satisfies |vp| ∈ O(ρr).

Proof. We prove our claim using induction on the order
our algorithm enqueues vertices into the schedule Ω. For
each rank r, we show that there exists a constant α such that
for every vertex v scheduled at rank r, we have |vp| < αρr.
Initially, a vertex v scheduled in Ω either lies inside a square
in Σ	 or there is an operation acting on it reading a square
from Σ	. Using the Lemmas 3.2 and 3.3 and the fact that
each operation at rank r reads squares within O(ρr) dis-
tance, we prove the base case, that |vp| ∈ O(ρr). For the
inductive step, we assume that any vertex v at rank r′ < r is

within αρr′

distance of p. By the locality of the operations,
we know that any vertex scheduled for a dispatch or a fill op-
eration at rank r is within distance O(ρr) of a vertex in Ω at
an earlier rank r′ < r or at rank r but an earlier color. Since
there is a constant number of colors, any vertex v is within
distance O(ρr) of another vertex w at rank r′ < r; let α′ be
the constant in the asymptotic notation. By inductive hy-

pothesis, we have |wp| < αρr′

. Setting α = ρα′/(ρ−1), and
using the triangle inequality, we prove that |vp| < αρr.

Theorem 5.6. Given a set of k vertices N
∗, Insert and

Delete update the previous input N to N
′ by inserting or

deleting N
∗, and update the previous output to a size-optimal

ρ-well-spaced superset of N
′ in O(k log ∆) work and O(log ∆)

parallel time on an EREW PRAM.

Proof. Theorem 3.1 shows that the quadtree can be
modified in O(log ∆) parallel time using k processors on
an EREW PRAM. Lemma 5.4 shows that the Insert and
Delete algorithms can be implemented on an EREW PRAM
without extra overhead. For the processor associated with
a vertex p ∈ N

∗, Lemma 5.5 shows that any vertex v ∈ Ω at
rank r is of distance O(ρr) away from p. Acar et al. prove a
lower bound on the nearest neighbor distance of a vertex v
at rank r: NNM(v) ∈ Ω(ρr) [4]. Thus, a packing argument
bounds the number of the vertices in Ω at rank r by a con-
stant. Furthermore, Acar et al. prove that each vertex can
be processed in O(1) time. The fact that there are O(log ∆)
ranks proves our claim on parallel runtime. Observing that
there are k processors completes the proof.

6. A PRACTICAL ALGORITHM
The algorithm that we present in Section 4 assumes an ex-

ecution model in which processors execute each instruction
in lockstep; in practice, this requires global synchronization
after every instruction. The algorithm also relies on a large
number of colors to ensure exclusive accesses to memory.
Although we prove (section 5) the existence of a constant
number of colors guaranteeing independence, thus ensuring
a high degree of parallelism, we believe the constants may be
too large for many practical input sizes. It is therefore not
clear if the EREW algorithm can be implemented efficiently
on actual hardware, such as contemporary multi-core com-
puters, on which asymptotic benefits may not be realized.

In this section, we describe some key ingredients of a
practical implementation of our algorithms on contempo-
rary multi-core machines. We identified the modifications
that would be most helpful in attaining such an algorithm by
implementing a sequential version of our EREW algorithm,
profiling it extensively, and developing an implementation

that is tailored not to the asymptotic case, but instead to
commodity multi-core machines, and to real-world datasets
sampled from the literature. Broadly, the modifications con-
sist of a simplification that permits sequentializing much of
the algorithm, elimination of EREW requirements in favor
of judicious use of locks, and establishment of a trade-off
between number of colors and the parallelism, enabling us
to use far fewer colors.
Sequential Operations and Locks. Our EREW algo-
rithm prevents all concurrent reads and writes. On multi-
core machines, concurrent reads cause no problems, although
concurrent writes must be prevented. This can be accom-
plished through the use of locks, especially when data is
accessed by a small number of processors, each of which
holds the lock briefly. Simple experiments with a single-
threaded prototype implementation indicate that upwards of
70% of program runtime is spent performing geometric com-
putations in 2D, and significantly more in 3D. The remain-
ing runtime is split between quadtree construction, opera-
tion queues, the computation graph, and other bookkeeping
tasks. Hence, our primary goal must be to effectively dis-
tribute Dispatch and Fill operations, which perform these
geometric operations, across processors. Unless there are a
very large number of processors, the vital portions of the
minor components of the algorithm may be protected with
locks, or even performed sequentially. The QTInsert and
QTDelete quadtree operations fit into this category, since
although their theoretical cost is asymptotically significant,
it may be, in practical terms, neglected. These operations
may therefore be performed sequentially. The computation
graph is also inexpensive enough to maintain that it may be
protected by a single global lock.

There is little practical benefit to explicitly partitioning
pending operations across processors. Instead, it is simplest
to use a global priority queue for the Dispatch and Fill

operations, protected by a lock. In addition to simplifying
the algorithm, this approach postpones the decision of on
which processor each operation will be scheduled from when
it is created, to when it is performed, potentially resulting
in a better-balanced workload.

The lists of Steiner vertices which are maintained on the
leaves of the quadtree may be accessed concurrently by mul-
tiple Fill operations, and must therefore be protected with
locks. The locality of operations (lemma 5.5) implies that
only “nearby” operations could potentially access the same
list, and therefore that there will be little contention. Our
experiments confirm this intuition.
Coloring Scheme. The EREW algorithm uses colors to
ensure exclusive memory accesses. Since Dispatch opera-
tions write only to the computation graph, which can be
protected with a lock, we can perform all dispatches at each
rank in parallel–no coloring scheme is necessary. In contrast,
since Fill operations insert Steiner vertices, the order in
which they are executed will affect their results, implying
that they cannot be executed entirely in parallel. We there-
fore continue to use a coloring scheme to ensure correctness.

The coloring scheme we propose is a variant of that de-
scribed in section 4. In both schemes, the goal is to iden-
tify independent operations so that they may be executed
in parallel, although the definition of “independent” is sub-
tly different. For the EREW algorithm, we ensure that no
two processes access related quadtree squares. In practice,
the computation graph and the quadtree squares are pro-

tected by locks, so it is sufficient to guarantee that two
Fill operations, executing in parallel, cannot affect each
others’ Steiner vertex choices. Specifically, if there are two
concurrently-executing Fill operations acting on vertices u
and v at rank r, then that acting on u may not insert a
Steiner vertex which would be a β-clipped Voronoi neighbor
of v (and vice-versa). Because any Steiner vertex inserted
by the operation acting on u will be inserted within a radius
of βρr+1, and all β-clipped Voronoi neighbors of v must
be within 2βρr+1, it suffices to ensure that concurrently-
executing Fill operations are more than 3βρr+1 apart.

As in section 4, we partition space into a grid of tiles of
side length `(r). The “color” of each tile will be determined
by taking its coordinates modulo κO, and the “color coordi-
nate” by taking the integer quotients with κO. The “color”
and “color coordinate” of an operation are those of the tile
containing the vertex on which the operation acts. While,
for the EREW algorithm, `(r) was chosen to be small enough
that each tile could contain at most one operation, we will,
for reasons which will be explained shortly, here relax this re-
striction. Instead, if there are multiple operations scheduled
at the same color and color coordinate (i.e. within the same
tile), then they will be executed sequentially by the same
processor. As before, operations of different colors will be
executed sequentially, and operations of the same color but
different color coordinates will be executed in parallel. To
ensure independence, we must choose (κO−1)`(r) > 3βρr+1.

The operation queues are prioritized by (in order), rank,
color and color coordinate. At each rank and color, each
processor locks the queue, and takes possession of the top
operations of the same color coordinate. After releasing the
lock, it then performs these operations sequentially. This
approach comes at a cost, in terms of parallelism: the larger
`(r) is, the more steps must be taken while sequentially ex-
ecuting all of the operations within one tile. Conversely, the
larger κO is, the more colors there will be, and the more se-
quential steps will be performed while iterating over the pos-
sible colors. Experimentally, we have found that the latter
consideration wins out. When finding well-spaced supersets
of 2D and 3D uniformly random datasets of 10000 points,
the parallel depth of the computation increases monotoni-
cally with κO for all κO > 3. For this reason, in our imple-
mentation, we fix κO = 3.

7. EXPERIMENTS
We have implemented two versions of the proposed algo-

rithms (Section 6), one sequential and one parallel, and per-
formed an experimental analysis using both synthetic and
real datasets with parameters ρ =

√
2, and β = 2 in 2D or

β = 2
√

2/
√

3 in 3D. Our experiments confirm our asymp-
totic bounds and give strong evidence that they can be re-
alized efficiently in practice.
The Implementations. The sequential implementation,
while computing the well-spaced superset of the input set,
also calculates the work and depth of the computation. Al-
though experiments with the sequential implementation con-
firm that our asymptotic bounds apply to real-world data,
they give no indication as to what the constant factors may
be. To resolve this, we have completed a multi-threaded im-
plementation1 along the lines of that described in Section 6.

1
http://nagoya.uchicago.edu/~cotter/projects/dynamic_wsp

http://nagoya.uchicago.edu/~cotter/projects/dynamic_wsp

Work

O
p
e
ra

ti
o
n
s

Depth

O
p
e
ra

ti
o
n
s

n

Figure 5: Measured work and depth versus input
size n, for two sets of k changes. The dashed curve
in the depth plot is twice the depth of a from-scratch
run, and is an upper bound on the depth due only
to Dispatch and Fill operations, neglecting undos.

Work and Depth. The work and depth numbers reported
by the sequential implementation are the numbers of opera-
tions executed in total, and along the maximum length path
in the computation. Alternatively, they measure the sin-
gle processor and multiprocessor (on an idealized infinitely-
parallel machine) times, respectively. Figure 5 shows the
work and depth which result from erasing k random vertices
from an existing well-spaced point set of size n, updating
the set of Steiner vertices, then inserting k vertices, and
updating again. We average over 16 runs on each of 16 dif-
ferent size-n input vertex sets (for a total of 256 runs per
plotted point). All vertices have floating-point coordinates,
and are chosen uniformly at random from the unit square,
in two dimensions. The plot on the left shows that the total
work required for these two sets of size-k changes is roughly
proportional to our O(k log ∆) bound (Theorem 5.6). The
right hand plot shows that the depths resulting from these
changes do not appear to meet our expected O (log ∆) up-
per bound–there appears to be a k dependence. The reason
for this is that our upper bound is tight only when opera-
tions are scheduled at all ranks and colors. In practice, the
proportion of ranks and colors which are occupied decreases

as k decreases, resulting in observed depths outperforming
the upper bound by increasing amounts for smaller k. The
relative magnitudes of the work and depth numbers show
that there is significant parallelism in this algorithm even
with the relatively small inputs considered.

Table 1 shows results of computations of well-spaced su-
persets of a number of well-known 2D and 3D datasets, all of
which are significantly larger than the synthetic datasets of
the previous experiments. “Simulated”work and depth num-
bers are calculated as before. On these real-world datasets,
there appears to be significant available parallelism–the min-
imum work-to-depth ratio is 60 (on the Stanford bunny).
Timings and Speedups. Using our parallel implemen-
tation, we have measured the actual run-times for finding
well-spaced supersets of each of these real datasets, which
are also reported in Table 1. Our testing machine has an
Intel Core i5 750 CPU, 8G of memory, and runs Ubuntu
10.04. This is a four-core processor.

In the first set of experiments, we calculated a well-spaced
point set for each dataset, from scratch, for each number
of threads, and averaged the wall-clock times over 10 runs.
Each “Speedups” column reports the ratio of the average
time taken by the t-thread runs to that of the 1-thread runs.

Our second set of experiments were designed to test the
multi-threaded performance of localized dynamic changes.
In these experiments, we first created a well-spaced point set
on all of the points of a dataset except for those within a ran-
dom ball of radius 0.01 in 2D or 0.1 in 3D. The“k”column in
Table 1 contains the number of points in each of these balls.
We then measured the time required to insert the “missing”
points and update the well-spaced point set on each number
of threads, averaged over 10 runs. The reported speedups
are the ratios of these average runtimes to that required to
find a well-spaced point set from scratch on a single thread.
They therefore measure the performance improvement due
both to dynamism and parallelism. The performance im-
provement due only to dynamism is the 1-thread speedup,
while the parallel speedups of the dynamic algorithm may be
recovered by taking the ratios of the k-thread and 1-thread
speedups. The tested changes are fairly large, because our
focus is on the performance impact of parallelism. There
is an appealing synergy between dynamism and parallelism
when viewed from a performance standpoint: dynamic up-
dates are most efficient when the change set is small and
the dataset is two dimensional, whereas parallel speedups
are most pronounced when the change set is large and the
dataset is three dimensional.

8. CONCLUSION
We presented a parallel and dynamic algorithm for well-

spaced point sets, a fundamental problem directly related
to meshing in 2D and 3D. The algorithm combines the best
characteristics of parallel and dynamic algorithms: as a par-
allel algorithm, it delivers fast response on parallel comput-
ers, and as a dynamic algorithm, it does so by performing
minimally necessary work by taking advantage of the simi-
larity between inputs. When the input is modified by k in-
sertions and/or deletions the algorithm performs O(k log ∆)
work and requires O(log ∆) time using k processors on an
EREW PRAM. We also presented an adaptation of the al-
gorithm for modern multi-core systems and experimental
results suggesting that the algorithm can be made practical.

Table 1: Simulated work and depth numbers, and actual speedups observed, on real-world data. The
“Speedups”columns show the parallel speedups observed when calculating well-spaced supersets from scratch.
The “Dynamic Speedups” columns show the speedups observed when performing k localized dynamic inser-
tions relative to the time for calculating a well-spaced superset from scratch using a single thread.

Application Simulated Speedups Dynamic Speedups
Data Set d n Work Depth 2 cores 4 cores k 1 core 2 cores 4 cores
New Zealand 2 18595 194838 1650 1.7× 2.9× 463 49× 74× 98×
Cape Cod 2 20930 170588 1330 1.7× 2.9× 83 144× 188× 200×
Lake Superior 2 33487 318484 1622 1.7× 2.8× 296 102× 150× 189×
SF Bay 2 85910 681506 2000 1.7× 2.7× 322 196× 299× 408×
Stanford Bunny 3 35947 289860 4779 1.9× 3.6× 657 9.3× 16× 26×
Armadillo 3 172974 1214280 7539 1.9× 3.6× 4242 14× 25× 42×

9. REFERENCES
[1] U. A. Acar. Self-Adjusting Computation. PhD thesis,

Department of Computer Science, Carnegie Mellon
University, May 2005.

[2] U. A. Acar, G. E. Blelloch, M. Blume, and
K. Tangwongsan. An experimental analysis of
self-adjusting computation. In Programming Language
Design and Implementation, 2006.

[3] U. A. Acar, G. E. Blelloch, K. Tangwongsan, and
D. Türkoğlu. Robust kinetic convex hulls in 3D. In
European Symposium on Algorithms, September 2008.

[4] U. A. Acar, A. Cotter, B. Hudson, and D. Türkoğlu.
Dynamic well-spaced point sets. In SCG ’10: the 26th
Annual Symposium on Computational Geometry, 2010.

[5] U. A. Acar, B. Hudson, and D. Türkoğlu. Kinetic
mesh refinement in 2d. In SCG ’11: the 27th Annual
Symposium on Computational Geometry, 2011.

[6] M. Bern, D. Eppstein, and J. R. Gilbert. Provably
Good Mesh Generation. J. Computer and System
Sciences, 48(3):384–409, 1994.

[7] M. W. Bern, D. Eppstein, and S.-H. Teng. Parallel
construction of quadtrees and quality triangulations.
International Journal of Computational Geometry and
Applications, 9(6):517–532, 1999.

[8] J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud,
and M. Yvinec. Applications of random sampling to
on-line algorithms in computational geometry.
Discrete Computional Geometry, 8:51–71, 1992.

[9] S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A.
Facello, and S.-H. Teng. Sliver exudation. J. ACM,
47(5):883–904, 2000.

[10] L. P. Chew. Guaranteed-quality triangular meshes.
Technical Report TR-89-983, Department of
Computer Science, Cornell University, 1989.

[11] Y.-J. Chiang and R. Tamassia. Dynamic algorithms in
computational geometry. Proceedings of the IEEE,
80(9):1412–1434, 1992.

[12] K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four
results on randomized incremental constructions.
Computational Geometry Theory and Application,
3:185–212, 1993.

[13] C. Demetrescu, I. Finocchi, and G. Italiano. Handbook
on Data Structures and Applications, chapter 36:
Dynamic Graphs. 2005.

[14] L. Guibas. Modeling motion. In J. Goodman and
J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry, pages 1117–1134. Chapman
and Hall/CRC, 2nd edition, 2004.

[15] M. A. Hammer, U. A. Acar, and Y. Chen. CEAL: A
C-based language for self-adjusting computation. In
Programming Language Design and Implementation,
June 2009.

[16] B. Hudson, G. Miller, and T. Phillips. Sparse voronoi
refinement. In Proceedings of the 2006 International
Meshing Roundtable, 2006.

[17] B. Hudson, G. Miller, and T. Phillips. Sparse Parallel
Delaunay Mesh Refinement. In SPAA, 2007.

[18] B. Hudson and D. Türkoğlu. An efficient query
structure for mesh refinement. In Canadian
Conference on Computational Geometry, 2008.

[19] H. Jung and K. Mehlhorn. Parallel algorithms for
computing maximal independent sets in trees and for
updating minimum spanning trees. Inf. Process. Lett.,
27:227–236, April 1988.

[20] R. Ley-Wild, U. A. Acar, and M. Fluet. A cost
semantics for self-adjusting computation. In Principles
of Programming Languages, 2009.

[21] G. L. Miller, D. Talmor, S.-H. Teng, N. Walkington,
and H. Wang. Control Volume Meshes Using Sphere
Packing: Generation, Refinement and Coarsening. In
Fifth Intl. Meshing Roundtable, pages 47–61, 1996.

[22] D. Moore. The cost of balancing generalized quadtrees.
In SMA ’95: symposium on Solid modeling and app.,
pages 305–312, New York, NY, USA, 1995. ACM.

[23] G. M. Morton. A computer oriented geodetic data
base; and a new technique in file sequencing. Technical
report, IBM, Ottowa, CA, 1966.

[24] K. Mulmuley. Computational Geometry: An
Introduction Through Randomized Algorithms.
Prentice Hall, 1994.

[25] S. Pawagi and O. Kaser. Optimal parallel algorithms
for multiple updates of minimum spanning trees.
Algorithmica, 9:357–381, 1993.

[26] O. Schwarzkopf. Dynamic maintenance of geometric
structures made easy. In 32nd Annual Symposium on
Foundations of Computer Science, pages 197–206,
October 1991.

[27] D. Talmor. Well-Spaced Points for Numerical
Methods. PhD thesis, Carnegie Mellon University,
August 1997. CMU-CS-97-164.

	Introduction
	Preliminaries
	Quadtree
	Parallel Algorithm
	Parallel Work and Depth
	A Practical Algorithm
	Experiments
	Conclusion
	References

