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ABSTRACT
In a well-spaced point set the Voronoi cells all have bounded
aspect ratio, i.e., the distance from the Voronoi site to the
farthest point in the Voronoi cell divided by the distance
to the nearest neighbor in the set is bounded by a small
constant. Well-spaced point sets satisfy some important ge-
ometric properties and yield quality Voronoi or simplicial
meshes that can be important in scientific computations. In
this paper, we consider the dynamic well-spaced point sets
problem, which requires computing the well-spaced superset
of a dynamically changing input set, e.g., as input points
are inserted or deleted. We present a dynamic algorithm
that allows inserting/deleting points into/from the input in
worst-case O(log ∆) time, where ∆ is the geometric spread,
a natural measure that yields an O(log n) bound when input
points are represented by log-size words. We show that the
runtime of the dynamic update algorithm is optimal in the
worst case. Our algorithm generates size-optimal outputs:
the resulting output sets are never more than a constant fac-
tor larger than the minimum size necessary. A preliminary
implementation indicates that the algorithm is indeed fast
in practice. To the best of our knowledge, this is the first
time- and size-optimal dynamic algorithm for well-spaced
point sets.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms, Theory
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1. INTRODUCTION
Given a hypercube B in R

d, we call a set of points M ⊂ B
well-spaced if for each point p ∈ M the ratio of the dis-
tance to the farthest point of B in the Voronoi cell of p
divided by the distance to the nearest neighbor of p in M is
small [Tal97]. Well-spaced point sets are strongly related to
meshing and triangulation for scientific computing, which re-
quire meshes to have certain qualities. In two dimensions, a
well-spaced point set induces a Delaunay triangulation with
no small angles, which is known to be a good mesh for the
finite element method. In higher dimensions, well-spaced
point sets can be post-processed to generate good simplicial
meshes [LT01, CDE+00]. The Voronoi diagram of a well-
spaced point set is also immediately useful for the control
volume method [MTT+96].

Given a d-dimensional hypercube B ⊂ R
d, we define the

well-spaced point set problem as constructing a well-spaced
output M ⊂ B that is a superset of a given set of input
points N ⊂ B. We can construct the output by extending
the input set with so called Steiner points, taking care to
insert as few Steiner points as possible. We call the output
and the algorithm size-optimal if the size of the output, |M|,
is within a constant factor of the size of the smallest possi-
ble well-spaced superset of the input. This problem has been
studied since the late 1980s (e.g., [Che89, BEG94, Rup95]),
with several recent results obtaining fast runtimes [HPÜ05,
HMP06, STÜ07, HT08]. We are interested in the dynamic
version of the problem, which requires maintaining a well-
spaced output (M) while the input (N) changes dynamically
due to insertion and deletion of points. Upon a modification
to the input, the dynamic algorithm should efficiently up-
date the output preserving size-optimality with respect to
the new input. There has been relatively little progress on
solving the dynamic problem. Existing solutions either do
not produce size-optimal outputs (e.g., [NvdS04, CAR+09])
or they are asymptotically no faster than running a static
algorithm from scratch [LTÜ99, MBF04, CGS06].

In this paper, we present a dynamic algorithm for the
well-spaced point set problem. Our algorithm always re-
turns size-optimal outputs and requires worst-case O(log ∆)
time for an input modification (an insertion or a deletion).
Here ∆ is the geometric spread, a common measure, defined
as the ratio of the diameter of the input space to the dis-
tance between the closest pair of points in the input. If
the geometric spread is polynomially bounded in the size of
the input, n, then log ∆ = O(log n) (e.g., when the input is
specified using log n-bit number). Our algorithm consumes



linear space in the size of the output and our update runtime
is optimal in the worst-case.

To solve the dynamic problem, we first present an efficient
algorithm for constructing size-optimal, well-spaced super-
sets (Sections 3, 4, and 5). To enable dynamization, in addi-
tion to the output, the algorithm constructs a computation
graph that represents the operations performed during the
execution and the dependencies between them. A key prop-
erty of this algorithm is that it is stable in the sense that it
produces similar computation graphs and outputs with simi-
lar inputs, e.g., that differ by one point. We make this prop-
erty precise by describing a distance measure between the
computation graphs and bounding this distance by O(log ∆)
when inputs differ by a single point (Lemma 6.5). Taking
advantage of this bound, we design a change-propagation
algorithm that performs dynamic updates in O(log ∆) time
by identifying the operations that are affected by the modi-
fication to the input and deleting/re-executing them as nec-
essary (Section 7). For the lower bound, we show that there
exist inputs and modifications that require Ω(log ∆) Steiner
points to be inserted to the output (Section 8).

The approach of designing a stable algorithm and then
providing a dynamic update algorithm based on change prop-
agation is inspired by recent advances on self-adjusting com-
putation (e.g., [ABBT06, LWAF09]). In self-adjusting com-
putation, programs can respond automatically to modifica-
tions to their data by invoking a change propagation al-
gorithm [Aca05]. The data structures required by change
propagation are constructed automatically. Our computa-
tion graphs are abstract representations of these data struc-
tures. Similarly our dynamic update algorithm is an adap-
tation of the change propagation algorithm for the prob-
lem of well-spaced point sets. Self-adjusting computation is
found to be effective in kinetic motion simulation of three-
dimensional convex hulls [ABTT08]. Although these initial
findings are empiricial, they have motivated the approach
that we present in this paper. Since our approach takes
advantage of the structure of a static algorithm to perform
dynamic updates, it can be viewed as a dynamization tech-
nique, which has been used effectively for a relatively broad
range of algorithms (e.g., [Mul91, Sch91, BDS+92, CMS93]).

The efficiency of our dynamic update algorithm directly
depends on stability. We design a stable algorithm that
maintains several invariants. First, we structure the com-
putation into Θ(log ∆) levels—ranks and colors—such that
the operations in each level depend only on the previous lev-
els [STÜ07]. Second, we pick Steiner points by making local
decisions only, using clipped Voronoi cells [HT08]. These
techniques enable us to process each point only once and
help isolate and limit the effects of a modification. Fur-
thermore, our dynamic update algorithm returns an output
and a computation graph that are isomorphic to those that
would be obtained by executing from scratch the static algo-
rithm with the modified input (Lemma 7.2). Consequently,
the output remains both well-spaced and size-optimal with
respect to the modified input (Theorem 7.3).

To assess the effectiveness of the proposed dynamic algo-
rithm, we present a prototype implementation and report
the results of a preliminary experimental evaluation (Sec-
tion 9). Our experimental results confirm our theoretical
bounds, showing linear speedups over re-computing from
scratch. These results suggest that a well-optimized imple-
mentation can perform very well in practice.

Figure 1: M = {a, b, c, d, v}.
NNM(v) = |va|. Thick solid
and dashed boundaries show
Vorρ

M(v) and Vorβ
M(v), where

ρ = 2 and β = 4. The
ρ-clipped Voronoi neighbors
of v are a and b. Shaded re-
gion is the (ρ, β) picking re-
gion of v.
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2. PRELIMINARIES
Given a set of points N, we define the geometric spread

(∆) to be the ratio of the diameter of N to the distance
between the closest pair in N. We say that a d-dimensional
hypercube B is a bounding box if N ⊂ B and each edge of
B has length within a constant factor of the diameter of N.
Without loss of generality, we scale and shift the point set
N such that B = [0, 1]d becomes a bounding box.

Given N as input, our algorithm constructs a well-spaced
output M ⊂ B that is a superset of N. We use the term
point to refer to any point in B and the term vertex to re-
fer to the input and output points. Consider a vertex set
M ⊂ B. The nearest-neighbor distance of v in M, written
NNM(v), is the distance from v to the nearest other vertex
in M. The Voronoi cell of v in M, written VorM(v), con-
sists of points x ∈ B such that for all u ∈ M, |vx| ≤ |ux|.
Following Talmor [Tal97], a vertex is ρ-well-spaced if the
intersection of its Voronoi cell with B is contained in the
ball of radius ρNNM(v) centered at v; M is ρ-well-spaced if
every vertex in M is ρ-well-spaced. The β-clipped Voronoi
cell of v, written Vorβ

M(v), is the intersection of VorM(v)
with the ball of radius β NNM(v) centered at v [HT08]. For
any β > ρ, we define the (ρ, β) picking region of v, written

Vor
(ρ,β)
M (v), as Vorβ

M(v)\Vorρ
M(v), the region of the Voronoi

cell bounded by concentric balls of radius ρNNM(v) and
β NNM(v). A vertex u is a (β-clipped) Voronoi neighbor of
v if the (β-clipped) Voronoi cell of v contains a point equidis-
tant from v and u. Note that v is ρ-well-spaced if and only
if Vorρ

M(v) = VorM(v). Figure 1 illustrates some of these
definitions.

Given an input set N, the local feature size of a point
x ∈ B, written lfs(x), is the distance from x to the second-
nearest vertex in N. The output M is size-conforming if there
exists a constant c independent of N such that for all v ∈ M,
NNM(v) < c · lfs(v). Our algorithm guarantees that the out-
put is size-conforming; this implies size-optimality [Rup95].

Our algorithm uses a point location structure based on the
balanced quadtree of Bern, Eppstein, and Gilbert [BEG94].
It is relatively easy to dynamize the balanced quadtree and
to extend it to d dimensions. We explain the details of this
structure in a technical report [ACHT10]. We use“quadtree”
to mean 2d-tree and “quadtree node” to mean d-hypercube.
We treat the quadtree almost as a black box; we only use
the leaves of the quadtree, which we refer to as squares.
The quadtree squares store neighbor pointers and a list of
the vertices they contain to support fast searches. Ver-
tices store the square that contains them, avoiding the need
to search through the tree structure. The quadtree sup-
ports the functions QTBuild, QTAdd, QTRemove, QTApxNN, and
QTClippedVoronoi. The function QTBuild(N) constructs a
quadtree for a set of n vertices N in O(n log ∆) time. The
functions QTAdd(Π, v) and QTRemove(Π, v) respectively add
or remove an input vertex v into or from N and update



the quadtree Π to match the new input in O(log ∆) time.
They return the updated quadtree and the set of squares
that are deleted or that become internal quadtree nodes.
For any square s ∈ Π that is returned by QTAdd(Π, v) or
QTRemove(Π, v) we have |vs| ∈ O(|s|), where |s| is the size
(length of an edge) of s [ACHT10]. The function QTApxNN(v)
returns the size of the quadtree square that contains v. The
quadtree guarantees that this value is in Ω(NNN(v)) and less
than NNN(v). The function QTClippedVoronoi(v, β) returns
the β-clipped Voronoi cell of v in O(1) time under certain as-
sumptions that our algorithm meets [HT08]. It also returns
the nearest neighbor distance of v.

3. A STABLE ALGORITHM
We can construct a well-spaced superset of an input set by

repeatedly “filling” each vertex of the superset by applying a
fill operation to it. When applied to some vertex v, which we
say that it acts on, a fill operation makes the vertex ρ-well-
spaced by inserting Steiner vertices into its Voronoi cell. Al-
though correct, this basic algorithm is not efficient because
the Voronoi cells can be arbitrarily complex (thus requir-
ing super-constant time to compute), and because filling a
vertex may adversely affect the well-spacedness of already
processed vertices requiring them to be filled multiple times.
This algorithm is also unstable, because inserting/deleting a
single vertex into/from the input can result in very different
outputs because the presence/absence of a vertex can affect
the choice of many subsequent Steiner vertices.

To address these problems, we refine the basic algorithm
to schedule carefully the fill operations such that 1) each
fill operation requires constant time, 2) each vertex is filled
at most once, 3) the algorithm is stable. To achieve these
three properties, which we make precise and prove in the
rest of the paper, we start by refining the fill operation so
that instead of inserting points inside the Voronoi cell, it
inserts points within the (ρ, β) picking region of the vertex
that it acts on (Figure 1). We then carefully order the fill
operations so that no vertex is filled more than once and fill
operations can be performed in constant time. These refine-
ments yield an efficient algorithm. To ensure stability, we
further refine the algorithm to identify certain fill operations
as independent, which makes it possible to re-execute one
operation without affecting another independent operation.
In the rest of this section, we briefly describe these refine-
ments and present the pseudo-code for the algorithm, which
is sufficiently precise for an implementation (Figure 3).

Given a vertex set M, consider applying a fill operation
to a vertex v ∈ M that is not ρ-well-spaced. Let w be a
Steiner vertex this operation inserts.

Fact 1. The Steiner vertex w is in Vor
(ρ,β)
M (v). That is,

∀u ∈ M, |wv| ≤ |wu| and ρ NNM(v) ≤ |wv| < β NNM(v).

Since v is the nearest neighbor of w, this fact implies that
NNM(w) ≥ ρ NNM(v). Generalizing this simple observa-
tion, we infer the following.

Fact 2. For any given α > 0 if every vertex u ∈ M with
NNM(u) < α is ρ-well-spaced then NNM(w) ≥ ρα.

Suppose that vertices whose nearest neighbors are at dis-
tance less than α are all ρ-well-spaced. The second fact
implies that inserting a Steiner vertex does not change the
nearest neighbors and hence the well-spacedness of the ver-
tices whose nearest neighbors are at distance less than ρα.

Taking advantage of this property, we partially order the
vertices by assigning ranks to them. More precisely, we de-
fine the rank of a vertex v in a vertex set M as the the
logarithm in base ρ of its nearest neighbor distance, i.e.,¨
logρ NNM(v)

˝
. We then fill the vertices in the order of

their ranks. With this partial ordering, for example, the fill
operations acting on vertices with nearest neighbor distances
in [ρr, ρr+1) would be at rank r. Note that for any ρ > 1,
this partial order has only a logarithmic number of levels,
O(log ∆) in particular. As we prove in Lemma 5.3, this
ordering ensures that fill operations run in O(1) time.

}

}
ℓ(r)

κℓ(r)

Figure 2: Illustration of a
coloring scheme (κ = 2).

We ensure stability by
identifying independent fill
operations. We say that
two fill operations at rank
r are independent if, when
executed (in either or-
der), no operation inserts
a Steiner vertex that be-
comes a β-clipped Voronoi
neighbor of the vertex
acted on by the other. We
identify independent fill operations by using a coloring
scheme that partitions the space based on a coloring pa-
rameter κ, and a real valued function ℓ(r) defined on ranks.
At each rank r, we partition the space into d-dimensional
hypercubes or r-tiles with side length ℓ(r). We color r-tiles
such that they are colored periodically in each dimension
with period κ, using κd colors in total. A fill operation at
rank r that acts on a vertex v has color c ∈ {1, 2, . . . , κd}
if v lies in a c colored r-tile. Figure 2 illustrates a coloring
scheme in 2D. By choosing ℓ(r) small enough and κ large
enough, we prove that two fill operations at the same rank
are independent if they have the same color (Lemma 6.1).

Figure 3 shows the pseudo-code of the algorithm. The
pseudo-code follows the description quite closely except for
the computation of ranks. Our algorithm critically relies on
ordering the computation by assigning ranks to vertices and
filling them in that order. Since the rank of a vertex depends
on its nearest neighbor and since that can change as Steiner
vertices are inserted, we need to update ranks dynamically.
To achieve this, we assign ranks to fill operations and use
another type of operation, called dispatch, to compute and
update ranks. The unique dispatch operation acting on a
vertex v also has a rank and runs before the fill operations
acting on v. The rank of a dispatch operation acting on
an input vertex v is an O(1)-approximation (from below)
of the rank of v, and those that act on Steiner vertices are
assigned exact ranks. When executed, a dispatch operation
computes the rank of v, creates a fill operation for v at that
rank, and creates fill operations for its β-clipped Voronoi
neighbors in order to update their ranks. This approach
guarantees that after the execution of the dispatch opera-
tions at rank r, every vertex either has a fill operation at
its up-to-date rank, or a dispatch operation at rank greater
than r. When executed, a fill operation makes well-spaced
the vertex it acts on, subsequent fill operations terminate
immediately without inserting Steiner vertices. We prefer
this approach because it simplifies the analysis by making
explicit the dependencies between operations.1 As we prove

1In an implementation we would create one fill operation
for each vertex and update its rank. In fact this is how our
implementation (Section 9) operates.



Dimension: d, Parameters: ρ, β, κ, ℓ(r)

StableWS (N) =

Ω← ∅ ; Π← QTBuild(N)

for each v ∈ N do

Ω← Ω ∪ {NewOp(v,
¨
logρ QTApxNN(v)

˝
, 0, nil)}

for r = min rank in Ω to
j
logρ

√
d

k
do

for each op ∈ Ω|r,0 do Dispatch (op, Ω)

for c = 1 to κd do

for each op ∈ Ω|r,c do Fill (op, Ω)

return (N,Π)

Dispatch (op,Ω) =

(v, nnv, CV )← QTClippedVoronoi(op, β)

r ←
¨
logρ nnv

˝

if r ≥ op.rank then Ω← Ω ∪ {NewOp(v, r, Color(v, r), op)}
for each β-clipped Voronoi neighbor w of v (via CV ) do

r ←
¨
logρ |wv|

˝

if r ≥ op.rank then Ω← Ω ∪ {NewOp(w, r, Color(w, r), op)}

Fill (op,Ω) =

(v, nnv, CV )← QTClippedVoronoi(op, β)

while v is not ρ-well-spaced (via CV ) do

choose w ∈ CV such that |vw| ≥ ρ · nnv

op.steiners ← op.steiners ∪ {w}
Ω← Ω ∪ {NewOp(w,

¨
logρ |wv|

˝
, 0, op)}

update CV with w

Color (v, r) =

for i = 1 to d do ci ← ⌊vi/ℓ(r)⌋ mod κ

return (c1, c2, . . . , cd) as a d digit number

NewOp (v, r, c, parent) =

op← CreateOp(v) ; op.rank← r ; op.color← c

parent.children ← parent.children ∪ {op}
op.children, op.steiners ← ∅ ; return op

Figure 3: Pseudo-code for our stable algorithm.

in Theorem 4.4 this algorithm computes correctly and effi-
ciently a ρ-well-spaced superset of its input.

The algorithm StableWS starts by constructing a quadtree
Π and stores it for use in dynamic updates. It then com-
putes the output M by creating (via NewOp) and performing
dispatch and fill operations which it stores in Ω. The algo-
rithm assigns a rank and a color, the pair of which we refer
to as time, to each operation and executes them in time or-
der. The dispatch operations are assigned the color zero. In
the pseudo-code, we use Ω|r,c to refer to the operations with

time (r, c). In the analysis, we refer to time as a single entity
rather than its components (rank and color). For brevity,
we define time t = 0 to be the beginning of time, when the
dispatch operations for the input are created but before any
operations are performed, and define time t = ∞ to be the
end of the algorithm. We write Mt to refer to the output at
time t, e.g., M0 is the input, N, and M∞ is the output, M.
For readability, we use t instead of Mt in the subscript, e.g.,
NNt instead of NNMt

.
To support efficient dynamic updates, while executing, the

algorithm constructs a computation graph of all executed
operations and dependencies between them. The computa-
tion graph G = (V, E) consists of nodes, V = Σ ∪ Ω, com-
prised of the set of squares (Σ) and the set of all operations
(Ω), and directed edges representing various dependencies

between operations and squares. Consider executing an op-
eration op. If op creates an operation op′ then (op, op′) ∈ E
becomes an edge (recorded by storing op′ in the children

field of op). If op reads a square s via QTClippedVoronoi

then (s, op) becomes an edge (recorded in the square s). Fi-
nally, if op writes into a square s by inserting a Steiner vertex
w into it then (op, s) becomes an edge (recorded by storing
w in the steiners field of op).

4. OUTPUT QUALITY AND SIZE
We prove that the output of our algorithm, M, is ρ-well-

spaced and size-optimal. We prove size-optimality by show-
ing that M is size-conforming. The first two lemmas prove
that our algorithm incrementally progresses towards a ρ-
well-spaced output. In these two lemmas, let M be the set
of vertices in the output at the beginning of rank r.

Lemma 4.1. At the beginning of rank r, assume that ev-
ery vertex u ∈ M with NNM(u) < ρr is ρ-well-spaced.
Then, for every vertex w ∈ M with NNM(w) ∈ [ρr, ρr+1),
there exists a fill operation that acts on w at rank r.

Proof. Pick a vertex w ∈ M, let u be its nearest neigh-
bor in M, and assume that ρr ≤ |wu| < ρr+1. Let opw and
opu be the dispatch operations that act on w and u respec-
tively. If opw runs at rank ≤ r and u is in the output when
opw is executed then opw schedules a fill operation that acts
on w at rank r. Alternatively, opu schedules such a fill op-
eration if opu runs at rank ≤ r and w is a β-clipped Voronoi
neighbor of u when opu is executed.

Analyzing the vertices w and u, in two cases, we prove
that the first condition holds. If both w and u are input
vertices then opw runs at rank ≤ r. In the case that w is a
Steiner vertex consider the vertex v that creates w. If u is
in the output when w is being created, by Fact 1 we know
that |wv| ≤ |wu|, which implies that opw runs at rank ≤ r.

We prove that the second condition holds in the remaining
case, that u is a Steiner vertex and that w is already in the
output when u is being created. Similar to the previous case,
we deduct that opu runs at rank ≤ r. Since u is the nearest
neighbor of w in M, w is a Voronoi neighbor of u in M′,
where M′ ⊂ M is the set of vertices in the output when
opu is executed. If u is ρ-well-spaced in M then |wu| ≤
2ρ NNM(u) < 2β NNM′(u). Otherwise, the assumption of
the lemma implies ρr ≤ NNM(u). Since |wu| < ρr+1, we
get |wu| < ρNNM(u) < 2β NNM′(u). Either way, w is a
β-clipped Voronoi neighbor of u in M′.

Lemma 4.2 (Progress). At the beginning of rank r,
every vertex u ∈ M with NNM(u) < ρr is ρ-well-spaced.

Proof. We use induction. At the minimum rank, there
are no vertices with smaller nearest neighbor distance, so
the claim is trivially true. Assume that the lemma holds up
to rank r, that is, every vertex u ∈ M with NNM(u) < ρr is
ρ-well-spaced. For rank r+1, let M′ ⊃ M be the set of ver-
tices in the output at the beginning of rank r+1 and consider
a vertex w ∈ M′ with NNM′(w) < ρr+1. If w ∈ M′ \ M
then w is a Steiner vertex inserted at rank r. Repeatedly
applying Fact 2 for each (Steiner) vertex in M′ \M, we see
that the nearest neighbors of these Steiner vertices are at
distance ≥ ρr+1; in particular, NNM′(w) ≥ ρr+1. This is a
contradiction, thus, w ∈ M. Furthermore, NNM(w) < ρr+1

for similar reasons. If NNM(w) < ρr then by our induction



hypothesis w is ρ-well-spaced. Otherwise, by Lemma 4.1,
there exists a fill operation that acts on w at rank r. After
executing that operation, w becomes ρ-well-spaced. Finally,
once again, Fact 2 implies that w remains ρ-well-spaced.
Therefore, our claim holds.

Lemma 4.3. The output M is size-conforming and size-
optimal with respect to N.

Proof. We use induction over the order in which the al-
gorithm inserts Steiner vertices and show that there exists
a constant c such that for every v ∈ M, we have c NNM(v) ≥
lfs(v), thereby proving that M is size-conforming. In the
base case, every vertex is an input vertex and the nearest
neighbor of an input vertex is exactly the local feature size.
For the inductive case, assume that there exists a constant
c such that, for every v ∈ M, we have c NNM(v) ≥ lfs(v).
Furthermore, assume that v inserts a Steiner vertex w and
the new output is M′ = M ∪ {w}. We analyze the in-
ductive claim for w and for any vertex u ∈ M separately.
For w, Fact 1 states that |wv| ≥ ρNNM(v) and implies that
NNM′(w) = |wv|. By the triangle inequality, lfs satisfies
the Lipschitz condition: lfs(v) + |wv| ≥ lfs(w). By the in-
ductive hypothesis, c NNM(v) ≥ lfs(v). Therefore, we have
( c

ρ
+ 1)|wv| = ( c

ρ
+ 1) NNM′(w) ≥ lfs(w). For any vertex

u ∈ M, if NNM(u) = NNM′(u) then the claim holds triv-
ially. Otherwise, assume NNM(u) > NNM′(u) = |wu|. By
the Lipschitz condition, |wu| + lfs(w) ≥ lfs(u). Fact 1 im-
plies |wu| ≥ |wv|. Combining these facts by the bound we
obtained for lfs(w), we get ( c

ρ
+2)|wu| = ( c

ρ
+2) NNM′(u) ≥

lfs(u). Solving for c ≥ c
ρ

+ 2, we conclude that any c ≥ 2ρ
ρ−1

suffices to prove the inductive step. Therefore, M is size-
conforming and hence size-optimal [Rup95].

Theorem 4.4. StableWS constructs a size-optimal ρ-well-
spaced superset M of its input N.

Proof. The quality property that M is ρ-well-spaced fol-
lows from the Progress Lemma and the fact that StableWS

iterates over all ranks. Lemma 4.3 proves the size bound.

5. RUNTIME
We analyze the running time of our static algorithm and

emphasize two lemmas that are useful in the analysis of our
dynamic algorithm. The first lemma (Lemma 5.1) proves
that throughout the algorithm, the nearest neighbor dis-
tance of a vertex v changes only by a constant factor. The
second (Lemma 5.2) proves that all operations acting on v
have rank ⌊logρ NN∞(v)⌋ ± O(1); none are scheduled too
early or too late.

Lemma 5.1. Let t be the time at which v is created (t = 0
for input vertices). Then, NNt(v) ∈ Θ(NN∞(v)).

Proof. As time progresses, more vertices are added, so
the nearest neighbor distance can only shrink: NNt(v) ≥
NN∞(v). For the upper bound, we analyze input vertices
and Steiner vertices separately. By definition, an input ver-
tex v has lfs(v) = NN0(v). The algorithm is size-conforming
(Lemma 4.3), so NN0(v) = lfs(v) ∈ O(NN∞(v)). For a
Steiner vertex w that is created at time t = (r, c), Fact 1
implies that ρr+1 ≤ NNt(w) ≤ βρr+1. For any other Steiner
vertex u that is created later, the same fact implies that
ρr+1 ≤ |uw| which means ρr+1 ≤ NN∞(w). Therefore,
NNt(w) ≤ βρr+1 ≤ β NN∞(w).

Lemma 5.2. If an operation at rank r acts on v then
NN∞(v) ∈ Θ(ρr).

Proof. Consider an operation op that acts on a vertex v
at time t = (r, c). If op is a dispatch operation and v is
an input vertex then the call QTApxNN(v) returns a value in
Θ(NN0(v)) which implies NN0(v) ∈ Θ(ρr). By Lemma 5.1,
we know that NN0(v) ∈ Θ(NN∞(v)); the result follows.

Otherwise, let op′ be the operation that creates op, and
assume that op′ acts on u at time t′ = (r′, c′); hence, r =¨
logρ |uv|

˝
. Since NNt(v) ≤ |uv|, we get NNt(v) < ρr+1.

Thus, the upper bound holds: NN∞(v) ≤ NNt(v) ∈ O(ρr).
For the lower bound, from Lemma 4.3, we have NN∞(v) ∈
Ω(lfs(v)). By definition, lfs(v) ≥ NNt′(v), and since r =¨
logρ |uv|

˝
, we have |uv| ≥ ρr. Thus, it suffices to show that

NNt′(v) ∈ Ω(|uv|). Since op′ creates op, we know that v is a
β-clipped Voronoi neighbor of u at time t′, which means that

u is a Voronoi neighbor of v at time t′. If NNt′(v) < ρr′

then
by Progress Lemma, v is ρ-well-spaced at time t′. Therefore,

2ρ NNt′(v) ≥ |uv| and we are done. If NNt′(v) ≥ ρr′

, since v
is a β-clipped Voronoi neighbor of u, i.e., |uv| ≤ 2β NNt′(u).
Applying the upper bound result from above for op′, we get

NNt′(u) ∈ O(ρr′

), thus, |uv| ∈ O(ρr′

). Since NNt′(v) ≥ ρr′

,
this implies NNt′(v) ∈ Ω(|uv|).

Lemma 5.3. Every operation runs in O(1) time.

Proof. Pick an operation acting on v at time t = (r, c).
The main costs are the QTClippedVoronoi calls and the
loops. The Progress Lemma shows that every vertex u ∈ Mt

with NNt(u) < ρr is ρ-well-spaced and Lemmas 5.2 and 5.1
together show that NNt(v) ∈ Θ(ρr). Hudson and Türkoğlu
show that these are sufficient conditions to guarantee that
QTClippedVoronoi runs in constant time [HT08].

The dispatch operation loops as many times as there are
β-clipped Voronoi neighbors. Since QTClippedVoronoi runs
in constant time, there is only O(1) neighbors. The fill op-
eration has a loop that inserts Steiner vertices until v is
ρ-well-spaced. For each inserted Steiner vertex w, Fact 1
implies NNt(w) ≥ ρ NNt(v). Thus, we can associate non-
overlapping empty balls of radius ρNNt(v)/2 around every
Steiner vertex. Since the Steiner vertices are in a ball of
radius β NNt(v) around v, a packing argument shows that
each fill operation inserts O(1) Steiner vertices.

Lemma 5.4. For every vertex v ∈ M, there are O(1) op-
erations that act on v.

Proof. By Lemma 5.2, we know that any operation that
acts on v has rank

¨
logρ NN∞(v)

˝
± O(1). Therefore, if we

can show that the number of the operations that acts on v
at each rank is constant, our claim will hold. There is only
one dispatch operation for each vertex, so we only need to
count fill operations scheduled by other dispatch operations.
Fix r and consider a dispatch operation at time t′ = (r′, 0)
that acts on u and schedules a fill operation that acts on v
at rank r. Then, v is β-clipped Voronoi neighbor of u, in
other words, |uv| ≤ 2β NNt′(u). The fact that the fill op-
eration is scheduled for rank r implies ρr ≤ |uv| < ρr+1.
Considering the dispatch operation, Lemmas 5.1 and 5.2

show that NNt′(u) = O(ρr′

). These facts altogether imply

ρr = O(ρr′

). Again by Lemma 5.2, we know that there exists

an empty ball around u with radius Ω(ρr′

) which is Ω(ρr) by
the previous assertion. We already know that |uv| < ρr+1,
therefore, a packing argument proves our claim.



Theorem 5.5. StableWS runs in O(n log ∆) time.

Proof. Building the quadtree takes O(n log ∆) time. By
Lemmas 5.3 and 5.4, the rest of the algorithm takes O(m)
time, where m = |M|. The total runtime is O(n log ∆ + m).
That m ∈ O(n log ∆) follows from our dynamic bounds.

6. DYNAMIC STABILITY
We call two inputs N and N′ related if they differ by

one vertex, i.e., N′ can be obtained from N by inserting or
deleting a vertex. To analyze the stability of the algorithm
StableWS, we define a notion of distance between two exe-
cutions with related inputs. We prove that this distance is
bounded by O(log ∆) in the worst-case, where ∆ is the larger
geometric spread of the inputs N and N′ (Lemma 6.5).

As described in Section 3, StableWS(N) creates a compu-
tation graph G = (V, E) by building quadtree squares Σ
and a set of operations Ω. The set of nodes V is Σ ∪ Ω;
the edges E represent the dependencies in the computation.
For another input set N′ which is related to N, consider run-
ning StableWS(N′) and creating G′ = (V ′, E′), Σ′, and Ω′

similarly. We define two squares s ∈ Σ and s′ ∈ Σ′ to be
identical, written s ≡ s′, if s and s′ have the same corner
points. Also, two operations op ∈ Ω and op′ ∈ Ω′ are iden-
tical, written op ≡ op′, if op and op′ have the same time
and act on the same vertex. There exists a unique func-
tion µ : V ′ → V , µ = µo ∪ µs, where µo is the largest
set satisfying µo = {(op′, op) | op′ ∈ Ω′ ∧ op ∈ Ω ∧
(op′ ≡ op) ∧ (parent(op′), parent(op)) ∈ µo} and µs =
{(s′, s) | s′ ∈ Σ′ ∧ s ∈ Σ ∧ s′ ≡ s}. We call µ the matching
between G′ and G. Informally, µ pairs squares of G′ with
identical squares of G and pairs operations of G′ with iden-
tical operations of G as long as their parents (the operations
that create them, if any) are also paired. We say that nodes
u′ ∈ V ′ and u ∈ V match if µ(u′) = u. We denote the
domain and the range of µ by dom(µ) and range(µ).

Given G = (V, E) and G′ = (V ′, E′) and their matching µ,
let µ′ = µ ∪ {(u, u) | u ∈ V ′ \ dom(µ)} be a total function
defined on the nodes V ′ of G′. We combine the computation
graphs in a union graph G∪ = (V ∪ µ′(V ′), E ∪ µ′(E′)),
where µ′(E′) = {(µ′(u), µ′(v)) | (u, v) ∈ E′}. The union
graph injects G′ into G under the guidance of µ by extending
G with the unmatched nodes of G′, unifying the matched
nodes, and adding the edges of G′ while redirecting them to
the matched nodes appropriately. In order to capture the
dependencies between two operations, we define a path in
the union graph to be a dependency path if the times of the
edges on the path do not decrease. Lemma 6.1 allows us to
refine this definition: a path (u0, u1, . . . , uh) is a dependency
path if the times of the edges (u0, u1), (u1, u2), . . . , (uh−1, uh)
increase monotonically.

Lemma 6.1. Set coloring parameters ℓ(r) and κ such that

ℓ(r) < ρr/
√

d and κ > 1 + 3βρr+1/ℓ(r). Then, any two fill
operations at the same rank are independent if they have the
same color.

Proof. Consider two fill operations, opv and opu, at the
same rank and color acting on vertices v and u respectively.
Let r be the rank of these operations and M be the set of
vertices in the output at the beginning of rank r. If both v
and u are ρ-well-spaced in M then opv and opu do not insert
any Steiner vertices. Thus, opv and opu are independent.
Otherwise, if v is not ρ-well-spaced the Progress Lemma im-
plies that NNM(v) ≥ ρr. Since ℓ(r) < ρr/

√
d, the diameter

of an r-tile is less than ρr, and thus v and u cannot be in the
same r-tile. Since opv and opu have the same color, v and u
are far apart, more precisely, |vu| ≥ (κ − 1)ℓ(r) > 3βρr+1.
By Fact 1, we know that any Steiner vertex w that opv in-
serts satisfies |vw| ≤ β NNM(v). By the existence of opv and
opu, we already know NNM(v),NNM(u) < ρr+1. Using the
triangle inequality, we get |uw| ≥ |vu| − |vw| > 2βρr+1 >
2β NNM(u). The last inequality asserts that w cannot be
a β-clipped Voronoi neighbor of u. Similar arguments can
be made for u as well; therefore, the operations opv and opu

are independent.

We partition the nodes of the union graph G∪ = (V ∪, E∪)
into several categories. The nodes V − = V \ range(µ) are
called obsolete (squares Σ−, operations Ω−); these are the
nodes of G that have no matching pairs in G′. The nodes
V + = V ′ \ dom(µ) are called fresh (squares Σ+, opera-
tions Ω+); these are the nodes of G′ that have no matching
pairs in G. Furthermore, we call a square s ∈ V ∪ inconsis-
tent if it is fresh or obsolete, or if it contains the vertex v∗

of the symmetric difference of N and N′. We define an oper-
ation op ∈ range(µ) to be inconsistent if it is reachable from
an inconsistent square via a dependency path. We represent
inconsistent nodes with V × (squares Σ×, operations Ω×).
We define the distance between the executions with related
inputs N and N′ to be the number of obsolete, fresh, or in-
consistent operations of the union graph, i.e., |Ω−∪Ω+∪Ω×|.

Lemma 6.2. For every operation in Ω− ∪Ω+ ∪Ω×, there
exists a dependency path from a square in Σ×.

Proof. By definition of inconsistent operations, an op-
eration op ∈ Ω× can be reachable via a dependency path
from Σ×. For unmatched operations, assume towards a con-
tradiction that there exist an operation in Ω− ∪ Ω+ that is
not reachable from Σ×. Let op be the earliest of such oper-
ations. Let us assume that op is a dispatch operation acting
on an input vertex v. Since op does not depend on an in-
consistent square, it does not read an inconsistent square.
Therefore, v is in N ∩ N′ and lies in identical squares in
both executions, which implies that QTApxNN(v) returns the
same value for v in both executions and that their ranks are
the same. Then, the definition of µo matches op with op′

because op and op′ are identical. Therefore, op is not a dis-
patch operation acting on an input vertex. Then, consider
the operation op′′ that creates op. By minimality of op, op′′

can be reached via a dependency path from a square in Σ×.
Extending that path to op proves the contradiction.

As proven by Hudson and Türkoğlu [HT08], the function
QTClippedVoronoi satisfies the following locality property:
for a given input N, a size-conforming set of vertices M ⊃ N,
and a square s read by QTClippedVoronoi, for all x ∈ s,
|vx| ∈ O(NNM(v)). This property allows us to relate the
operations on a dependency path geometrically.

Lemma 6.3. Consider two operations op and op′ in G∪

acting on vertices v and w. If there exists a dependency
path from op′ to op and op is at rank r, then |vw| ∈ O(ρr).

Proof. First, we show that for any edge in G∪, the dis-
tance between its nodes is short. We define the distance be-
tween a square and an operation to be the distance from the
vertex of the operation to the farthest point in the square,
and the distance between two operations to be the distance



between the vertices on which they act. Consider an edge
e ∈ E with time te = (re, ce). The edge e consists of an
operation op1 ∈ Ω acting on v at time te and either a square
s that it accesses (reads/writes) or another operation op2

that it schedules. Using the locality result stated above, we
bound the distance between op1 and s by O(NNte

(v)). Also,
op2 is within the same distance. Lemmas 5.1 and 5.2 bound
NNte

(v) by O(ρre); thus, the distance between the nodes of
e is at most αρre , where α is a constant. The same analysis
applies for any edge e′ ∈ E∪.

By definition of dependency paths, the times of the edges
on a dependency path from op′ to op monotonically increase.
Assuming that the rank of op′ is r′, there can be at most
κd edges for each rank between r′ and r. Therefore, in
the worst case, the distance between v and w is bounded

by
Pr

i=r′ κdαρi = ακd ρr+1−ρr
′

ρ−1
< ακd ρr+1

ρ−1
. Consequently,

|vw| ∈ O(ρr).

In order to bound the distance between the executions
with inputs N and N′ which generate outputs M and M′, we
focus on the vertices rather than the operations. We define
a vertex to be affected if there exists an obsolete, a fresh,
or an inconsistent operation that acts on it. Since there is
a constant number of operations acting on a given vertex
(Lemma 5.4), the number of affected vertices measures the
distance asymptotically. We define the sets of affected ver-

tices in both executions: bM = {v | op ∈ Ω− ∪Ω× acts on v}
and bM′ = {v | op ∈ Ω+ ∪ Ω× acts on v}. The next two
lemmas bound the number of affected vertices.

Lemma 6.4. For any vertex v ∈ bM, |vv∗| ∈ O(NNM(v))

and for any v ∈ bM′, |vv∗| ∈ O(NNM′(v)).

Proof. We prove the lemma for v ∈ bM; symmetric ar-

guments apply for bM′. By definition of bM, there exists an
operation opv ∈ Ω− ∪Ω× acting on v at rank r. Lemma 6.2
suggests that there exists a dependency path from a square
s ∈ Σ× to opv. Let opu be the operation on this path that
reads s; opu acts on a vertex u at rank ru. By Lemma 6.3, we
know that |vu| ∈ O(ρr). By that fact that opu reads s, we
know |us| is in O(ρru) and the quadtree functions QTAdd and
QTRemove guarantee that |sv∗| ∈ O(|s|) which is in O(ρru) as
well. Using the triangle inequality and the fact that ru ≤ r,
we bound |vv∗| by O(ρr). It only remains to prove that
there is a ball around v of radius Ω(ρr) empty of vertices of
M. Lemma 5.2 proves precisely this.

Lemma 6.5 (Distance). The distance between two ex-
ecutions with related inputs is bounded by O(log ∆).

Proof. The distance is asymptotically bounded by |bM|+
|bM′|. Consider the vertices v ∈ bM with |vv∗| ∈ [2i, 2i+1). By
Lemma 6.4, we can assign non-overlapping empty balls of
radius Ω(2i) to them. Therefore, there is a constant number
of such vertices for any i. At most O(log ∆) values of i cover
bM, so |bM| ∈ O(log ∆). Similar arguments apply to bM′.

7. DYNAMIC UPDATE ALGORITHM
We describe an algorithm for dynamically updating the

output of StableWS when the input is modified by inser-
tion/deletion of a vertex, prove it correct (Lemma 7.2) and
efficient (Theorem 7.3).

Global queues: Ω⊖, Ω⊕,Ω⊗

Add (N, Π, v∗) =

(Π′, Σ−)← QTAdd(Π, v∗)

Ω⊕ ← {NewOp(v∗,
¨
logρ QTApxNN(v

∗)
˝

, 0, nil)}; Ω⊖,Ω⊗ ← ∅
PropagateWS(N,Σ− ∪ {square of v∗}) ; return (N ∪ {v∗}, Π′)

Remove (N, Π, v∗) =

(Π′, Σ−)← QTRemove(Π, v∗)

Ω⊖ ← {Dispatch of v∗}; Ω⊕, Ω⊗ ← ∅
PropagateWS(N,Σ− ∪ {square of v∗}) ; return (N \ {v∗}, Π′)

PropagateWS (N, Σ⊗) =

MarkReaders (Σ⊗, 0)

for each s ∈ Σ⊗ and each v ∈ N ∩ vertices of s do

Ω⊖ ← Ω⊖ ∪ {Dispatch of v}
Ω⊕ ← Ω⊕ ∪ {NewOp(v,

¨
logρ QTApxNN(v)

˝
, 0, nil)}

for r = min rank in Ω⊖ ∪ Ω⊕ ∪Ω⊗ to
j
logρ

√
d

k
do

UndoOps (r, 0)

for each op ∈
`
Ω⊕ ∪Ω⊗

´˛̨
r,0

do Dispatch (op, Ω⊕)

for c = 1 to κd do

UndoOps (r, c)

for each op ∈
`
Ω⊕ ∪ Ω⊗

´˛̨
r,c

do

Fill (op,Ω⊕)

MarkReaders (squares containing op.steiners, (r, c))

UndoOps (r, c) =

for each op ∈
`
Ω⊖ ∪ Ω⊗

´˛̨
r,c

do

Ω⊖ ← Ω⊖ ∪ op.children

MarkReaders (squares containing op.steiners, (r, c))

remove all vertices in op.steiners

Ω⊗ ← Ω⊗ \ Ω⊖
˛̨
r,c

ResetEdges(Ω⊗
˛̨
r,c

)

MarkReaders (bΣ, t) =

for each s ∈ bΣ and each op that reads s do

if (op.rank, op.color) > t then Ω⊗ ← Ω⊗ ∪ {op}
Figure 4: Pseudo-code for the dynamic algorithm.

Our dynamic update algorithm is a change-propagation
algorithm. Given the input modification, the update algo-
rithm re-executes the actions of the stable algorithm for the
part of the computation affected by the modification and
undoes the part of the computation that becomes obsolete.
More precisely, the algorithm maintains distinct set of op-
erations for removal Ω⊖ (obsolete operations), for execution
Ω⊕ (fresh operations), and for re-execution Ω⊗ (inconsistent
operations), which contain the operations that become obso-
lete, that need to be executed, and that become inconsistent
respectively; inconsistent operations are updated by delet-
ing their old versions and executing them again, which may
now perform actions different than before. The algorithm
removes and executes operations in the same order as the
stable algorithm and uses the Dispatch and Fill operations
of the stable algorithm for executing fresh operations.

Figure 4 shows the pseudo-code for the Add and Remove

functions for inserting and deleting a vertex v∗ into and
from the input, and the PropagateWS function for dynamic
updates. Given v∗, Add/Remove updates the quadtree, de-
termines the set of inconsistent squares Σ⊗, and initializes
the fresh/obsolete set by creating a dispatch operation or
by marking the old dispatch operation acting on v∗. Both
functions then call PropagateWS.



Figure 5: Dynamic update
after insertion of v∗. Solid
vertices are input (N), ver-
tices marked + are in-
serted, vertices marked −
are deleted. Gray squares
are inconsistent. The four
smaller gray squares are
fresh; they replace the big-
ger obsolete square.

v*

The PropagateWS function starts by updating the opera-
tion sets by finding the input vertices that are contained in
the inconsistent squares, deleting their dispatch operations,
and creating new dispatch operations for them. It also ini-
tializes the inconsistent operation set, as MarkReaders marks
inconsistent all operations that read a square in Σ⊗. The
algorithm then proceeds in time order, first undoing the ob-
solete and inconsistent operations and then performing the
fresh and inconsistent operations by calling Dispatch and
Fill (Figure 3). The UndoOps function undoes the work of
obsolete and fresh operations by marking all of their children
for removal and by deleting quadtree dependencies (edges)
from the computation graph. It also prepares the live incon-
sistent operations for re-execution by resetting their depen-
dencies. The MarkReaders function expands the set of incon-
sistent operations as the set of vertices in a square changes
due to removed or freshly executed fill operations.

As their notation suggests, the obsolete, fresh, and incon-
sistent operations used by the algorithm correspond to those
defined in the stability analysis; Lemma 7.1 makes this cor-
respondence precise.

Lemma 7.1. The set of operations processed in the dy-
namic update algorithm, Ω⊖ ∪ Ω⊕ ∪ Ω⊗, is equal to the set
of obsolete, fresh, and inconsistent operations, Ω−∪Ω+∪Ω×.

Proof. Let A = Ω⊖ ∪Ω⊕ ∪Ω⊗ and B = Ω− ∪ Ω+ ∪ Ω×.
We prove the equality by showing containment in both direc-
tions; for space restrictions, we only show one direction. The
other direction is similarly shown in [ACHT10]. Towards a
contradiction, assume that B 6⊂ A and let op be the earliest
operation in B \ A. If op ∈ Ω− then either op is a dispatch
operation acting on an input vertex or there is another op-
eration op′ ∈ Ω− ∪ Ω× that creates op. In the first case, op
depends on a square in Σ×, which implies op ∈ A. In the
second case, by the minimality of op, op′ ∈ A. Since the up-
date algorithm processes all children of op′, op ∈ A. Similar
arguments show that op ∈ Ω+ implies op ∈ A. Therefore
op must be in Ω×, i.e., there exists a dependency path from
a square s ∈ Σ× to op. Pick the longest dependency path
that reaches op and let op′ 6= op be the latest operation on
that path. If no such op′ exists then op is a dispatch op-
eration acting on an input vertex that reads a square from
Σ×. The initialization in PropagateWS puts op in A. In the
other case that op′ exists, by minimality of op, op′ is in A
and the dependency path from op′ to op ensures that our
update algorithm schedules op to one of the sets Ω⊖, Ω⊕, or
Ω⊗, depending on the type of dependency between op and
op′. Contradiction.

When completed, PropagateWS updates the output to M̃

and the computation graph to G̃ as if StableWS is run from-
scratch with N′ as input, computing M′ and G′.

Lemma 7.2 (Isomorphism). The output sets M̃ and M′

are equal and there exists an isomorphism φ : G̃ → G′ that
preserves the vertex and time of each operation.

Proof. Due to space restrictions we skip some parts of
the proof. We prove equality of the output and build φ in-
ductively. Define the sets of operations according to their
creation times: Ω⊖

t = {op ∈ Ω⊖ | op is created at time < t}
(Ω⊖

0 is the set of dispatch operations acting on input ver-
tices). Define a similar assemblage for the ⊕, ⊗, and ′ sets.

Let G̃t be the subgraph of G̃ induced by the nodes Ω̃t ∪ Σ̃
excluding the edges with time ≥ t; the excluded edges are
related to the execution of operations at time ≥ t. Define G′

t

similarly and let M̃t be the updated set of vertices obtained
by removing and inserting vertices until time t, just before
the executing operations at time t.

Initially, M̃0 = M′
0 = N′ and Σ̃ = Σ′. Therefore, there

exists an isomorphism φ0 : G̃0 → G′
0. Assume the inductive

hypothesis at time t, that M̃t = M′
t and that we have an

isomorphism φt : G̃t → G′
t. Pick op ∈ Ω̃t with time t and

let op′ = φt(op). There are three cases: op is either in Ω⊕
t ,

or in Ω⊗
t , or otherwise op is an operation that has not been

modified. In all the cases, one can show that the operations
op and op′ read the same data. Because our functions are
all deterministic, op and op′ execute similarly.

Then, we have a natural correspondence between the op-
erations that op and op′ create and the Steiner vertices they
insert (in any). Therefore, M̃t+1 = M′

t+1. Furthermore, be-
cause op and op′ read and write the same squares the edges
incident to these operations have natural correspondences as
well. Extending φt to φt+1 by adding these correspondences
completes proof of the inductive step.

Theorem 7.3. The Add and Remove functions modify the
output in O(log ∆) time and maintain a ρ-well-spaced output
of optimal-size with respect to the updated input.

Proof. By Lemma 7.2, we know that the output is the
same as what would have been generated by executing from
scratch StableWS with the new input, therefore, Theorem 4.4
applies. The quadtree can be updated in O(log ∆) time.
Furthermore, Lemma 7.1 relates the runtime of the update
algorithm to the distance between the executions with the
old and the new inputs. Finally, Lemma 6.5 bounds the
runtime of PropagateWS as desired.

8. LOWER BOUND

Figure 6: Inserting x
creates Ω(log ∆) fresh
Steiner vertices.

We present a lower bound
proving that any algorithm
which explicitly maintains a
well-spaced superset requires
Ω(log ∆) time per dynamic up-
date. Consider dynamically in-
serting a new point very close
to an existing input vertex.
Even the optimal dynamic al-
gorithm is forced to insert geo-
metrically growing rings of new
Steiner vertices around the dy-
namically inserted vertex. We prove that we can iterate
this process using a gadget. This shows that our algorithm
is worst-case optimal compared to all other explicit algo-
rithms, even in an amortized setting.

We define a gadget (see Figure 6) consisting of points in

the hypercube [0, k−1/d]d. Consider two vertices at distance



1/∆ from each other in the middle of the box; let one of
them be the dynamic vertex x which will be inserted later.
Also, consider a grid of O(1) vertices on each of the faces
of the hypercube, chosen according to the scheme of Hud-
son [Hud07, p.79]. The input N consists of tiling [0, 1]d with

the gadgets, k1/d for each dimension, without any dynamic
vertex. The dynamic modification sequence consists of in-
serting k dynamic vertices, one for each gadget.

Lemma 8.1. Inserting the dynamic vertex to a single gad-
get requires inserting Ω(log ∆) Steiner vertices.

Proof. Let N be the input before adding the dynamic
vertex x. Any size-optimal output M of N has O(1) Steiner
vertices inside the gadget box. Consider inserting x and let
N′ = N ∪ {x} and δ = NNN′(x). Draw the segment from x
to the farthest point in VorN′(x). This segment has length
at least ℓ = 1

4
− δ

2
. Consider the Voronoi diagram of a ρ-

well-spaced superset M′ of N′ and consider the Voronoi cells
that this segment cuts. Let v1, v2, . . . be the vertices of those
Voronoi cells, in order. We know that the vertices in M′ are
ρ-well-spaced, therefore, |v1x| ≤ 2ρ NNN′(x) = 2ρδ. Also,
the nearest neighbour distance of v1 is at most |v1x|. We can
use the same argument to get |v1v2| ≤ 2ρ|v1x| and repeat.
In other words, distance from x grows only geometrically as
we walk down the segment: covering the distance ℓ requires
Ω(log 1/δ) = Ω(log ∆) many Steiner vertices. This implies
that M differs from M′ in at least O(log ∆) vertices.

Theorem 8.2 (Lower Bound). There exists an ini-
tial input and a set of n dynamic insertions that forces any
algorithm to insert Ω(n log ∆) new Steiner vertices.

Proof. In the above scheme, let k = n. Then, we would
like to prove that inserting n dynamic vertices requires in-
serting Ω(n log ∆) Steiner vertices. We refer to a technique
of inserting vertices to the hypercube faces [Hud07]. It was
developed precisely to make sure that certain algorithms
need not add vertices outside the hypercube when making
the interior ρ-well-spaced. Contrapositively, adding vertices
outside a gadget does not help make the gadget, with its
dynamic vertex, be ρ-well-spaced. Thus the prior lemma
applies to each gadget individually, showing that the final ρ-
well-spaced superset must contain at least Ω(n log ∆) Steiner
vertices, for a carefully selected ρ. Since there exists a con-
stant ρ > 1 such that the original input of n gadgets is
ρ-well-spaced, the initial output must be of size O(n). This
completes our proof.

9. IMPLEMENTATION & EXPERIMENTS

Figure 8: A model of
Lake Superior meshed
by StableWS.

We implemented2 the StableWS
and PropagateWS algorithms in
C++. Given a set of vertices
N, StableWS computes a well-
spaced superset M of N and
PropagateWS updates the out-
put dynamically as the input is
modified by insertions and dele-
tions. Our implementation is
a preliminary prototype: it fol-
lows closely the algorithmic de-
scription with minor optimiza-
tions. As with other meshing
2Source code is available for download at
http://nagoya.uchicago.edu/∼cotter/projects/wsp
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Figure 7: Left: cost of StableWS on random inputs.
Right: speedup of PropagateWS one unit changes rel-
ative to StableWS from scratch.

software (e.g., [She97]), ours is highly susceptible to numer-
ical error. We therefore used an exact arithmetic package
based on floating-point filters. We have verified the correct-
ness of our implementation by considering numerous ran-
domly generated inputs and some real models.

In experiments, we generate point sets of double-precision
floating-point numbers drawn uniformly at random from
the unit box in 2D and 3D. For a given input, we mea-
sure the cost of running StableWS on the entire input, and
the average cost of performing an update after a unit dy-
namic change that removes a random input vertex, updates
the output using PropagateWS, adds a new vertex, and up-
dates again. To focus on algorithmic concerns we use ex-
act arithmetic operation counts to measure run-time cost.
These dominate runtime even in highly optimized imple-
mentations. In all experiments, we chose ρ =

√
2, and β = 2

in 2D or β = 2
√

2/
√

3 in 3D, with the color parameters

ℓ(r) = ρr−1/2/
√

d and κ = ⌈1 + 3
√

dβρ3/2⌉. For both two
and three dimensions κ is 16; the number of colors in 2D is
162 = 256 and in 3D it is 163 = 4096.

Figure 7 shows the speedup of dynamic updates calcu-
lated as the ratio of the cost of running StableWS to the av-
erage cost of one dynamic update with PropagateWS. Each
plotted point is the average over 100 different unit dynamic
changes on each of 10 random inputs. We include 2D and 3D
measurements on the same plot; note that the y-axis scales
are different (the constant factors are larger in 3D). Consis-
tent with our analysis, the measurements indicate that in
both 2D and 3D the cost of StableWS grows close to lin-
early with the input sizes, while dynamic updates yield lin-
ear speedups.

10. CONCLUSION
We present a dynamic algorithm for computing a well-

spaced point set of a dynamically changing set of input
points. Our algorithm is efficient, finds an optimal-size out-
put, consumes linear space, and responds to dynamic mod-
ifications in worst-case optimal time. The underlying tech-
nique to these results is a stable algorithm for computing
well-spaced point sets whose executions can be represented
with computation graphs that remain similar when the input
sets themselves are similar. Our dynamic update algorithm
takes advantage of stability to update the output efficiently
by propagating the input modification through the compu-
tation graph. To assess the practicality of our approach
we present a prototype implementation. Our experiments
show that the algorithm can be implemented efficiently such



that it delivers performance consistent with our theoretical
bounds. We expect a well-polished implementation will pro-
vide static performance comparable to the state of the art,
and dynamic performance orders of magnitude faster.
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