
A Dynamic Algorithm for Well-Spaced Point Sets
(Abstract)

Umut A. Acar∗ Benoı̂t Hudson∗ Duru Türkoğlu†

Figure 1: A well-spaced superset.
Solid points (•) are input. Empty
points (◦) are Steiner vertices.

The Motivation and the Problem. A set of points is well-spaced if
the Voronoi cell of each point has a bounded aspect ratio, i.e., the ratio
of the distance to the farthest point in the Voronoi cell divided by the
nearest neighbor distance is small. Informally, a set of points is well-
spaced if its density varies smoothly. Well-spaced points sets relate
strongly to meshing and triangulation for scientific computing: with
minimal processing, they lead to quality meshes (e.g., no small angles)
in two and higher dimensions. The Voronoi diagram of a well-spaced
point set is also immediately useful for the Control Volume Method.

Given a finite set of points N in the d-dimensional unit hypercube
[0, 1]d, the static well-spaced superset problem is to find a small, well-
spaced set M ⊃ N by inserting so called Steiner points. This problem
has been studied extensively since the late 1980’s, but efficient solu-
tions that can generate outputs no more than a constant factor larger
than optimal have been devised only recently. We are interested in the
dynamic version of the problem. The problem requires maintaining a well-spaced superset (M) while the
input (N) changes dynamically due to insertion and deletion of points. When a dynamic change takes place,
a dynamic algorithm should efficiently update the output while keeping its size optimal for the new input.
There has been relatively little progress on solving the dynamic problem; existing solutions are either not
size-optimal or asymptotically no faster than a static algorithm.

Our Contributions. We present a dynamic algorithm that maintains an approximately optimal-sized,
well-spaced output and requires worst-case O(log ∆) time for an insertion or deletion, which we also prove
to be optimal. Here, ∆ is the (geometric) spread defined as 1

δ , where δ is the distance between the closest
pair of points in the input. If the spread is polynomially bounded in n, then O(log ∆) = O(log n). We use
dynamization to solve the problem. We first design a static algorithm that efficiently constructs an approxi-
mately optimal-sized, well-spaced superset of its input. For dynamic updates, the algorithm also constructs
a computation graph, that represents the operations performed during the execution and the dependences
between them. Then, given a modification to the input (i.e., an insertion/deletion), our dynamic algorithm
updates the output and the computation graph by identifying the operations that depend on the modification
and re-executing them. When re-executing an operation, the update algorithm inserts fresh operations that

∗Toyota Technological Institute at Chicago
†University of Chicago

now need to be performed. Similarly, it removes invalid operations that should not be performed. We prove
that the update algorithm ensures that the updated computation graph and the output are isomorphic to those
that would be obtained by running the static algorithm with the modified input. As a corollary, we conclude
that the output is well-spaced and has optimal size.

Ω pu () | |

p

u

Figure 2: Illustration of the proof.

Proof Idea. The crux of the design and the analysis is to structure
the computation in such a way that we can prove that a single mod-
ification to the input requires performing a small number of updates.
First, we structure the computation into Θ(log ∆) levels (defined by
ranks and colors) that the operations in each level depend only on the
previous levels. Second, we pick Steiner vertices by making local deci-
sions only, using clipped Voronoi cells. These techniques enable us to
process each vertex only once and help isolate and limit the effects of
a modification. More specifically, we prove that an insertion/deletion
into/from the input causes O(log ∆) vertices to become affected. The
proof follows from a spacing-and-packing argument. The spacing ar-
gument shows that any affected vertex has an empty ball around itself whose radius is proportional to its
distance to the vertex inserted or deleted (p). The packing argument shows that there can be only a constant
number of affected vertices at each level, consequently, O(log ∆) in total. Figure 2 illustrates the proof:
each shade corresponds to a rank.

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

u
0

u
1

u
2

u
3

v

v
ρ

v
β

Vor () Vor ()

Figure 3: Nearest neigh-
bor, outradius, ρ and β-
clipped Voronoi cells.

The Algorithm. We start with a few definitions. Given a vertex set M, the
nearest neighbor distance of v in M, written NNM(v), is the distance from v
to the closest other vertex in M. The Voronoi cell of v in M, written VorM(v),
consists of points x ∈ [0, 1]d such that for all u ∈M, |vx| ≤ |ux|. The outradius
of VorM(v) is the distance from v to the farthest point in VorM(v) and the aspect
ratio is outradius divided by NNM(v). For a given quality criterion ρ > 1,
we say that a vertex v is ρ-well-spaced if the aspect ratio of its Voronoi cell is
bounded by ρ and M is ρ-well-spaced if every point in M is ρ-well-spaced. For
any constant β > ρ, we define the β-clipped Voronoi cell, written Vorβ

M(v), as
the intersection of VorM(v) with the ball of radius β NNM(v) centered at v.
Note that Vorβ

M(v) \Vorρ
M(v) is empty if and only if v is ρ-well-spaced.

Our static algorithm structures the computation into Θ(log ∆) ranks based on the nearest neighbor dis-
tances of the vertices and performs a single pass over the vertices ordered by their ranks. This technique
requires selecting the Steiner vertices without affecting a previously processed vertex. Therefore, while
processing a vertex v ∈ M, we insert Steiner vertices only within the Voronoi cell of v, VorM(v), but still
far from v: at least at distance ρ NNM(v). Moreover, in order to support efficient updates, we select Steiner
vertices by making local decisions only. More specifically, we select Steiner vertices within the β-clipped
Voronoi cell of v; from Vorβ

M(v)\Vorρ
M(v) (Figure 3 shows this region). Even if we select Steiner vertices

locally, these local decisions may combine and create long dependence chains which would require larger
global restructuring during dynamic updates. To address this problem we partition the work in each rank
into constantly many color classes. At each rank, we process the vertices in monotonically increasing order
of their colors. This ensures independence: the Steiner vertices we insert while processing a vertex do not
affect the decisions we make when processing other vertices of the same color. These techniques enable us
to prove that dependence chains are short, of length O(log ∆).

