Handling Multiple Certificate
Failures in Kinetic Data Structures

Reuben Diaz* Veer Panchal*
Duru Tiirkoglu*

October 21, 2016

Abstract. Kinetic Data Structures (KDSs) provide a frame-
work for maintaining certain properties of geometric objects
moving along predefined trajectories. A KDS identifies a com-
binatorial structure that does not depend on the exact position
of the objects, but rather on their relationships to one another.
These relationships, known as certificates, prove the correctness
of the combinatorial structure; as long as they are valid, the KDS
will be valid as well. The known trajectories allow us to identify
when each certificate would fail, enabling us to advance time up
to the next certificate failure without damaging the structure’s
integrity. When a certificate finally fails, a KDS provides ki-
netic update methods to repair the broken combinatorial struc-
ture, and to update the set of certificates so that the new certifi-
cate set proves the validity of the repaired structure. Since their
introduction, it is widely assumed that certificate failures must
be handled individually. This assumption places a restriction re-
quiring total ordering of the certificates as they fail. In this paper,
we remove this restriction by developing an approach to resolve
multiple failures at once. We also evaluate the effectiveness of
our approach experimentally, and show that when the number
of certificate failures in a kinetic update changes, the number of
operations per affected point remains logarithmic.

Introduction. Since their introduction almost two decades
ago by Basch, Guibas and Hershberger [2], many KDSs have
been developed and analyzed. In their work, they note that to
handle multiple certificate failures, a KDS must identify and
use partially correct structures. Unfortunately, identifying such
structures has been challenging, and as a result, almost all KDSs
rely entirely on handling one certificate failure at a time [1]. This
is necessary so that the KDS can rely on the correctness of the
rest of the structure. However, this requirement is problematic,
failures can occur so close to one another that ordering their fail-
ure times can be very costly, and even impossible when multiple
certificates fail at exactly the same time.

In this paper, we offer an approach to handle multiple cer-
tificate failures simultaneously. We define a timeline for fixing
the structure, so that we can partially repair the broken struc-
ture at each timestep, and prove some invariants about the par-
tially repaired structures. More specifically, we identify the ob-
jects which have failed certificates, and using our timeline, we
schedule the broken objects to be repaired at their corresponding
timesteps. When processing the objects scheduled at a particular
timestep, we first repair them, possibly causing other parts of the
structure to break down. We then schedule those broken parts of

*School of Computing, DePaul University, Chicago, IL

the structure alongside the already broken objects at their cor-
responding timesteps. We ensure that this procedure functions
properly by maintaining the invariant that any structure broken
down while conducting repairs at a given timestep does not re-
quire going back in time, and thus can always be repaired at
a timestep later in the timeline. Once we complete the repairs
at every timestep, the entire structure will be correct, following
from our invariants.

Kinetic Tournaments. We illustrate our approach on the ki-
netic tournament data structure, which maintains the largest
number in a given set of numbers [2]. The kinetic tournament
employs a divide-and-conquer algorithm, in which the set is re-
cursively divided into halves until reaching subsets of size one,
which form the leaves of a binary tree. The numbers then “com-
pete” against one another — the larger number in a pair at level £
“wins” the competition and becomes a node at level ¢ + 1 which
is the parent of both numbers in the competition. The compar-
isons from each competition become the certificates, proving the
correctness of the structure. Restricted to a method that only
handles single certificate failures, we would need to advance
time to the first certificate failure, i.e., when a competition’s win-
ner is no longer correct. Then, we would repair the structure by
correcting the outcome of that competition, and any other incor-
rect competitions along the path to root. To handle multiple cer-
tificate failures, an intuitive approach would be to fix each failed
certificate one at a time. This would require us to traverse the
structure once for each failure. Instead, we identify each level in
the tournament as a timestep in our kinetic update algorithm. We
then schedule each failed certificate at the timestep associated
with its level and repair the entire tournament bottom-up, using
only one traversal. Given these timesteps, the partially-correct
structure that we identify is captured in the following invariant:
after level { is completed, for any number x present at level £+1,
the subtree rooted at x is a valid kinetic subtournament.

Deformable Spanners. The deformable spanners kinetically
maintain a (1 + ¢)-spanner of an input point set S [3]. A de-
formable spanner is a hierarchy of representatives of S at geo-
metrically varying radii: for a given radius 2¢, the representative
set, called the discrete centers and denoted Sy, is a maximal sub-
set of Sy_; such that any p,q € S;,p # q satisfy [pg| > 2°
(S, = & for some small enough \). Intuitively, this (non-
unique) hierarchy of discrete centers defines samplings at vary-
ing resolutions. To ensure the (1+¢) stretch factor, a deformable
spanner defines two types of edges: neighbor and parent-child.
A neighbor edge connects any two close enough points at the
same level, i.e., p,q € Sy are neighbors if [pg| < ¢ - 2¢, where
¢ =4+ 16/e. A parent-child edge describes a connection be-
tween two points in consecutive levels, every point p € Sy—1\ Sy
chooses a parent ¢ € S, within 2¢ distance; this relationship is
described as p being a child of q.

A deformable spanner is constructed by inserting the points
in S one at a time. During insertion, a point p is represented at
every level of the structure (inserted into the discrete centers) for
location purposes. First p is located top-down by identifying all
of its neighbors at each level. Then, p is assigned as a child of its
lowest possible parent at level £. After this assignment, insertion



10000

2500

T
best fit

9000 -
8000 - 2000
7000
6000 - 1500
5000

4000 1000

operations per point

3000 -~

operations per failed point

2000 -

1000

3000

16 64 256 1024

total points (n)

4096 16 64

Figure 1: (a) operations per inserted point

of p is finalized by deleting all representations of p at levels > /.
Four types of certificates prove the validity of the structure: sep-
aration certificates ensure any two points at the same level are
far enough (no parent-child edge between them), parent-child
and neighbor certificates ensure that existing edges are valid,
and potential neighbor certificates ensure that two nonneighbor
points (whose parents are neighbors) are far enough apart.

The authors describe the kinetic update for each type of cer-
tificate failure [3]. If a potential neighbor certificate fails, a
neighbor edge is drawn between the two points that certificate
refers to. If an edge certificate fails, the edge in question is
deleted. If a parent-child certificate fails, the associated edge
is deleted, and the child is raised along the path to root until it
finds a suitable parent. If a separation certificate fails, one of the
two points in question becomes the child of its former neighbor,
and its children are raised as though their parent-child certifi-
cates had failed.

To handle multiple certificate failures, one must devise an al-
gorithm which can repair the structure after a set of certificate
failures which may include multiple types of certificates. To
accomplish this, we define our timeline with the following five
stages: reconnect, locate, raise, delete, certify. In the reconnect
stage, we process failed parent-child certificates to reconnect the
children to valid parents, by raising the children along the path
to root until a valid parent is found. We ensure that after the re-
connect stage at level ¢ is completed, all parent-child edges are
valid for levels ¢ and above, and any point p € S; is connected
to the root via parent-child edges.

We then proceed to the locate stage, where we process every
point associated with a failed certificate level by level in a top-
down fashion. When processing locate for level ¢, we ensure that
points in S, will be separated. When processing a point p, if we
can, we push all very close points down one level, and schedule
them for the raise stage. Otherwise, we push p down and assign
it and its children as children of the point which was not safe
to remove from level £. If p is not pushed down and remains at
level ¢, we then identify new neighbors of p, and schedule all
children of p for the next timestep so that the broken structure
can be repaired further. After the locate stage at level ¢ is com-
pleted, we ensure that any two points at level ¢ are separated
and all neighbor edges are identified. We also prove a proximity
result for those invalid parent-child relationships: for a parent
p € Sy with child g (€ S;—1), |pq| < 2- 2%

Next, we process the raise stage in a bottom-up fashion. We
repair every point p whose parent is invalid after the locate stage

total points (n)

(b) operations per failed point

T
best fit ;
.
| _ 2500 ¢ . B
: .y,
g
5 2000 £ I, (L
| b P
& .
g 1500 - b 4
o
1 2
s
21000 | B
@
g
. [s)
500 |- B
-
0 oy
256 1024 4096 0 100 200 300 400 500 600 700

failed points
(c) multiple certificate failures (n=8192)

concludes. When processing stage for level ¢, we look for a
suitable parent of p at level £ + 1. If our search fails, we raise p,
establish any new neighbor relationships, and schedule p for the
raise stage at level £ 4 1. After the raise stage at level £ is com-
pleted, we ensure that the substructures at and below level ¢ are
valid deformable spanners containing the subset of points reach-
able from their root via parent-child edges. Finally, in the delete
stage, we trim any excess nodes, and in the certify stage, we
update the set of certificates to prove the updated deformable
spanner structure.

Implementation and Experiments. We implement the afore-
mentioned kinetic update algorithm for the deformable spanners
and set ¢ = 1. We use Sturm sequences to identify the cer-
tificate failure times, and we define a smallest time increment &
to establish a lattice for advancing time forward. By varying 9,
we provide experimental results that can handle tens of thou-
sands of certificate failures at once, all capable of handling each
failure per point in logarithmic time. Our experiments verify
that insertion of a point takes logarithmic time (see Figure 1(a)).
Our experiments also verify that a kinetic update involving very
few certificate updates takes logarithmic time (see Figure 1(b)).
Furthermore, for a fixed size of 8192 points, when multiple cer-
tificates fail, the average number of operations per failed point
remains fairly constant as the number of failed points increases
(see Figure 1(c)).

References

[1] Pankaj K. Agarwal, Leonidas J. Guibas, Herbert Edels-
brunner, Jeff Erickson, Michael Isard, Sariel Har-Peled,
John Hershberger, Christian Jensen, Lydia Kavraki, Patrice
Koehl, Ming Lin, Dinesh Manocha, Dimitris Metaxas, Brian
Mirtich, David Mount, S. Muthukrishnan, Dinesh Pai, EI-
isha Sacks, Jack Snoeyink, Subhash Suri, and Ouri Wolf-
son. Algorithmic issues in modeling motion. ACM Comput.
Surv., 34(4):550-572, 2002.

[2] Julien Basch, Leonidas J. Guibas, and John Hershberger.
Data structures for mobile data. Journal of Algorithms,

31(1):1-28, 1999.

[3] Jie Gao, Leonidas J. Guibas, and An Nguyen. Deformable
spanners and applications. Computational Geometry: The-

ory and Applications, 35(1):2-19, 2006.



