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ABSTRACT
We provide a kinetic data structure (KDS) to the planar
kinetic mesh refinement problem, which concerns computa-
tion of meshes of continuously moving points. Our KDS
computes the Delaunay triangulation of a size-optimal well-
spaced superset of a set of moving points with algebraic tra-
jectories of constant degree. Our KDS is compact, requiring
linear space in the size of the output. It is local, using a
point in O(log ∆) certificates. It is responsive, repairing it-
self in O(log ∆) time per event. It is efficient, processing
O(n2 log3 ∆) events in the worst case; this is optimal up
to a polylogarithmic factor. Also, our KDS is dynamic, re-
sponding to point insertions and deletions in O(log ∆) time.
In our bounds ∆ stands for the geometric spread, the ratio
of the diameter to the closest pair distance. To the best of
our knowledge, this is the first KDS for mesh refinement.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and ProblemComplex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms, Theory

Keywords
Mesh refinement, Well-spaced point sets, Kinetic data struc-
tures, Deformable spanners, Self-adjusting computation

1. INTRODUCTION
Mesh refinement is an essential step in many applications

such as surface reconstruction, physical simulations, more
broadly in scientific computing, graphics etc. (e.g., [12]).
The idea behind mesh refinement is to break up a physical
domain into discrete elements, e.g., triangles, so that certain
functions defined on the domain may be computed approxi-
mately by considering the discrete elements. For accuracy of
the computed properties, it is important that the triangles
be “well-shaped”, i.e., no triangle should have small angles.
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When the input points admit no well-shaped triangulation,
meshing algorithms can include additional Steiner points in
their output mesh. Ideally, the output meshes will be size-
optimal: their size (number of vertices and triangles) should
be within a constant factor of the size of the smallest possi-
ble mesh consisting of well-shaped elements. A quality mesh
is both well-shaped and size-optimal.

We distinguish three related problem statements. In the
simplest, the input is a static set of points and we want
to construct a quality mesh. The input may also be given
dynamically, as a series of additions and removals from the
input; the task is to maintain a quality mesh after each input
change. Our main focus in this article is the case in which
points have kinetics: each point has an associated velocity
function and we maintain a quality mesh at all times. The
first efficient static algorithm is due to Bern, Eppstein and
Gilbert [9]. However, the first provably efficient algorithm
for the dynamic problem was only recently demonstrated [4],
and the kinetic version of the problem, which requires com-
putation of quality meshes of changing set of moving objects,
was open until the present work.

We develop our solution in the kinetic data structures
framework, KDS in short [8, 15]. A KDS uses certificates
to certify, i.e., witness the correctness of, the current mesh,
and schedules events to repair the mesh when certificates
fail. The structure can determine the time of an event by
using its knowledge of the motion plans of the points. When
an event happens, the data structure updates the mesh as
well as the set of certificates. We analyze the performance
of a KDS according to four properties: responsiveness, ef-
ficiency, compactness, and locality. Responsiveness requires
the data structure to respond to events in time polyloga-
rithmic in the size of the input. Efficiency requires the total
number of events processed to be at most a polylogarith-
mic factor larger than the minimal number of combinatorial
changes (the addition or removal of a Steiner point). Com-
pactness requires the number of the certificates to be near-
linear. Locality requires each input point to participate in a
polylogarithmic number of certificates.

Previous work proposes KDS’s for the related problem
of kinetic triangulations, without the insertion of Steiner
points. The most efficient kinetic Delaunay triangulation
schemes [13, 16] are a linear factor less efficient than optimal.
There are structures that efficiently maintain non-Delaunay
triangulations in the plane [7, 20]. Agarwal et al [6] show
how to maintain the stable Delaunay graph, namely the sub-
set of the Delaunay triangulation that has large minimum
angles. We can efficiently maintain the full Delaunay graph



of our output point set by inserting Steiner points to ensure
that all triangles have large minimum angles.

To see the challenges in providing an effective kinetic data
structure for meshing, it helps to consider the techniques
that work well for the static version of the problem. One
approach based on balanced quadtrees, generates an appro-
priately refined quadtree over the input points and adds the
corners of the quadtree squares as Steiner points [9]. In the
kinetic setting, the quadtree, because it is fixed, can generate
a large number of events. For example, if the input contains
two close points that move along parallel linear trajecto-
ries preserving the distance, say ε, between them, then the
quadtree may need to be restructured every time the points
leave their quadtree cell, which is only Θ(ε) distance. In
other words, a quadtree approach cannot be efficient. An-
other approach computes Voronoi diagrams and inserts the
corners of the Voronoi cells (equivalently, the Delaunay cir-
cumcenters) as Steiner points [18, 5]. The main difficulty
in kinetizing these approaches is that the position function
of a Steiner point depends on three points, some of which
may themselves be Steiner points. The description length
of the position function can thereby build up to be polyno-
mial in n. Since computing just one event time could take
polynomial time, such a structure cannot be responsive.

In this paper, we provide an effective kinetic data struc-
ture for computing meshes of a dynamically changing set of
points consisting of points moving along algebraic trajecto-
ries of constant degree. Our KDS yields triangulations of
size-optimal well-spaced point sets (Section 5). We analyze
the responsiveness, efficiency, locality, and compactness of
our data structure as functions of the input size and the ge-
ometric spread (the ratio of diameter to closest pair). Since
the spread changes as time evolves, we define ∆ to be the
ratio of the maximum diameter of the input at any time, and
the minimum distance between closest pair of input points
at any time. If the spread is polynomially bounded by the
input size, our data structure yields bounds all in the prob-
lem size with logarithmic factors. Our KDS guarantees:

Responsiveness. A certificate failure requires O(log ∆)
update time (Theorem 4.7).

Locality. A point participates in O(log ∆) certificates
(Lemma 5.1).

Compactness. Total number of certificates is O(m),
where m is the output size and m ∈ O(n log ∆) (Lemma 5.1).

Efficiency. The number of events is O(n2 log3 ∆) which
is within a O(log2 ∆) factor of the optimal (Lemma 5.4).

Dynamic updates. A point insertion or deletion re-
quires O(log ∆) update time (Theorem 4.7).

At a high level, our solution is in essence a balanced
quadtree method, replacing the quadtree with a variant of
the deformable spanner of Gao, Guibas, and Nguyen [14].
Our KDS consists of a construction algorithm (Section 3)
that computes a quality mesh of the input, and an update
algorithm (Section 4) that enables kinetic motion simulation
and dynamic changes. Given a set of input points, the con-
struction algorithm first computes a well-spaced superset of
the input in O(log ∆) levels. A set of points M is well-spaced
if for each point p ∈ M, the ratio of the distance to the far-
thest point in the Voronoi cell of p divided by the distance
to the nearest neighbor of p in M is small [23]. Intuitively, in
a well-spaced point set, points have “well-shaped” Voronoi
cells. The construction algorithm then computes a Delau-

Figure 1: Given the
set M = {v, u, w, y, z},
the nearest neighbor
distance of v, NNM(v),
is |vu|. Thick lines de-
pict the Voronoi cell
of v, VorM(v); v is
6-well-spaced, but not
9
2
-well-spaced.
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nay triangulation of the well-spaced set by performing local
computations only, yielding a Delaunay triangulation with
no small angles. The construction algorithm hinges on a
technique for determining the position and the motion plans
for Steiner points. Upon a kinetic event or a dynamic mod-
ification to the input set, the update algorithm repairs the
well-spaced superset and its Delaunay triangulation. The
update algorithm propagates the changes through the con-
struction algorithm, updating each of the O(log ∆) levels,
by performing amortized constant work at each level.

The approach of developing a construction algorithm and
then providing an update algorithm based on change propa-
gation is inspired by recent advances on self-adjusting com-
putation (e.g., [17, 21, 1]). In self-adjusting computation,
programs can respond automatically to modifications to their
data by invoking a general-purpose change propagation algo-
rithm that can also utilize a certain (traceable) data struc-
ture to ensure asymptotic efficiency [2]. These techniques
have been applied effectively to other computational geom-
etry problems such as kinetic convex hulls in 3D [3] and
dynamic well-spaced point sets [4].

2. PRELIMINARIES
We present some definitions used throughout the paper,

describe the technique we use for selecting Steiner vertices,
and present a brief overview of the deformable spanners.

2.1 Definitions
Kinetic mesh refinement is the problem of maintaining a

quality triangulation of a superset M of an input point set N.
We approach this problem in the dual setting: Voronoi di-
agrams and well-spaced point sets. We define a domain Ω
to be a ball centered at an arbitrary input point with ra-
dius at least nine times the diameter of the given input N.
For any given superset M of N, the Voronoi cell of v in M,
written VorM(v), consists of points x ∈ Ω such that for
all u ∈ M, |ux| ≥ |vx|. The nearest-neighbor distance of v
in M, written NNM(v), as the distance from v to the near-
est other point in M. A point v ∈ M is ρ-well-spaced if
the Voronoi cell of v is contained in the ball with radius
ρNNM(v) centered at v; M is ρ-well-spaced if every point
in M is ρ-well-spaced. Figure 1 illustrates these definitions.

It is important that the output is as small as possible
while a quality triangulation is achievable. We minimize the
output size (up to a constant factor) by constructing a size-
conforming output [22]. A set M ⊃ N is size-conforming if
there exists a constant c independent of N such that for all
v ∈ M, NNM(v) > c · lfs(v), where lfs(v), the local feature
size of v, is the distance from v to the second-nearest point
in N. For the rest of the paper, we use the term point to
refer to any point in Ω and the term vertex to refer to the
input and output points.
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Figure 2: Zooming in on the point set M of Figure 1,
first two orbits and some rays of v (nucleus) are dis-
played, with part of its Voronoi cell in thick lines. In-
tersections of odd rays with orbits at odd ranks and
even rays with orbits at even ranks form satellites—
potential Steiner vertices—shown in smaller dots.

2.2 Selecting Steiner Vertices
The key problem in mesh refinement is the selection of

Steiner vertices, i.e., where they should be inserted and how
they should move. To solve this problem, we propose a local
template-based approach. Specifically, the template speci-
fies for each input vertex v, a nucleus, an infinite number of
satellites that may be inserted as Steiner vertices. A nucleus
and its satellites form a well-spaced point set and the satel-
lites move together with their nucleus: the position curves
of the satellites are the same as their nucleus’ position curve
plus a fixed translation. To ensure a size-conforming out-
put, we set the spacing between the satellites proportional
to the distance to their nucleus, i.e., for each satellite, the
distance to the nearest other satellite is within a constant
multiplicative factor of the distance to their nucleus.

For the planar case, we use a particular template (illus-
trated in Figure 2) defined by a fixed set of rays emanating
from a nucleus and their intersections with concentric circles
of geometrically increasing radii. Consider 24 rays leaving
each input vertex at angles θ, 2θ, . . . , 24θ, where θ = π/12.
Also, consider concentric circular orbits of radius 2` around
every input vertex where ` ∈ Z is the rank of these orbits.
Defining odd (even) rays to be rays at angles that are odd
(even) multiples of θ, we choose certain translations to de-
fine the satellites: the intersections of odd rays with orbits
at odd ranks and the intersections of even rays with orbits
at even ranks. In this template, a nucleus, a rank, and a ray
with the same parity as that of the rank defines a unique
satellite. Intuitively, this is a discrete polar coordinate sys-
tem, where the nucleus defines the origin, the rank defines
the radius (exponentially), and the ray defines the polar an-
gle. In the rest of the paper, we use the term `-satellite to
refer to a satellite on an orbit at rank `.

2.3 Deformable Spanners
Our algorithm uses the kinetic deformable spanners of

Gao, Guibas, and Nguyen as a point location data struc-
ture [14]. In our algorithms, in order to generate a quality
mesh, we insert certain satellites into the deformable span-
ner data structure. Taking advantage of the location of the
satellites, we achieve accuracy and efficiency by extending
the deformable spanners with exact nearest neighbor queries
and more efficient vertex insertion procedures. In this sec-
tion, we briefly overview the original deformable spanners

data structure; we explain the extension in the next sec-
tion. In the most general form, given a parameter ε > 0,
the deformable spanners (1+ε)-approximates the Euclidean
distance between the vertices. Throughout the paper, we
use the spanner with ε = 1, guaranteeing 2-approximation.
A spanner represents a hierarchical discretization of a ver-
tex set at geometrically increasing scales. Given a vertex
set M and any s > 0, a discretization of M at scale s is a
subset M

′ ⊆ M of vertices which satisfy the following two
conditions: i) the minimum distance between any two ver-
tices of M

′ is at least s, ii) the set of balls {B(v, s) | v ∈ M
′}

cover M. Note that there can be multiple discretizations of
a vertex set. A spanner is based on a hierarchy of discretiza-
tions M = Mλ ⊇ Mλ+1 ⊇ · · · ⊇ MΛ that satisfy the following
properties.

• λ is the minimum integer such that 2λ−1 ≤ δ < 2λ,
where δ is the closest pair distance in M.

• For each ` ∈ {λ +1, λ+2, . . . , Λ}, M` is a discretiza-
tion of M`−1 at scale 2`.

• MΛ is the only singleton in the hierarchy.

We call M` a discretization at rank1 ` and refer to its vertices
as discrete centers or more specifically as `-centers. A span-
ner connects discrete centers at the same and at consecutive
ranks with neighbor, parent, and child pointers. Specifically,
two `-centers are `-neighbors if the distance between them
is at most c · 2`, where c = 4 + 16/ε = 20. If v is both
an `-center and an (` + 1)-center, v is its own parent/child.
Otherwise, an (` + 1)-center w whose distance to v is at
most 2`+1 is designated to be the parent of v; and v to be
a child of w at rank `. For a vertex v, we define its max-
imum rank, written Λv , to be the highest rank where v is
a discrete center. We define its minimum rank, written λv,
to be the lowest rank ` where v is a discrete center with at
least one `-neighbor. Now, we briefly explain the construc-
tion of the spanner using a somewhat different presentation
than the one used by Gao et al. [14]. Also, we describe their
certificates and summarize their update algorithm.

Construction. We start by assigning an arbitrary input
vertex v to be the root of the spanner S and set the maxi-
mum rank Λ of S to maxw∈N dlg |vw|e, i.e., we set SΛ = {v}.
Furthermore, we temporarily set v to be the parent of every
other input vertex. In a top-down pass, at each rank `, we
greedily determine the set of `-centers (S`) as follows: ini-
tializing S` = S`+1 and performing a linear pass on the set
of remaining vertices, N\S`+1, we insert a vertex w into S` if
the ball B(w, 2`) does not contain an `-center. This can be
done by checking the cousins (parent’s neighbors’ children)
of w. Otherwise, if w is 2`-close to an `-center v, we update
the parent of w to be v. We also insert neighbor edges be-
tween any two `-centers within c · 2` distance, again using
cousins. We stop at rank ` = λ, when S` = N.

Certificates. To certify the spanner, Gao et al. describe
four kinds of certificates. These are: i) parent-child certifi-
cates for certifying |vu| ≤ 2`+1 for an `-center v and its
parent u at rank ` + 1. ii) separation certificates for certify-
ing |vu| > 2` for `-neighbors v and u. iii) edge certificates
for certifying |vu| ≤ c ·2` for `-neighbors v and u. iv) poten-
tial neighbor certificates for certifying |vu| > c · 2` for two
`-centers v and u, whose parents are (` + 1)-neighbors.

1Note that this definition coincides with the rank definition
that is used to describe the satellites—both definitions pro-
vide a logarithmic scale with base 2. One could use different
bases; for simplicity, we chose base 2 for both.



Construct a spanner S for N

∀v ∈ N, activation rank ρv ← λv

for ` = λ to Λ + 4
∀v ∈ N, v is active if

ρv = ` or ∃ a converted (`− 1)-satellite of v

for each `-satellite s of each active v ∈ N

if BallEmpty(S, s, 2`−2) then Convert(S, s, `)

for each Steiner vertex s ∈ S`

TryToPromote(S`+1, s)

for each rank `

for each s ∈ N with ρs = ` or `-satellite s ∈ M \ N

V ← ∪`′∈{`−6,...,`−3}`′-neighbors of s

IdentifyVoronoiNeighbors(s, V )

Figure 3: The pseudo-code for the construction

Maintenance. When some certificates fail, we update
the discretizations in a top-down pass. Assuming that the
spanner at ranks above ` is updated, we fix the spanner at
rank `. First, we check if any of the parent-child certificates
at rank ` has failed. If an `-center v is no longer a child
of an (` + 1)-center w, we check to see if there is another
(` + 1)-center, an (` + 1)-neighbor of w, that is 2`+1-close
to v. If there is, we assign that vertex as the new parent of v,
if not we promote v to rank ` + 1 and repeat the promotion
procedure until we assign a new parent to v. In promoting
to a higher rank `′ > ` + 1, we use the rank `′ ancestor of v
for locating v, e.g., parent of w for `′ = ` + 2. Next, if a
separation certificate has failed, i.e., an `-center v becomes
a child of an (`+1)-center, we remove v from ranks `+1 and
above. This leaves the children of v at ranks `+1 and above
without a parent. We promote these children as necessary,
by applying the above procedure. In repairing both types of
certificate failures, we insert and remove neighbor edges in
order to maintain a valid spanner structure. In addition, we
update the neighbor edges, if any of the edge or potential-
neighbor certificates has failed. During maintenance, besides
updating the spanner, we update the set of certificates as
necessary in order to certify the updated spanner.

3. CONSTRUCTION ALGORITHM
Our construction algorithm builds a mesh in three stages

(Figure 3). First, it constructs a spanner for the input ver-
tices by running the construction algorithm described in Sec-
tion 2.3; second, it constructs a well-spaced superset M of
the input by inserting certain satellites into the spanner;
third, it constructs the Delaunay triangulation of M.

In the second stage, our algorithm iterates over ranks and
determines a set of active input vertices and applies a con-
version and a promotion process at each rank. In the con-
version process, it selects certain satellites of active input
vertices and inserts them into the spanner as Steiner ver-
tices. In the promotion process, it inserts certain Steiner
vertices into the discretization at the next rank in order to
represent the current superset correctly at the next rank.

As part of determining the active status of input vertices,
our algorithm starts the second stage by assigning each input
vertex an activation rank, which is defined as the minimum
rank in the initial spanner. At each rank `, our algorithm
then determines the active input vertices—an input vertex
is active at rank ` if its activation rank is ` or it was active at
rank `−1 and one of its (`−1)-satellites was converted to a

Steiner vertex. It continues by applying the conversion pro-
cess on the `-satellites of active input vertices. Specifically,
iterating through each `-satellite s of each active vertex, our
algorithm converts s if and only if s has an empty certificate
ball, which is defined as the ball B(s, 2`−2). When convert-
ing an `-satellite s, our algorithm inserts s into the spanner
hierarchy beginning at Sλs

and promotes s to the highest
possible rank up to rank `. Once the algorithm is done with
the conversion process, it updates the discretization at the
next rank (S`+1) and prepares the spanner for the next it-
eration by promoting certain `-centers. In this promotion
process, by calling TryToPromote (details below) for each
Steiner vertex s ∈ S`, the algorithm determines whether
there is an (` + 1)-center 2`+1 close to s. If there is one, the
algorithm assigns it to be the parent of s. Otherwise, the
algorithm inserts s into S`+1, i.e., promotes s to rank ` + 1,
and determines the (` + 1)-neighbors of s.

In the third stage, the algorithm identifies the Voronoi
neighbors of the vertices. For each Steiner vertex s at rank `
and each input vertex with activation rank `, it first gener-
ates a candidate set consisting of the spanner neighbors of s
at ranks {` − 6, . . . , ` − 3}. It then computes the Voronoi
cell of s in this candidate set in O(1) time; this computation
yields the true Voronoi cell of s in the well-spaced super-
set M (Lemma 3.9). Then, the complete Voronoi diagram
yields the Delaunay triangulation of M.

In the rest of this section, we prove the correctness and
the O(n log ∆) runtime bound of our algorithm. For real-
izing the run-time bound, we focus on efficiently locating
any `-satellite s in the spanner using its nucleus v. We ex-
tend the spanner data structure with O(1) time functions,
BallEmpty, Convert, and TryToPromote, details of which we
describe in the next two paragraphs. Taking advantage of
these O(1) time functions, we bound the total runtime con-
verting satellites to Steiner vertices by O(n log ∆) as there
are O(n log ∆) many satellites to consider. Then, we bound
the runtime of the discretization step by O(n log ∆), by prov-
ing that there are O(n) `-centers in the spanner at each
rank ` (Lemma 3.11) and O(log ∆) ranks. In the third stage,
since the computation of the Voronoi cell of each vertex in
M takes O(1) time, we achieve the desired runtime bound.

In order to efficiently locate an `-satellite s of an active
vertex v, we define the notion of `-sites. An `-site of s is an
input vertex w ∈ S` (at rank `) that satisfies the condition
|sw| ≤ c · 2`−2. By Lemma 3.1, the rank ` ancestor of v,
say w, is an `-site of s. A naive approach locates w in
O(` − ρv) time by walking up the parent chain of v. If
the activation rank of v is `, this is efficient, however, it
might be as costly as O(log ∆) if ` is significantly higher
than the activation rank ρv. In this case, the rank ` ancestor,
say w′, of the last converted satellite u of v can be located in
O(1) time (Lemma 3.10) and by modifying the arguments
of Lemma 3.1 slightly, one can prove that w′ is c · 2`−2 close
to s. Once locating an `-center (w or w′) that is c ·2`−2 close
to s, all `-sites of s can be located in O(1) time by checking
its `-neighbors.

We describe the O(1) time implementations of BallEmpty,
Convert, and TryToPromote using `-sites. BallEmpty first
finds all `-sites of s, then computes the `-neighbors of s in
O(1) time by checking the `-neighbors of the cousins of an
`-site of s (Lemma 3.2). It then computes the `′-neighbors
of s for ranks `′ = ` − 1 down to `′ = ` − 6 by checking the
`′-neighbors of the children of the (`′ + 1)-neighbors of s. It



determines whether the certificate ball of s is empty or not
by checking whether there is a neighbor of s within 2`−2 dis-
tance of s or not (Lemma 3.4). If there are no neighbors, the
algorithm converts s by calling Convert; otherwise, it dis-
cards s. Convert inserts s into the spanner at its minimum
rank λs and promotes it up to rank `. At the end of each
rank, TryToPromote promotes certain Steiner vertices to the
next rank. For a given `-center s, it uses an (` + 1)-site u
of s, the parent of an `-site of s to be precise, to determine
if an (` + 1)-center is close enough to be the parent of s. It
checks all (` + 1)-neighbors of u; if there is an (` + 1)-center
within 2`+1 distance of s, it assigns that vertex to be the
parent of s. If no such (`+1)-center exists, it includes s into
S`+1 as an (`+1)-center. Also, it locates all (`+1)-neighbors
of s by checking (` + 1)-neighbors of cousins of u.

Lemma 3.1. For any `′ ≥ `, the rank `′ ancestor of the
nucleus of an `-satellite s is an `′-site of s.

Proof. Let v be the nucleus of s and w be the rank `′

ancestor of v. Since |sv| = 2` and |vw| ≤ 2`′+1, by the

triangle inequality, we have |sw| < 2`′+2 < c · 2`′−2.

Lemma 3.2. Given an `-satellite s, for some rank `′ ≥ `,
let u be an `′-site and w be an `′-neighbor of s. Then, w is
either a cousin of u (u’s parent’s neighbors’ child) or an
`′-neighbor of one of the cousins of u.

Proof. Let v be the nucleus of s, u′ be the parent of u
and therefore an (`′+1)-site of s. If w is an input vertex, let
w′ be its parent, otherwise, let w′ be one of its (`′ +1)-sites.

In both cases, |ww′| ≤ c · 2`′−1. Our claim is proven if we
can show that u′ and w′ are (`′+1)-neighbors. Since w is an

`′-neighbor of s, |sw| ≤ c · 2`′ , and since u′ is an (`′ + 1)-site

of s, |su′| ≤ c · 2`′−1. Using the triangle inequality, we have

|u′w′| ≤ c·2`′+1, that is, u′ and w′ are (`′+1)-neighbors.

The correctness proof relies on some technical lemmas. In
our main lemma, we prove that our algorithm progresses
towards a well-spaced superset incrementally (Lemma 3.3).
In order to prove this lemma, we show that the bottom-
up processing order over the ranks ensure that querying
only certain neighbors of a satellite is enough to determine
whether the certificate ball of that satellite is empty or not
(Lemma 3.4). Furthermore, converting, again in a bottom-
up order, only the satellites with empty certificate balls guar-
antees that their certificate balls remain empty—we never
convert a satellite that lies in the certificate ball of a con-
verted satellite (Lemma 3.6). After proving well-spacedness,
we prove that the output is size-optimal as well (Lemma 3.8).

Lemma 3.3. At the end of rank `, all input vertices with
activation ranks ≤ ` and all satellites converted at ranks < `
are 9

2
-well-spaced.

For the base case, at the beginning of rank λ, there are no
active input vertices and no converted satellites, therefore
the claim is trivially true. For the inductive hypothesis, we
assume that at the end of rank `− 1, all input vertices with
activation ranks `− 1 and below and all satellites converted
at ranks `− 2 and below are 9

2
-well-spaced. We break down

the inductive proof into several steps and conclude it later.

Lemma 3.4. The certificate ball of an `-satellite s is empty
of input vertices and earlier converted satellites iff it does not
contain an `′-neighbor of s at ranks `′ ∈ {` − 6, . . . , ` − 3}.

Proof. The only if part of the proof is trivial; if the
certificate ball of s contains a neighbor, clearly, it is not
empty. For the if part, for any rank `′ ≥ ` − 2 and any
`′-neighbor u of s, |su| > 2`−2 because u and s are both
`′-centers. Therefore u cannot be inside the certificate ball
of s. For the case that s has an `′-neighbor u for some

rank `′ ≤ ` − 7, we have |su| ≤ c · 2`′ . Using the triangle
inequality, the rank `−6 ancestor, say u′, of u satisfies |su′| ≤

c ·2`′ + |uu′| < c ·2`−7 +2`−5 < 2`−2 < c ·2`−6. Therefore u′

being an (`−6)-neighbor of s would be inside the certificate
ball of s. Now, given the premise of the lemma, assume
towards a contradiction that a vertex not neighboring s lies
inside the certificate ball and let v be the nearest one.

Since the spanner has a 2-approximation guarantee, s has
a neighbor within distance 2|sv| ≤ 2`−1 < c · 2`−5, thus,
s has an (` − 5)-neighbor. Since v is not a neighbor of s,
v cannot be among the children of (` − 5)-neighbors of s.
More specifically, v is not an (` − 6)-center; if it were, its
parent would have been an (`− 5)-neighbor of s. Therefore,
since v is not an (` − 6)-center, we have NN(v) < 2`−6.
Hence, for some `′ < `, v is either an `′-satellite or an input
vertex with activation rank `′. By the inductive hypothesis,
v is 9

2
-well-spaced. Since v is the exact nearest neighbor

of s, s lies in the Voronoi cell of v. Therefore, we have
|sv| ≤ 9

2
NN(v) < 9

2
· 2`−6 < 2`−3. Let w be the rank

`− 5 ancestor of v, then |vw| < 2`−4, and using the triangle
inequality, we get |sw| < 2`−2 < c · 2`−5. Being that close,
w must be an (` − 5)-neighbor of s. This is a contradiction
to our premise because w is in the certificate ball of s.

In order to better explain our construction algorithm, we
relate the problem of determining which satellites to be con-
verted to the maximal independent subset problem. At a
given rank `, before converting any satellites, consider the
set of `-satellites whose certificate balls are empty. Let the
proximity graph at rank ` be the undirected graph on this
set with edges connecting two `-satellites if and only if they
are within distance 2`−2 from each other. Then we prove:

Lemma 3.5. At each rank `, the algorithm converts a max-
imal independent subset of the proximity graph.

Proof. First, we prove independence. Pick any satel-
lite s that is converted at rank `. By Lemma 3.4, since
we never convert a satellite before ensuring that its certifi-
cate ball is empty, s cannot be 2`−2 close to any existing
vertex prior to its conversion. Similarly, the algorithm can-
not convert an `-satellite that is 2`−2 close to s. Thus, in
the proximity graph, none of the satellites adjacent to s are
converted. For maximality, consider an `-satellite s, none of
whose neighbors in the proximity graph is converted. This
implies that s has an empty certificate ball, therefore s would
be converted when the algorithm tries to insert s.

Using the above lemma, we state a corollary that is useful
in our analysis: the certificate ball of each `-satellite s of each
active input vertex contains a vertex, either the converted
vertex s or a vertex that prohibits the conversion of s.

Lemma 3.6. For any rank `′ ≤ `, there is an empty ball

of radius 2`′−2 around any converted `′-satellite and around
any input vertex with activation rank `′.

Proof. First, consider a converted `′-satellite s. Using
Lemma 3.4, we know that at rank `′, the certificate ball of s
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Figure 4: The points v and w are `-satellites of an
input vertex p. Each of the hyperbolic thick curves
depicts the locus of the points whose distance to an
`-satellite is 2`−2 less than its distance to p. The
Voronoi cell of p is a subset of the weighted Voronoi
cell of p defined by these hyperbolic curves.

(of radius 2`′−2) is empty. Subsequent conversions require

empty certificate balls of radius at least 2`′−2, thus, the cer-
tificate ball of s remains empty. Now, consider an input
vertex v with activation rank `′. We know that all other
input vertices are at least 2`′ far away. Therefore, by the
triangle inequality, for k < `′, all k-satellites of other input

vertices are at least 2`′ − 2k ≥ 2`′−1 far away from v. More-
over, for k ≥ `′, all converted k-satellites have empty balls

of radius 2k−2 ≥ 2`′−2, hence, our result follows.

We prove the inductive step of Lemma 3.3, that all in-
put vertices with activation rank ` and Steiner vertices con-
verted at rank ` − 1 are 9

2
-well-spaced. Figure 4 displays

an input vertex p with activation rank `. By the corollary
to Lemma 3.5, there is a vertex inside the certificate ball
of every `-satellite of p. We know that the vertex q inside
the certificate ball of a given `-satellite, say v, is within 2`−2

distance of v. Considering the locus of the points whose
distance to v is 2`−2 less than its distance to p, the collec-
tion of these hyperbolas defines a weighted Voronoi cell of p.
Observe that none of the points that lies in the half that
contains v can be in the Voronoi cell of p. Consequently,
the weighted Voronoi cell bounds the Voronoi cell of p. The
extreme points of this region are the intersections of two
hyperbolas, which correspond to the circumcenters of the
circles that are tangent to p and to two certificate balls on
the outside. One can show that these circumcenters (e.g.,
c in Figure 4) lie within 9 · 2`−3 distance of p. Then, the
proof of 9

2
-well-spacedness follows from Lemma 3.6, that the

nearest neighbor of p is at least at 2`−2 distance.
In order to prove the 9

2
-well-spacedness of the Steiner ver-

tices, we illustrate an example in Figure 5 displaying an
input vertex p, its (` − 1)-satellites u, v, w, its `-satellites
y and z, and their certificate balls. Assuming that v is con-
verted to a Steiner vertex, we prove that its Voronoi cell lies
within the big ball B(v, 9·2`−4) displayed in the figure. Intu-
itively the proof considers the output vertices in each of the
certificate balls of u, w, y, and z. We prove that p and these
four vertices bound the Voronoi cell of v as desired. Once
again, we consider the weighted Voronoi cell of v, which up-
per bounds the actual Voronoi cell of v, where each of the
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Figure 5: Illustration of the 9
2
-well-spacedness of a

converted (` − 1)-satellite v of an input vertex p. The
weighted Voronoi cell defined by the thick hyper-
bolic curves bound the Voronoi cell of v.

satellites u, w, y, and z has weight equal to the radius of
its certificate ball. Then, we prove that the corners of the
weighted Voronoi cell, or the circumcenters, e.g., a, b, c, lie
within 9 · 2`−4 distance of v. Again Lemma 3.6 states that
the nearest neighbor of v is at least at 2`−3 distance; this
implies the 9

2
-well-spacedness of v.

Lemma 3.7. All Steiner vertices converted at the final rank
are 9

2
-well-spaced.

Proof. We sketch the proof because of space restrictions.
Given an (Λ + 4)-satellite s of an input vertex v, we know
|sv| = 2Λ+4. Since the diameter D is less than 2Λ+2, only
one of the satellites on the same ray as that of s can be
inserted. We prove that for each of the 12 rays, the (Λ+ 4)-
satellite of exactly one of the active vertices is converted
to a Steiner vertex: any satellite s′ that is converted to a
Steiner vertex at rank Λ + 3 is at distance 2Λ+3 away from
its nucleus v′ and by the triangle inequality, |ss′| ≥ |sv| −
(|s′v′| + |v′v|) ≥ 2Λ+4 − (2Λ+3 + D) > 2Λ+2; the certificate
ball of s is empty of output vertices. Then arguments similar
to those in Lemma 3.3 proves well-spacedness.

Lemma 3.8. M is size-conforming with respect to N.

Proof. For any v ∈ M, we show NNM(v) ∈ Ω(lfs(v)).
First, we analyze the vertices by ranks and upper bound
their local feature sizes. If v is an input vertex with ac-
tivation rank `, we have lfs(v) = NNN(v) ∈ O(2`). If v is
an `-satellite with nucleus u, by the Lipschitz condition, we
have lfs(v) ≤ lfs(u) + |uv|. Since the activation rank of u is
at most `, we have lfs(u) ∈ O(2`), and since |uv| = 2`, we
deduce that lfs(v) ∈ O(2`). In both cases, by Lemma 3.6, we
know that NNM(v) ≥ 2`−2, therefore, our result follows.

After the algorithm constructs a 9
2
-well-spaced size-optimal

superset M of the input N, it constructs the Delaunay tri-
angulation of M. Let s ∈ M be either an input vertex with
activation rank ` or a Steiner vertex converted at rank `. Us-
ing Lemma 3.9 the algorithm generates a candidate set by
iterating through each neighbor of s at ranks {`−6, . . . , `−3}
and checking if it lies within 9 ·2`−2 distance of s. With this
candidate set (of constant size), the algorithm applies half-
space tests to determine exactly which of these candidates
are indeed Voronoi neighbors of s.



Lemma 3.9. Let s be a converted `-satellite or an input
vertex with activation rank `. If v is a Voronoi neighbor of s
in M, v and s are `′-neighbors at a rank `′ ∈ {`−6, . . . , `−3}.

Proof. By Lemma 3.6, we know that there is an empty
ball of radius 2`−2 around s. Since s is 9

2
-well-spaced, the

Voronoi cell of s must be confined in a ball of radius 9
2
·2`−2,

which implies |vs| ≤ 9·2`−2. Because of the 2-approximation
guarantee, both v and s have neighbors in the spanner within
18 · 2`−2 distance. Thus, the minimum ranks of v and s are
less than ` − 1. Because of the empty ball, s is an (` − 2)-
center and a discrete center at a lower rank `′ as long as
s has an `′-neighbor. Since 9 · 2`−2 ≥ |vs| > 2`−2, there is
some k ∈ {`− 6, . . . , `− 3} such that c · 2k ≥ |vs| > c · 2k−1.
Then the Voronoi cell of v includes a point at least c · 2k−2

far from v. Since v is 9
2
-well-spaced, there is an empty ball

of radius at least 2
9
· c · 2k−2 > 2k around v. Therefore, v is

a k-center and consequently a k-neighbor of s.

Lemma 3.10. Considering a converted `-satellite s, its
minimum rank λs satisfies ` − 6 ≤ λs ≤ ` − 3.

Proof. By definition of λs, s has a λs-neighbor u within
distance c · 2λs . Since s is converted to a Steiner vertex, its
certificate ball must be empty. Thus, 2`−2 < |su| < c · 2λs ,
that is, 2`/4c < 2λs . This implies `− 7 < λs. For the upper
bound, observe that the nucleus of s is 2` away from s.
Again, by definition of λs, we know that any λs-neighbor
of s is at least c · 2λs−1 away from s. Gao et al. proves that
the nearest of those λs-neighbors provides a 2-approximation
for the exact nearest neighbor of s [14]. Since the nucleus
of s is at 2` distance, we have c · 2λs−1 ≤ 2 · 2`, that is,
2λs ≤ 4

c
· 2`. We conclude, λs < ` − 2.

Lemma 3.11. For any rank `, the number of `-centers in
the spanner is bounded by O(n), i.e., |S`| ∈ O(n).

Proof. By Lemma 3.10, if an `′-satellite s of an input
vertex v is converted to a Steiner vertex, its minimum rank
in the spanner is at least `′−O(1). In particular, for s to be
an `-center, `′ must be bounded by `+O(1), in other words,
|sv| must be bounded by O(2`). Since two `-centers are at
least 2` far apart, a packing argument shows that there can
be at most O(1) satellites of v that are `-centers. The proof
follows using the fact that there are n input vertices.

Theorem 3.12. Our algorithm constructs a 9
2
-well-spaced,

size-optimal superset M of the input N, and computes the
Delaunay triangulation of M in O(n log ∆) time.

Proof. The quality proof follows from the Lemmas 3.3
and 3.7. Lemma 3.8 shows that the output is size-conforming,
which is sufficient to prove size optimality [22]. Finally,
Lemma 3.9 proves that the algorithm correctly computes
the Voronoi diagram, i.e., the Delaunay triangulation of the
superset M. Runtime proof follows from previous discussions
based on Lemmas 3.10 and 3.11.

4. DYNAMIC & KINETIC MAINTENANCE
We present an update algorithm that, given a dynamic

modification or a kinetic event, updates the set of Steiner
vertices and the corresponding Delaunay triangulation so
that the output remains to be a quality, size-optimal trian-
gulation. The update algorithm is a change-propagation al-
gorithm: it maintains a set of affected satellites for each rank

Update the spanner S restricted to N

for each rank `,F` = P` = ∅
for each affected input vertex v

ρ′v ← ρv, ρv ← λv (in S restricted to N)

if ρv 6= ρ′v then

for each rank ` between ρv and ρ′v (inclusive)

F` ← F` ∪ {`-satellites of v}
for each violated ball-empty/ball-not-empty certificate

F` ← F` ∪ {s}, where s is the `-satellite involved

for each affected Steiner vertex s

P` ← P` ∪ {s}, where ` is the rank of affection

for each rank ` with F` ∪ P` 6= ∅
for each s ∈ F` ∩ S Remove(S, s)

for each s ∈ F`

v ← nucleus of s

if (ρv = ` or ∃ a converted (`− 1)-satellite of v)

and BallEmpty(S, s, 2`−2) then Convert(S, s, `)

for each nucleus v of each satellite s ∈ F`

if an `- or (` + 1)-satellite of v is converted then

F`+1 ← F`+1 ∪ {(` + 1)-satellites of v}

S`+1 ← UpdatePromotion(F` ∪ P`)

for each rank ` and each affected s ∈ N with ρs = `

or each `-satellite s ∈ M ∩ (F` ∪ P`)
V ← ∪`′∈{`−6,...,`−3}`′-neighbors of s

IdentifyVoronoiNeighbors(s, V )

Figure 6: Psuedo-code for the update algorithm.

and repairs each rank consecutively. The algorithm therefore
is trivially O(log ∆)“stable” at the level of abstraction of the
ranks, i.e., it has to repair only O(log ∆) ranks to update the
output. To bound the total update runtime, we show that
there are O(1) affected satellites at each rank (Lemma 4.5)
and that repairing each rank requires amortized O(1) time,
yielding our final bound on responsiveness (Theorem 4.7).

As required by the KDS framework, we certify both the
spanner structure and our extension of it. For the spanner,
we use the same set of certificates (parent-child, edge, sepa-
ration, and potential neighbor) used by Gao et al. [14]. For
the extension, we generate our own certificates. We certify
the conversion decisions for each `-satellite s considered. If
the certificate ball of s is not empty, we generate a ball-not-
empty certificate to certify that a vertex v ∈ M lies inside
B(s, 2`−2). Otherwise, we generate a ball-empty certificate
to certify that v /∈ B(s, 2`−2) for each `′-neighbor v of s for
`′ < `. For certifying the Delaunay triangulation, we ob-
serve by Lemma 3.9 that, for each converted `-satellite s,
neighbors of s at ranks {` − 6, . . . , ` − 3} constitute its po-
tential Voronoi neighbors. We certify the halfspace tests
performed for determining the Voronoi cell of s considering
this candidate set. These discussions allow us to state:

Lemma 4.1. The certificates generated by our construc-
tion algorithm certifies that the output is the Delaunay tri-
angulation of a size-optimal and well-spaced superset of the
given input set.

Upon a certificate failure or a dynamic modification, the
update algorithm whose pseudo-code is shown in Figure 6
updates the output and the set of certificates. Following the
structure of the construction algorithm, in three stages, it
repairs the proximity graph and updates the maximal inde-
pendent subset of satellites chosen at each rank. It keeps
two sets of vertices at each rank for affected satellites. The



first set, F , tracks the satellites that may be required to
be removed or converted to Steiner vertices, we call them
fully affected. The second set, P, tracks the satellites which
are previously converted and whose ball-empty certificates
remain unaffected. These satellites, which we call partially
affected, are not required to be removed; however, we may
need to promote or demote these vertices in the spanner.

In the first stage, the update algorithm updates the span-
ner data structure restricted to the input vertices using the
update procedure described in Section 2.3. It updates the
diameter and the activation ranks of the input vertices if
needed. Each of these updates may partially/fully affect cer-
tain satellites. The algorithm then initializes F` and P` lists.
For each input vertex whose activation rank has changed, it
marks all satellites at ranks between the previous and cur-
rent activation ranks as fully affected as these satellites may
need to be removed or considered for conversion. Also, for
Steiner vertices, if any of the ball-empty or ball-not-empty
certificates has failed, it marks the corresponding satellite
fully affected. It marks all other satellites related to failed
certificates as partially affected at the rank at which the
certificate is defined.

In the second stage, the update algorithm iterates through
each rank, updating the structure in three phases: remove,
convert, and repair. In the remove phase, it removes the fully
affected satellites from the spanner by calling Remove, which
removes a satellite s in a bottom-up pass starting from its
minimum rank λs until its maximum rank Λs by removing
it from the neighbors, parent, and child lists. This function
runs in O(Λs − λs) time. In the convert phase, similar to
the construction algorithm, the update algorithm tries to
convert all fully affected satellites (including the ones that
are removed earlier) to Steiner vertices, provided that their
nuclei are active and their certificate balls are empty. Fi-
nally, in the repair phase, the update algorithm repairs the
discretization at the next rank by updating the promotion
decisions for the affected Steiner vertices using UpdatePro-

motion, which performs the discretization step only on the
affected Steiner vertices. This function takes linear time in
the number of affected Steiner vertices, which we prove to be
of constant size. After the update algorithm is done with the
second stage, it updates the Delaunay triangulation in the
third stage by computing the up-to-date Voronoi neighbors
of the affected vertices.

If an update affects a ball-empty/ball-not-empty certifi-
cate of an `-satellite s, it enqueues s into the F` list. The
only exception to this rule is that the update algorithm never
enqueues a satellite into F lists if its ball-empty certificate
is affected during a call to Remove. If an update affects an
edge/potential-neighbor certificate of an Steiner vertex s at
rank `, the algorithm enqueues s into the P` list. Similarly,
if an update affects a parent-child/separation certificate of
two vertices at consecutive/same ranks, it enqueues these
vertices in P` (P`+1) list. Finally, if an update affects a
Voronoi certificate, it enqueues the `-satellite for which the
Voronoi cell is being computed to P` list. Based on our up-
date algorithm, we state following lemma without a proof.

Lemma 4.2. After the iteration at rank `, the spanner
contains a maximal independent subset of the satellites in
the up-to-date proximity graph at rank `.

Lemma 4.3. At rank `, the number of active vertices in a
ball of radius O(2`) is bounded by O(1).

Proof. A vertex v inside the given ball may be active
for two reasons. Either its activation rank is ` or one of its
satellites at rank ` − 1 is converted. In the first case, we
bound the nearest neighbor distance of v by Ω(2`). Thus,
a packing argument bounds the number of vertices that fall
into the first case by O(1). In the second case, let s be a
converted (`− 1)-satellite of v. Then, there is an empty ball
around s with radius Ω(2`). At a fixed rank and ray, all
satellites are shifted versions of input vertices. Therefore, if
the (` − 1)-satellite on the same ray (same polar angle) of
another vertex u is converted, we have |uv| ∈ Ω(2`). Similar
packing arguments bound the number of such vertices by
O(1) for each ray r. Since there is a constant number of
rays, the result follows.

In order to bound the runtime of our updates, we define
the focus of the dynamic update or the kinetic event as one
of the input vertices and prove that all modifications take
place around the focus. For a dynamic modification the fo-
cus is the vertex being inserted or deleted. For a kinetic
event, consider the vertices/satellites involved in the certifi-
cate failure. Representing the satellites with their nuclei
and input vertices by themselves, the focus is any of the two
representations of the points involved in the certificate.

Lemma 4.4. Consider a kinetic event or a dynamic mod-
ification and let p be the focus. For any rank `, any satellite
in F` or P` lists is O(2`) away from p.

Proof. We sketch the proof this lemma. We use induc-
tion over the order in which the algorithm inserts satellites
into these lists. For the base case, we consider the affected
lists at the end of the first stage. Fix rank ` and consider
a satellite s satisfying the premises. Construction and the
update algorithms of Gao et al. perform local operations at
each rank. More specifically, given the focus p, if the up-
date removes or inserts an edge in the spanner at rank `,
the vertices incident to the edge are within O(2`) distance
of p. Therefore, if s is enqueued into these lists while repair-
ing the initial spanner structure then |sp| < O(2`). Simi-
lar to the base case, we prove that if applying an update
on a satellite s1 affects another satellite s2 and s2 is ei-
ther fully affected at or partially affected at rank `′, then

|s1s2| < O(2`′ ). Geometrically relating the affected satel-
lites defines a dependence path from each affected satellite
to the focus p. Except for a constant overhead, all the ef-
fects grow in ranks, therefore, using the triangle inequality
on any of the paths from p to s, we can bound the distance
between p and s by a geometric series with constantly many
repetitions of the terms. Using the fact that a geometric
series is dominated by its last term, and the fact that the
last term is O(2`), we conclude our result.

Lemma 4.5. For any rank `, there are O(1) satellites in
F` and P` lists.

Proof. Let s be an affected satellite, by Lemma 4.4, s lies
inside a ball of radius O(2`) around the focus p. We analyze
the two cases, s ∈ F` and s ∈ P` and prove that in each
case there is a constant number of such satellites. For the
first case, assume that s ∈ F`, i.e., s is an `-satellite of an
active vertex. The nucleus lies inside a slightly larger ball
around p of radius O(2`). Lemma 4.3 proves that there are
only O(1) many vertices; since a vertex has O(1) satellites
at a given rank, we conclude the first case. For the second



case, assume that s ∈ P`, i.e., s is an `-center. Therefore,
s is at least 2` far from another `-center. Since s is O(2`)
close to p, a packing argument bounds the number of such
vertices by O(1) as well.

Lemma 4.6. The total runtime of Remove calls made by
the update algorithm is O(log ∆).

Proof. By Lemma 4.4, for each rank `, all of the fully
affected satellites are within O(2`) distance of the focus p.
The runtime required to remove these affected satellites is
T <

PΛ
`=λ

P

s∈F`
α · (Λs − λs), where λ and Λ are the min-

imum and the maximum rank of the spanner and α is the
constant in the big-Oh notation hidden in the runtime of the
Remove function. Using Lemma 3.10 to bound λs, we rewrite
T < O(log ∆) + α ·

PΛ
`=λ

P

s∈F`
(Λs − `). Rearranging, we

get T < O(log ∆)+ α ·
PΛ

`=λ

PΛ
`′=` |{s | s ∈ F`, Λs > `′}|

= O(log ∆) + α ·
PΛ

`′=λ

P`′

`=λ |{s | s ∈ F`, Λs > `′}|. For

any given `′, we claim that
P`′

`=λ |{s | s ∈ F`, Λs > `′}| is
bounded by O(1): for any ` ≤ `′, the Steiner vertices in F`

are within O(2`′ ) distance of the focus p and any vertex with
Λs > `′ is an `′-center; each of them has an empty ball of

radius 2`′ . Then, a packing argument proves our claim and
we get T = O(log ∆).

Theorem 4.7. Given a kinetic event or a dynamic mod-
ification, the update algorithm repairs the spanner structure
and the well-spaced, size-optimal superset in O(log ∆) time.

Proof. At each rank, ensuring that the output contains
a maximal independent subset proves well-spacedness (Lem-
mas 3.3, 3.7, and 4.2). Since we update the minimum ranks
of affected input vertices, we can apply Lemma 3.8 to en-
sure size-optimality as well. Lemma 4.5 bounds the total
number of affected satellites by O(log ∆). Processing each
of the affected satellites takes O(1) time except for removal.
Lemma 4.6 bounds the total runtime of the removal of the
satellites by O(log ∆). Thus, our result follows.

5. QUALITY OF THE KDS
In order to prove the efficiency of our kinetic data struc-

ture we show that our KDS is responsive, local, compact,
and efficient. We proved responsiveness in the previous sec-
tion. In this section, we prove that our KDS is compact and
local, i.e., it has near linear total number of certificates, and
each input vertex participates in a logarithmic number of
certificates. Then, we prove that our KDS is efficient, i.e.,
there are not too many certificate failures compared to the
number of combinatorial changes required in the worst case.

Lemma 5.1. Every input vertex participates in O(log ∆)
certificates. In total, our kinetic data structure maintains
O(m) certificates, where m is |M|.

Proof. Consider an input vertex v and fix a rank `. In
Lemma 3.11, we prove that v has O(1) converted satel-
lites that are `-centers in the final spanner. Since there are
O(log ∆) ranks and since each of the `-centers is associated
with a constant number of certificates, each input vertex,
through its satellites, participates in O(log ∆) certificates.
For the total number of certificates, we already know that
the resulting spanner has O(m) neighbor edges and that
there are O(m) ball-empty certificates. We are left to prove
that there are O(m) ball-not-empty certificates. For each

t = 1 ⇒

t = 3/2 ⇒

Figure 7: Consider a horizontal line of 2k evenly-
spaced vertices: (0, 0), (1, 0), . . . (2k, 0), and a second
line ε above the first line: (0, ε), (1, ε), . . . (2k, ε). As-
sign a fixed velocity vector (1, 0) to the vertices of
the lower line. The upper line does not move.

satellite that is not converted, we charge its ball-not-empty
certificate to an inserted satellite at the previous rank or if
no such satellite exists to its nucleus. Using this approach,
every Steiner vertex or input vertex is charged at most O(1)
ball-not-empty certificates. There are O(m) vertices in the
output, therefore, the result follows.

We know that each input vertex may introduce O(log ∆)
many satellites, a total of O(n log ∆). Most of our certifi-
cates are distances between pairs of vertices and there are
O(log ∆) different distances we consider, therefore, our al-
gorithm processes a total of at most O(n2 log3 ∆) events
through these types of certificate failures. For certifying the
Delaunay triangulation, by the above analysis, we know that
the candidate Voronoi neighbor set of a given Steiner vertex
changes O(n log2 ∆) many times. There are O(1) halfspace
tests performed to determine the exact Voronoi cell, hence,
our algorithm processes a total of at most O(n2 log3 ∆) events
altogether. We show that there exist examples for which
maintaining a size-optimal well-spaced point set requires
Ω(n2 log ∆) combinatorial changes. Specifically, consider
the example shown in Figure 7 with n = 4k points and
ε = 1/k and let time evolve from t = 0 to k. The di-
ameter is Θ(n) and the minimum pairwise distance oscil-
lates between Θ(1) at half-integer times and Θ(ε) at integer
times. The spread is therefore ∆ ∈ Θ(n/ε), which implies
log ∆ ∈ Θ(log ε−1).

Lemma 5.2. At integer times, a well-spaced superset re-
quires Ω(n log ∆) Steiner vertices to be inserted.

Proof. Ruppert proves [22] that even the smallest well-
spaced superset of an input has

R

Ω
lfs−d(x)dx vertices, where

Ω denotes the domain. To bound the integral, for each pair
(ui, vi) of ε-close vertices, take their midpoint pi. We define
a set of non-overlapping balls B(pi, 1/2) for each of the at
least k pairs of ε-close vertices. The integral over all of Ω is
lower-bounded by the sums of the integrals over each ball:

Z

Ω

lfs−d(x)dx ≥
k

X

i=1

Z

B(pi,1/2)

lfs−d(x)dx

At the midpoint, lfs(pi) = ε/2. Because lfs is 1-Lipschitz,
lfs(x) ≤ |pix| + ε/2. Then the integral over each ball is at
least Ω(log ε−1). Since k = n/4, the sum is Ω(n log ε−1).

Lemma 5.3. At half-integer times, inserting O(n) Steiner
vertices is sufficient for the lower bound example of Figure 7.

Proof. This proof requires some results from the field
of curve reconstruction. We refer to the book by Dey [11]
for an introduction. The key result we establish is that the
input vertices form a good sample of a smooth curve: it is
sufficiently dense so that no point of the curve is too far
from a vertex, but sufficiently sparse so that no two vertices



are too close to each other. Density and sparsity are both
relative to the distance from the curve to its medial axis.
We can fit a sinusoidal curve through the vertices as they
are arranged at half-integer times; the curve has amplitude
ε/2. Any point on the curve is at distance less than 1/2
from an input vertex. Meanwhile, the medial axis of the
curve is at distance 1

8ε
+ ε

2
= Θ(1/ε) from the curve. Thus

the vertices form an O(ε)-dense sample of the curve. Vertices

are at distance
p

ε2 + 1/4 ≈ 1/2 from each other, thus they
form an Ω(ε)-sparse sample. Hudson, Miller, Phillips and
Sheehy [19] show that such a vertex set has a well-spaced
superset of size O(n).

Lemma 5.4. The lower bound example of Figure 7 re-
quires Ω(n2 log ∆) Steiner vertex insertions and deletions.

Proof. At integer times, the input requires Ω(n log ∆)
Steiner vertices to be made well-spaced. At half-integer
times, the input requires that there be no more than O(n)
Steiner vertices to be size-optimal. Thus, any algorithm that
maintains a size-optimal well-spaced superset must add and
subsequently remove Θ(n log ∆) vertices for every unit of
time, a total of Ω(n2 log ∆) such changes.

6. CONCLUSIONS
This paper presents an effective kinetic data structure for

kinetic mesh refinement in the plane. Our approach is in-
spired by self-adjusting-computation techniques and criti-
cally relies on deformable spanners [14]. Our bounds refer
to the spread ∆, which a priori has no relationship to the
input size n. However, if the points form an ε-net of a mani-
fold, then the spread is at worst linear in n. This is because
in an ε-net, no point of the manifold is further than ε from
an input point, which bounds the diameter by O(nε), and
no two input points are at distance o(ε) from each other,
which bounds the closest pair by Ω(ε). Furthermore, the
output size m is in O(n) [19]. In other words, if points are
a sample taken from a moving manifold, then our KDS has
linear size and is efficient in the usual sense of being within
a polylog(n) factor of optimal.

Our result applies only to the planar case, though it is
very promising for arbitrary-dimension extension. The two
missing pieces are: (1) a definition of satellites in higher di-
mensions, which will let us kinetically maintain well-spacing;
(2) a kinetization of a method to convert a well-spaced point
cloud into a quality mesh (e.g. [10]), since the direct corre-
spondence between well-spacing and Delaunay mesh quality
only applies in two dimensions.
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