
Kinetic Mesh Refinement in 2D

Umut A. Acar∗ Benoı̂t Hudson† Duru Türkoğlu‡

Abstract
Mesh refinement is an essential step in many applications
such as surface reconstruction, physical simulations, more
broadly in scientific computing, graphics, etc. Kinetic
mesh refinement is the problem of maintaining a qual-
ity mesh of continuously moving points; this problem has
been open. In this paper, we provide a kinetic data struc-
ture (KDS) that maintains the Delaunay triangulation of
a size-optimal well-spaced superset of a set of moving
points with algebraic trajectories of constant degree. Our
KDS is compact; it has linear output-sensitive memory
consumption. It is responsive; it repairs itself inO(log ∆)
time per kinetic event. Also, it is efficient; in the worst
case it processes O(n2 log3 ∆) events, which is optimal
up to a polylogarithmic factor. Here, ∆ is the geometric
spread of the input, the ratio of the diameter to the closest
pair distance. Furthermore, our KDS is highly local; in
addition to kinetic events, it also handles dynamic modifi-
cations, insertions and deletions of input points. Updating
the structure after a dynamic modification takes O(log ∆)
time. To the best of our knowledge, this is the first KDS
for mesh refinement.

1 Introduction
The idea behind mesh refinement is to break up a physi-
cal domain into discrete elements, e.g., triangles, so that
properties of the domain may be computed by consider-
ing the discrete elements. For this approach to be effec-
tive, we need the elements constituting a mesh possess
certain quality properties, e.g., no small angles, which
we achieve by inserting additional points, called Steiner
points, into the mesh. An important instance of this prob-
lem, known as kinetic mesh refinement, concerns compu-
tation of meshes of continuously moving points.

Our approach to kinetic mesh refinement is motivated
by the well-spaced point sets problem. Formally, a set
of points M is well-spaced if for each point p ∈ M, the
ratio of the distance to the farthest point in the Voronoi
cell of p divided by the distance to the nearest neighbor
of p in M is small [13]. In two dimensions, well-spaced
∗Max-Planck Institute for Software Systems
†Autodesk Inc.
‡University of Chicago

point sets relate strongly to meshing: a well-spaced point
set induces a Delaunay triangulation with no small angles
and the Delaunay triangulation of a well-spaced point set
can be computed efficiently by performing local compu-
tations only. Therefore, as a first step, we focus on the
well-spaced point set problem, which we define as the
construction of a well-spaced output that is a superset of a
given set of input points. An important criterion in mesh
refinement is to insert as few Steiner points as possible.
The output is size-optimal if its size is within a constant
factor of the size of the smallest well-spaced superset.

We assume that the input points move along alge-
braic trajectories of constant degree and analyze the prob-
lem within the Kinetic Data Structures (KDS) framework
introduced by Basch et al [3, 9]. In general, a KDS
maintains a geometric structure and a set of certificates,
which certifies the validity of the geometric structure be-
ing maintained. When a certificate fails, the KDS repairs
itself and updates the geometric structure, consequently,
updates the set of certificates that certifies the new struc-
ture. A good KDS has four properties: (i) responsiveness,
that is, it responds to a certificate failure efficiently; (ii)
compactness, that is, it generates a small set of certifi-
cates; (iii) locality, that is, each point is associated with a
small number of certificates so that the KDS can respond
to motion plan changes quickly; (iv) efficiency, that is, the
number of events that the KDS processes is only a poly-
logarithmic factor more than the worst case maximum
number of topological changes in the geometric structure.

The mesh refinement problem has been studied since
the 1980s [4, 6]. Although a lot of progress has been made
on meshing static, non-moving point sets, to the best of
our knowledge, there is no solution for kinetic mesh re-
finement, which is efficient and has quality guarantees.
For example, for maintaining the Delaunay triangulation
of a given set of points (without inserting Steiner points),
the best proven upper bound on the number of topologi-
cal changes is nearly cubic [7, 10], while the lower bound
is nearly quadratic. On the other hand, there are recently
proposed efficient triangulation schemes that suffer from
the quality criteria [1, 2, 12].

For mesh refinement in the static case, two efficient ap-
proaches have been proposed for selecting Steiner points.

1

The first approach, based on balanced quadtrees, gen-
erates an appropriately refined quadtree over the input
points and adds the corners of the quadtree squares [5].
The second approach, based on Voronoi diagrams, main-
tains a Voronoi diagram of the set of points and itera-
tively adds Steiner points selected from the set of Voronoi
nodes [11]. Both of these approaches run in O(n log ∆)
time, where ∆ is the ratio of the diameter to the closest
pair distance in the input. Naively kinetizing previous
meshing algorithms fails to provide an efficient solution.
In the case of quadtree techniques, the main problem is
the quadtree. Since a quadtree partitions the space into
fixed subspaces, two points at distance ε away from each
other, moving along parallel linear trajectories, will cross
into a new quadtree cell after moving a distance of only
Θ(ε), generating an arbitrary number of events. In the
case of Voronoi diagram based techniques, the problem is
the representation of the trajectories of Steiner points. The
location of a Steiner point, being placed at the circumcen-
ter of a simplex, depends on three points some of which
may themselves be Steiner points. Thus the location of a
Steiner point can have as large as polynomial complexity
failing to meet responsiveness and locality requirements.

We propose a KDS for maintaining the Delaunay tri-
angulations of size-optimal well-spaced point sets under
motion. We use the deformable spanners of Gao, Guibas,
and Nguyen [8] as a point location structure and extend it
to support faster insertions. To ensure that the trajectories
of Steiner points can be represented efficiently, we use a
picking strategy where the coordinates of a Steiner point
depend only on one input point. We provide a construc-
tion algorithm that first constructs a well-spaced superset
of its input and then determines the Delaunay triangula-
tion of this superset. We propose an update algorithm for
maintaining the structure under motion. Using these al-
gorithms, we prove that our KDS yields triangulations of
size-optimal well-spaced point sets and satisfies the cri-
terion which determines the quality of a KDS. Assuming
that the geometric spread stays within a constant factor
of the initial geometric spread, updating after a certificate
failure takes O(log ∆) time (responsiveness). In total, we
process O(n2 log3 ∆) events in the worst case, whereas
there exist examples where Ω(n2 log ∆) points must be
added and removed causing that many events (efficiency).
We store O(log ∆) certificates per point (locality), a total
of O(m) (compactness), where m is the size of the out-
put, which is bounded by O(n log ∆). Our structure also
handles dynamic modifications to the input, insertion and
deletions of input points. We show that the update algo-
rithm employed in our KDS updates the mesh inO(log ∆)
time per insertion/deletion.

2 Overview
Preliminaries. Given a set of points N, we define the
geometric spread (∆) to be the ratio of the diameter to the
distance between the closest pair in N. To define a notion
of quality, we introduce a domain Ω to be a ball centered
at an arbitrary input point with radius at least four times
the diameter of the given input N. We use the term point
to refer to any point in Ω and the term vertex to refer to
the input and output points. Given a vertex set M, the
nearest-neighbor distance of v in M, written NNM(v),
is the distance from v to the nearest other vertex in M.
The Voronoi cell of v inM, written VorM(v), consists of
points x ∈ Ω such that for all u ∈ M, |ux| ≥ |vx|. A
vertex v is ρ-well-spaced if the Voronoi cell of v is con-
tained in the ball with radius ρNNM(v) centered at v;M
is ρ-well-spaced if every vertex in M is ρ-well-spaced.
Figure 1 illustrates these definitions.

To solve the kinetic mesh refinement problem in two
dimensions, we consider an exponentially distributed set
of potential Steiner vertices surrounding each input ver-
tex, use the deformable spanners (Gao et al. [8]) as a
point location data structure for proximity computation,
and a greedy strategy for decimating output vertices so
that the remaining vertices are well-spaced. Once we ob-
tain a well-spaced output, we take advantage of the well-
spacedness property and use the point location structure
to identify the Voronoi neighbors of each output vertex,
i.e., the Delaunay edges between the output vertices.

Steiner Vertex Selection. Steiner vertex selection in
prior meshing algorithms has typically been based either
on a global scheme (as in quadtree-based refinement), or
on the shape of Voronoi cells (as in Voronoi refinement).
Neither of these approaches fit into the kinetic setting
well. The main difficulty is to generate a well-spaced
superset that is in motion in a way that matches the in-
put. We propose a solution using a local template ap-
proach. We assign an infinite number of potential Steiner
vertices, which we call satellites, to every input vertex.
For a satellite u of v, we say that v is the nucleus of u.
The satellites are fixed to the local coordinate frame of
their nucleus: the satellites’ position curves are identical
to their nucleus’ position curve, plus a fixed translation
(shift). In addition, we require the template to be well-
spaced, so that if we create an infinite point cloud consist-
ing of one vertex and all its satellites, we would have a
well-spaced point set. Furthermore, we require the spac-
ing between satellites to be proportional to their distance
from the nucleus: NNM(u) ∈ Θ(|uv|), whereM is the
infinite mesh. These properties allow us to produce a well-
spaced, size-optimal output. We describe the location of
the satellites of an input vertex as follows:

2

wu 9

2

_
vu| |

6| |vu
y

z
v

Figure 1: Let M = {v, u, w, y, z}. The
nearest neighbor distance of v, NNM(v),
is |vu|. Thick lines depict the Voronoi cell
of v, VorM(v); v is 6-well-spaced, but not
9
2 -well-spaced.

v

u w

Figure 2: Zooming onM, first two orbits and some rays of v (nu-
cleus) are displayed. In total there are 24 rays with equal angles in
between. Part of the Voronoi cell of v is displayed in thick lines.
The innermost orbit has rank equal to the size of v. Particular inter-
sections of the rays with orbits form satellites.

Consider concentric circles of radius 2` around every
input vertex where ` ∈ Z is the rank of these circles. We
define the size of an input vertex v, written 〈v〉, to be the
largest rank ` such that the circle at rank ` (of radius 2`)
does not contain any other input vertex. For each input
vertex v of size `, we define its orbits to be the circles
centered at v that are at ranks ≥ `. Furthermore, consider
24 rays leaving each input vertex at angles θ, 2θ, . . . , 24θ,
where θ = π/12. Defining odd (even) rays to be rays at
angles that are odd (even) multiples of θ, we choose cer-
tain translations to define the satellites: the intersections
of odd rays with orbits at odd ranks and the intersections
of even rays with orbits at even ranks. Intuitively, this
template defines a discrete polar coordinate system, where
the nucleus defines the origin, the rank defines the radius
(exponentially), and the ray defines the polar angle. More
formally, for given v ∈ N, ` ∈ Z, and r ∈ {1, . . . , 12}, we
use v`,r to denote the satellite which has nucleus v, is on
the orbit at rank `, and on the ray at angle 2rθ if ` is even,
or on the ray at angle (2r− 1)θ if ` is odd. For shorthand,
we say that v`,r is the `-satellite of v on ray r. Figure 2
illustrates these definitions.

Construction Algorithm. We build a triangulation in
two stages: first, we construct a well-spaced superset of
the input by inserting certain satellites and eliminating
rest of them, then, we identify the Delaunay triangula-
tion of the well-spaced superset of the first stage. In the
first stage, we insert those satellites that are guaranteed
not to cause small features. More specifically, for any `-
satellite s, defining the certificate ball of s to be the ball
of radius 2`−2 centered at s, we insert s if and only if its
certificate ball is empty. In order to ensure that the cer-
tificate balls of the inserted satellites remain empty, we
process the satellites in increasing rank order. In the sec-
ond stage, we identify potential Voronoi neighbors of each

KineticWSP (N) =
Construct point location structure S for N
D ← ApproxDiameter(S)
for each v ∈ N do
〈v〉 ← ApproxSize(S, v)

for ` = minv∈N 〈v〉 to dlg 4De do
for each v ∈ N do
if 〈v〉 ≤ ` and Active(v, `) then
for r = 1 to 12 do
if BallEmpty(S, v`,r, 2`−2) then
InsertSteiner(S, v`,r)

for each v`,r ∈ S do
CertifySteiner(S, v`,r)

for each v ∈ N do
for each inserted satellite s of v do
SetVoronoiNeighbors(S, s)

Figure 3: The psuedo-code for the construction algorithm

vertex, which by the well-spacedness property is guaran-
teed to be of constant size. We determine whether if each
of these potential neighbors is actually a neighbor or not.

Processing satellites in increasing rank order allows us
to progress towards a well-spaced output incrementally.
More specifically, the satellites inserted at the current rank
bound the Voronoi cells of the satellites inserted at the pre-
vious rank, making them well-spaced. Using this prop-
erty, we prove the invariant that at the end of each rank
all satellites inserted at the previous rank become and re-
main well-spaced. Another important observation is that
if none of the previous rank satellites of an input vertex is
inserted then it is unnecessary to insert any of the satel-
lites of that vertex at the current rank. This observation
proves to be helpful in achieving efficient dynamic and
kinetic updates, thus in our algorithm, we only consider
the satellites of the active input vertices: an input vertex v
is active at its first rank 〈v〉 and it continues to be active at
higher ranks as long as one of its satellites gets inserted at
the current rank.

3

In order to better understand the underlying process,
we relate the problem of determining which satellites to
be inserted to the maximal independent subset problem.
At a given rank `, before inserting any satellites, consider
the `-satellites whose certificate balls are empty. Let the
proximity graph at rank ` be the undirected graph on these
`-satellites with edges connecting two of them if and only
if they are within distance 2`−2 from each other. What
our algorithm does is equivalent to inserting a maximal
independent subset of these satellites. Indeed, we prove
that choosing any maximal independent subset would be
sufficient to construct a well-spaced, size-optimal output.

Our construction algorithm uses the point location data
structure to build a set of certificates that certify the well-
spacedness of the output and the validity of its Delaunay
triangulation. These certificates confirm the activity sta-
tus on all input vertices and prove that the output is com-
posed of the input and a maximal independent subset of
the proximity graph at each rank.

Dynamic and Kinetic Maintenance. Upon a certificate
failure or a dynamic modification, we update the well-
spaced superset, its triangulation, and the set of certifi-
cates. Following the structure of the construction algo-
rithm we iterate over ranks, repair the proximity graph and
update the maximal independent subset of satellites cho-
sen at each iteration. During the update, we may need to
remove and insert satellites at each rank. In order to deter-
mine a maximal independent subset of the new proximity
graph, the decisions we make at that rank should not be
affected by higher rank satellites present in the spanner.
Therefore, at rank `, instead of using the complete de-
formable spanner S, we use the structure induced by the
vertices of rank ` or less. We call the induced structure
the restriction of S to rank `, and denote it by S|`. For
the restriction of S to the input (vertices), we use S|0. We
keep two sets of vertices at each rank for affected satel-
lites. The first set, F , tracks the satellites that may be
required to be inserted or removed, we call them fully af-
fected. The second set, P , tracks the affected satellites
which are previously inserted and whose certificates that
certify their insertion remain unaffected. These satellites,
which we call partially affected, are not required to be re-
moved; however, we do need to fix their representations
in the data structure by reinserting them.

Our update algorithm starts by repairing S|0. Then,
it computes the current diameter and updates the sizes
of affected input vertices. Iterating through each rank `,
it updates the well-spaced superset in three phases: re-
move, repair, and insert. In the remove phase the algo-
rithm removes the fully affected satellites from the span-
ner, S|`. In the repair phase, it reinserts the partially af-

fected satellites so that S|` is repaired. In the insert phase,
similar to the construction algorithm, it tries to insert all
fully affected satellites (including the ones that are re-
moved earlier) into the data structure. The last step of
the insert phase is certification; in this step the algorithm
(re)certifies that the certificate balls of all affected satel-
lites in the data structure are empty. Then the update aglo-
rithm moves to the second stage, updating the triangula-
tion. Having repaired the well-spaced superset, the update
algorithm repairs the Voronoi cells (Delaunay edges) of
each of the affected output vertices.

It is important to note that our update algorithm han-
dles batch updates, therefore, we can handle any possible
degeneracies (certificates that have the same failure times)
that might occur due to translations of same input vertices.
More importantly, we prove that we can bound the size of
these degeneracies by a constant, therefore, we process
each kinetic update, a single event or a batch of constant
size, asymptotically in O(log ∆) time.

References
[1] Pankaj K. Agarwal, Jie Gao, Leonidas J. Guibas, Haim Kaplan,

Vladlen Koltun, Natan Rubin, and Micha Sharir. Kinetic stable
delaunay graphs. In SCG ’10: 26th Annual Symposium on Com-
putational Geometry, 2010.

[2] Pankaj K. Agarwal, Yusu Wang, and Hai Yu. A two-dimensional
kinetic triangulation with near-quadratic topological changes. Dis-
crete & Computational Geometry, 36(4):573–592, 2006.

[3] Julien Basch, Leonidas J. Guibas, and John Hershberger. Data
structures for mobile data. J. Algorithms, 31(1):1–28, 1999.

[4] Marshall Bern, David Eppstein, and John R. Gilbert. Provably
Good Mesh Generation. Journal of Computer and System Sci-
ences, 48(3):384–409, 1994.

[5] Marshall W. Bern, David Eppstein, and Shang-Hua Teng. Parallel
construction of quadtrees and quality triangulations. Intl Journal
of Comput. Geom. and App., 9(6):517–532, 1999.

[6] L. Paul Chew. Guaranteed-quality triangular meshes. Techni-
cal Report TR-89-983, Department of Computer Science, Cornell
University, 1989.

[7] Jyh-Jong Fu and R. C. T. Lee. Voronoi diagrams of moving points
in the plane. In FST and TC 10: 10th Conf. on Found. of soft. tech.
and Theor. comp. sci., pages 238–254, New York, NY, USA, 1990.

[8] Jie Gao, Leonidas J. Guibas, and An Nguyen. Deformable span-
ners and applications. Computational Geometry: Theory and Ap-
plications, 35(1):2–19, 2006.

[9] Leonidas J. Guibas. Kinetic data structures: a state of the art report.
In WAFR ’98: 3rd Workshop on alg. found. of robotics, pages 191–
209, Natick, MA, USA, 1998. A. K. Peters, Ltd.

[10] Leonidas J. Guibas, Joseph S. B. Mitchell, and Thomas Roos.
Voronoi diagrams of moving points in the plane. In 17th Intl. Work-
shop Graph-Theoretic Concepts Computer Science, pages 113–
209. Springer-Verlag, Inc., 1992.

[11] Benoı̂t Hudson, Gary L. Miller, and Todd Phillips. Sparse Voronoi
Refinement. In 15th Intl. Meshing Round., pages 339–356, 2006.

[12] Haim Kaplan, Natan Rubin, and Micha Sharir. A kinetic triangu-
lation scheme for moving points in the plane. In SCG ’10: 26th
Annual Symposium on Computational Geometry, 2010.

[13] Dafna Talmor. Well-Spaced Points for Numerical Methods. PhD
thesis, Carnegie Mellon University, August 1997.

4

