
EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

Kinetic Data Structures for Clipped Voronoi Computations

Duru Türkoğlu∗

Abstract

We consider the mesh refinement problem in the ki-
netic setting: given an input set of moving points, the
objective is to design a kinetic data structure (KDS)
for inserting additional so-called Steiner points so that
the resulting output set yields a quality triangulation.
Therefore, the selection of Steiner points plays a crui-
cial role, both in terms of the output itself and the
quality of the triangulation. Although many Steiner
point selection schemes have been devised, it is not
straightforward how to adapt them in the kinetic set-
ting; it may not even be possible to adapt some of
these schemes.

In this paper, we design a KDS by extending a
previously proposed query structure which has been
employed for Steiner point selection in the dynamic
setting. The key geometric property computed in
these structures is the clipped Voronoi cells, a lo-
cally restricted version of the standard Voroni cells.
Our KDS maintains these clipped Voronoi cells, where
each query takes constant time to compute as well as
to update. Hence, our KDS is responsive, and it is
efficient processing a constant number of events for
each query, and it is also local and compact.

1 Introduction

Mesh refinement is a fundamental step in scientific
computing, where the goal is to construct a qual-
ity triangulation of a given set of input points. For
most applications, a quality triangulation is one in
which the minimum angle of every triangle is above
some threshold. Until this quality criterion is satis-
fied, one needs to refine the trianguation by inserting
additional Steiner points into the output, taking care
to insert as few as possible. If the minimal output
that admits a quality triangulation has m points, any
output of size O(m) is regarded as size-optimal.

Over the past twenty years, research has provided
improved mesh refinement algorithms with theoreti-
cal guarantees. In chronological order, these guaran-
tees were quality [4], size-optimality [8], efficient run-
times [5, 6], and efficient dynamic updates [1], each
of them incorporating all of the previous guarantees.
And most recently, Acar et al. developed a KDS for
mesh refinement [2]. Their choice of Steiner points,
however, only allowed bounded quality triangulations.

∗Department of Computer Science, University of Chicago

Hence, mesh refinement problem in the kinetic setting
still remains open for higher quality triangulations.

In the kinetic setting, the objective of mesh refine-
ment is to maintain a set of moving Steiner points as
well as the triangulation of the output set comprising
input and Steiner points. Typically, algorithms used
in practice maintain the moving mesh by a series of
further refinements to fix low quality elements over
time, and by remeshing occasionally to bound the size
of the mesh. In this paper, we approach the problem
using the kinetic data structures (KDS) framework in-
troduced by Basch et al [3]. In this framework, the in-
put points are provided with algebraic trajectories of
constant degree and the computed geometric property
is certified by a set of certificates, some of which may
fail at a later time causing an event. Each event trig-
gers a kinetic update for repairing both the geometric
property itself and the set of certificates certifying it.
As the trajectories of the input points are known in
advance, the data structure maintains the desired ge-
ometric properties by processing these events in order
of their failure times. In this framework effectiveness
is measured by the following criteria: a KDS is called
responsive if the kinetic updates are fast in the worst
case, efficient if the number of events is small when
compared to the number of intrinsic changes the geo-
metric property has to go through in the worst case,
local if each input point is associated with a small
number of certificates, and compact if the total num-
ber of certificates and the size of the data structure is
small.

Within the KDS framework, Steiner point selection
becomes a hard problem; many that are suitable when
input points do not move are hard to adapt effec-
tively in the kinetic setting. One such example is the
quadtree method, where the corners of the quadtree
squares are inserted as Steiner points [4]. Another very
commonly used such example is the circumcenters of
low quality triangles [6, 8]. Aside from these very
common examples, Üngör defines a more local type
of Steiner points called off-centers [10], Hudson and
Türkoğlu propose a local region to pick Steiner points
from, a region called clipped Voronoi cells, one which
includes off-centers [7], and Acar et al. choose Steiner
points as geometric translations of input points at ge-
ometrically increasing distances [2]. In this paper, we
use the kinetic mesh of Acar et al. as a point location
structure and extend the clipped Voronoi computa-
tions of Hudson and Türkoğlu to the kinetic setting.

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

31st European Workshop on Computational Geometry, 2015

Our contribution in this paper is a first step to-
wards solving the kinetic mesh refinement problem
for achieving arbitrary quality triangulations. Build-
ing on the result of Hudson and Türkoğlu [7], we de-
sign a KDS for computing clipped Voronoi cells so
that a meshing algorithm can use it for picking Steiner
points to construct the output mesh. Given a point v,
our KDS provides the following procedures pertaining
to v: ApproximateNN(v) to compute an approxi-
mation of the distance from v to its nearest neigh-
bor, ClippedVoronoi(v, β) to compute the clipped
Voronoi cell of v, and AddVertex(p, v) to insert into
the output a Steiner point p near v. We prove in Theo-
rem 3 that all of the above procedures run in constant
time, create a constant number of certificates, and
hence can be updated in constant time upon a certifi-
cate failure. Our KDS reduces the problem of kinetic
mesh refinement of arbitrary quality to suitable choice
of Steiner points within local neighborhoods.

2 Definitions

In this section we provide preliminary definitions for
the rest of the paper. To distinguish mesh points from
any point in space we refer to mesh points as vertices.

Definition 1 Given a vertex v, NN(v) is the dis-
tance from v to its nearest neighbor, and Vor(v) is the
Voronoi cell of v consisting of all points x such that
for any vertex u 6= v, |ux| ≥ |vx|. Then v is called
ρ-well-spaced [9] if Vor(v) is inside the ball centered
at v with radius ρ NN(v), and a mesh is called ρ-well-
spaced if every vertex in the mesh is ρ-well-spaced.

Using the fact that the dual of a Voronoi diagram
yields a Delaunay triangulation, one can observe that
well-spacedness is equivalent to large minimum angles
in the output triangulation; the lower the parame-
ter ρ, the larger the minimum angles.

Definition 2 [7] The β-clipped Voronoi cell of a ver-
tex v, Vorβ(v), is the intersection of Vor(v) and the
ball centered at v with radius β NN(v). For any point
x ∈ Vorβ(v), the ball centered at x with radius |vx|
is a witness1 ball empty of vertices, and the witness
region of Vorβ(v) is the union of witness balls.

Figure 1 depicts the above definitions of well-
spacedness, clipped Voronoi cells, witness balls and
witness regions.

Definition 3 [8] Given a point x in space, the lo-
cal feature size of x, lfs(x), is the distance from x to
its second-nearest input vertex, and a size-conforming
mesh is one in which for every output vertex v,

1The origial term used in [7] is “certificate”, however, we use
the term “witness” to avoid confusion with KDS certificates.

u5

v

u3

u2

u1

u4

5NN(v)

βNN(v)

Figure 1: A vertex v and its neighbors u1 through u5.
Farthest point in Vor(v) is at 5 NN(v) distance, thus,
v is 5-well-spaced but not β-well-spaced. As a result,
Vorβ(v) is shown with a thick boundary and its wit-
ness balls and witness region with a thin boundary.

NN(v) ∈ Θ(lfs(v)); Ruppert proves that being size-
optimal is equivalent to being size-conforming.

Definition 4 A mesh refinement algorithm is
bottom-up if it incrementally ensures well-spacedness
of the vertices in the order of their local feature
size. For a given constant γ, a bottom-up algorithm
inserts a Steiner vertex u, when every mesh vertex v
with NN(v) < γ NN(u) is ρ-well-spaced.

Our data structure requires a bottom-up meshing
algorithm that outputs a size-conforming mesh to en-
sure local searches and fast runtimes.

3 Data Structure and Implementation

Hudson and Türkoğlu use quadtrees for point loca-
tion as they provide cruicial properties to guarantee
fast runtimes. However, quadtrees do not adapt well
to the kinetic setting, and we instead use the kinetic
mesh of Acar et al. as our point location structure [2].
Their KDS picks Steiner points from points they call
satellites, pre-defined geometric translations of input
vertices at geometrically increasing distances. They
maintain the Voronoi diagram of their output vertex
set and their Voronoi cells, or cells in short so as to
distinguish from the Voronoi cells of our definition,
provide properties similar to those of the quadtree
squares, and our guarantees depend on them:

(A) Each cell has a constant number of neighbors.

EuroCG 2015, Ljubljana, Slovenia, March 16–18, 2015

(B) The size of each cell is in proportion to the local
feature size of the points in the cell.

The size of a cell can be described by the nearest
neighbor distance of its node with respect to other
nodes in the diagram, and the well-spacedness of
the node guarantees that the whole cell is contained
within a ball of constantly larger radius, less than 9/2
times larger to be precise. As shown in Lemma 3.6 [2],
the nearest neighbor is at distance > 2`−2, where `,
defined as the rank of the node, is already computed
by the data structure. Using the rank information of
the nodes, we implement our procedures as follows:

• ApproximateNN(v) returns the distance 2`−2,
where ` is the rank of v. This procedure does not
create any certificates.

• AddVertex(p, v) starts at the cell of the node
that contains v and iteratively advances by mov-
ing the search to the neighbor node closest to p.
Finally, it reaches the cell that contains p as none
of its neighbor nodes is closer to p, and inserts p
in that cell as a Steiner vertex.

We certify this procedure by the distance compar-
isons between the final cell and its neighbors which
create a set of what we call cell certificates. Upon the
failure of a cell certificate, we update this search by
restarting it from the node of the failure.

• ClippedVoronoi(v, β) performs in two stages;
in the first stage it collects information about
nearby vertices. It starts at the cell of the node
that contains v and explores the region by mov-
ing outward along neighboring cells, in increasing
order of their nodes’ distances from v. It contin-
ues the search to find the nearest neighbor of v
and to determine NN(v). Then it continues the
search to explore other vertices within 2β NN(v)
distance of v. It stops exploring further at a cell
if one of the two stopping conditions is satisfied:

1. The distance from v to the cell is too large.

2. The size of the cell is too small.

Once the exploration of the nearby vertices is
over, it proceeds to the second stage to deter-
mine actual Voronoi neighbors among the ver-
tices within 2β NN(v) distance. It removes a ver-
tex u from the set if there is no witness ball inci-
dent to v and u empty of vertices or if the radius
of the smallest one is larger than β NN(v) (Fig-
ure 2). It returns the remaining set as Vorβ(v).

To make the implementation of the procedure
ClippedVoronoi(v, β) more precise, we introduce
two constants λ1 and λ2 for the stopping condi-
tions. In the first condition, we define the distance

v

u3

u2

u1

u4

βNN(v)

w1

w2

Figure 2: Setting of Figure 1. Vorβ(v) is represented
by {u1, u2, u3, u4}. Smallest witness balls incident to
each Voronoi neighbor ui and v is depicted. For the
vertices w1 and w2 within 2β NN(v) distance there are
no witness balls. Each of the circumcircles defined by
the triplets {v, w1, ui} and {v, w2, ui} contains at least
one other vertex.

from v to a cell with node p to be too large if
|vp| > (2β+λ1) NN(v) (Lemma 1). And in the second
condition, we define the size of a cell to be too small
if the rank of its node is less than ` − λ2, where ` is
the rank of v (Lemma 2).

Finally, we summarize the certificates and the ki-
netic update of ClippedVoronoi(v, β). In the first
stage, distance comparisons create what we call search
certificates. And, in the second stage, distance to
circle comparisons create what we call voronoi cer-
tificates. Upon the failure of any one certificate, we
restart that stage from scratch.

4 Proofs

In this section, we first prove that there exists con-
stants λ1 and λ2 for our procedures; we then prove
that our KDS is effective. Our proofs rely on the as-
sumptions that the mesh refinement algorithm that
employs our KDS is bottom-up and that its output is
size-conforming.

The underlying summary of the proofs in this sec-
tion is that local feature size is a smooth function and
working with size-conforming structures also achieve
similar smoothness properties. The first Lemma is
based on the property that lfs cannot get too large
within a locality.

Lemma 1 There exists a constant λ1 such that if the
procedure ClippedVoronoi(v, β) stops exploring a
cell because of the first condition, the distance from
v to any point in that cell is greater than 2β NN(v).

Proof. For any point x within 2β NN(v) distance
of v, using the triangle inequality, we know that there

31st European Workshop on Computational Geometry, 2015

exist two output vertices within O(NN(v)) distance
of x, namely v and the nearest neighbor of v. And,
since we assume that the output is size-conforming,
we have lfs(x) ∈ O(NN(v)). Then condition (B) im-
plies that the cell that includes x has size bounded
by O(NN(v)). Let λ1 be the constant hidden in the
big-Oh notation and let p be the node of that cell. Us-
ing the triangle inequality we have |vp| ≤ |vx| + |xp|
or |vp| ≤ (2β + λ1) NN(v). Proof follows from the
contrapositive argument. �

The below Lemma is based on the property that lfs
stays large within large empty balls. In other words, if
lfs is too small in some local neighborhood, then there
must be vertices in between to support smoothness,
and well-spacedness is sufficient to ensure that.

Lemma 2 Assuming that for every mesh vertex u
with NN(u) < γ NN(v) is ρ-well-spaced, there exists
a constant λ2 such that the union of the cells explored
by the procedure ClippedVoronoi(v, β) covers the
witness region of Vorβ(v).

Proof. Given a cell at which ClippedVoronoi(v, β)
stops exploration, it is sufficient to prove that the cell
does not intersect the witness region of Vorβ(v). If
the reason to stop is the first condition, by Lemma 1,
we know that the cell lies at a distance more than
2β NN(v) away from v, thus it cannot intersect the
witness region. If the reason to stop is the second
condition, for any point p in the witness region, we
know that p lies in a ball of radius at least NN(v)/2.
Therefore the premise of this Lemma satisfies the
premise of Theorem 3 in [7]. As a result, we have
lfs(p) ∈ Ω(NN(v)) or lfs(p) ∈ Ω(2`). This means that
there exists a constant λ2 large enough such that by
condition (B), for any cell of rank less than `−λ2, the
local feature size of any point in the cell is less than
lfs(p), which is to say those cells cannot intersect the
witness region. �

Since lfs is a smooth function and since we ensure
that the search does not extend to neighborhoods
that have small local feature sizes, packing arguments
prove that our procedures take constant time.

Theorem 3 In our KDS, ClippedVoronoi(v, β)
maintains Vorβ(v) and AddVertex(p, v) maintains
insertion of a Steiner vertex p in constant time.

Proof. The proof for ClippedVoronoi(v, β) relies
on two facts: the search explores only a constant num-
ber of cells and each cell contains a constant number
of vertices. For the first fact we use a packing argu-
ment: Lemma 1 bounds λ1 which in turn proves that
the search does not go beyond a distance of O(NN(v)),
and on the other hand, Lemma 2 bounds λ2 which in
turn proves that each cell explored is of size at least

Ω(NN(v)). For the second fact we use another pack-
ing argument: for a given cell, condition (B) states
that the size of the cell is bounded by O(lfs(p)) for
any given point p inside the cell, and since the mesh
is size-conforming, any vertex p inside the cell has an
empty ball of size Ω(lfs(p)).

The proof for AddVertex(p, v) is simpler:
p must lie within the cells explored in the
ClippedVoronoi(v, β) call, thus the search for p in-
volves only a subset of those cells. �

5 Conclusion

In this paper, we showed how to support a class of
mesh refinement algorithms with a kinetic data struc-
ture that could help find appropriate Steiner points
in constant time. For simplicity, we have chosen to
explain the algorithms in a purely theoretical fashion,
however, we can employ several improvements that
will make the constants in our algorithms practical.

References

[1] U. A. Acar, A. Cotter, B. Hudson, and D. Türkoğlu.
Dynamic well-spaced point sets. In SCG ’10: Pro-
ceedings of the 26th Annual Symposium on Compu-
tational Geometry, pages 314–323, 2010.

[2] U. A. Acar, B. Hudson, and D. Türkoğlu. Kinetic
mesh refinement in 2d. In Proceedings of the Twenty-
seventh Annual Symposium on Computational Geom-
etry, SoCG ’11, pages 341–350, 2011.

[3] J. Basch, L. J. Guibas, and J. Hershberger. Data
structures for mobile data. J. Algorithms, 31(1):1–
28, 1999.

[4] M. Bern, D. Eppstein, and J. R. Gilbert. Provably
Good Mesh Generation. Journal of Computer and
System Sciences, 48(3):384–409, 1994.

[5] S. Har-Peled and A. Üngör. A time-optimal Delau-
nay refinement algorithm in two dimensions. In 21st
Symposium on Computational Geometry, pages 228–
236, 2005.

[6] B. Hudson, G. L. Miller, and T. Phillips. Sparse
Voronoi Refinement. In Proceedings of the 15th Inter-
national Meshing Roundtable, pages 339–356, 2006.
Long version in Carnegie Mellon University Tech. Re-
port CMU-CS-06-132.

[7] B. Hudson and D. Türkoğlu. An efficient query struc-
ture for mesh refinement. In Canadian Conference on
Computational Geometry, pages 115–118, 2008.

[8] J. Ruppert. A Delaunay refinement algorithm for
quality 2-dimensional mesh generation. J. Algo-
rithms, 18(3):548–585, 1995.

[9] D. Talmor. Well-Spaced Points for Numerical Meth-
ods. PhD thesis, Carnegie Mellon University, Pitts-
burgh, August 1997.

[10] A. Üngör. Off-centers: A new type of Steiner point for
computing size-optimal quality-guaranteed Delaunay
triangulations. In LATIN, pages 152–161, 2004.

