
Robust Kinetic Convex Hulls in 3D?

Umut A. Acar1, Guy E. Blelloch2, Kanat Tangwongsan2, and Duru Türkoğlu3

1 Toyota Technological Institute at Chicago (TTI-C)
2 Carnegie Mellon University

3 University of Chicago

Abstract. Kinetic data structures provide a framework for computing
combinatorial properties of continuously moving objects. Although ki-
netic data structures for many problems have been proposed, some dif-
ficulties remain in devising and implementing them, especially robustly.
One set of difficulties stems from the required update mechanisms used
for processing certificate failures—devising efficient update mechanisms
can be difficult, especially for sophisticated problems such as those in
3D. Another set of difficulties arises due to the strong assumption in the
framework that the update mechanism is invoked with a single event.
This assumption requires ordering the events precisely, which is gener-
ally expensive. This assumption also makes it difficult to deal with simul-
taneous events that arise due to degeneracies or due to intrinsic prop-
erties of the kinetized algorithms. In this paper, we apply advances on
self-adjusting computation to provide a robust motion simulation tech-
nique that combines kinetic event-based scheduling and the classic idea of
fixed-time sampling. The idea is to divide time into a lattice of fixed-size
intervals, and process events at the resolution of an interval. We apply
the approach to the problem of kinetic maintenance of convex hulls in
3D, a problem that has been open since 90s. We evaluate the effective-
ness of the proposal experimentally. Using the approach, we are able to
run simulations consisting of tens of thousands of points robustly and
efficiently.

1 Introduction

In many areas of computer science (e.g., graphics, scientific computing), we must
compute with continuously moving objects. For these objects, kinetic data struc-
tures [BGH99] is a framework for computing their properties as they move. A
Kinetic Data Structure (KDS) consists of a data structure that represents the
property of interest being computed, and a proof of that property. The proof is
a set of certificates or comparisons that validate the property in such a way that
as long as the outcomes of the certificates remain the same, the combinatorial
property being computed does not change. To simulate motion, a kinetic data
structure is combined with a motion simulator that monitors the times at which
certificates fail, i.e., change value. When a certificate fails, the motion simulator

? Acar, Blelloch, and Tangwongsan are supported in part by a gift from Intel.

notifies the data structure representing the property. The data structure then
updates the computed property and the proof, by deleting the certificates that
are no longer valid and by inserting new certificates. To determine the time at
which the certificates fail, it is typically assumed that the points move along
polynomial trajectories of time. When a comparison is performed, the polyno-
mial that represents the comparison is calculated; the roots of this polynomial
at which the sign of the polynomial changes becomes the failure times of the
computed certificate.

Since their introduction [BGH99], many kinetic data structures have been
designed and analyzed. We refer the reader to survey articles [AGE+02,Gui04]
for references to various kinetic data structures, but many problems, especially in
three-dimensions, remain essentially open [Gui04]. Furthermore, several difficul-
ties remain in making them effective in practice [AGE+02,GR04,RKG07,Rus07].
One set of difficulties stems from the fact that current KDS update mechanisms
strongly depend on the assumption that the update is invoked to repair a single
certificate failure [AGE+02]. This assumption requires a precise ordering of the
roots of the polynomials so that the earliest can always be selected, possibly
requiring exact arithmetic. The assumption also makes it particularly difficult
to deal with simultaneous events. Such events can arise naturally due to degen-
eracies in the data, or due to the intrinsic properties of the kinetized algorithm4.

Another set of difficulties concerns the implementation of the algorithms. In
the standard scheme, the data structures need to keep track of what needs to
be updated on a certificate failure, and properly propagate those changes. This
can lead to quite complicated and error-prone code. Furthermore, the scheme
makes no provision for composing code—there is no simple way, for example, to
use one kinetic algorithm as a subroutine for another. Together, this makes it
difficult to implement sophisticated algorithms.

Recent work [ABTV06] proposed an alternative approach for kinetizing al-
gorithms using self-adjusting computation [ABH+04,Aca05,ABBT06,AH06]. The
idea is that one implements a static algorithm for the problem, and then runs
it under a general-purpose interpreter that keeps track of dependences in the
code (e.g., some piece of code depends on the value of a certain variable or on
the outcome of a certain test). Now when the variable or test outcome changes,
the code that depends on it is re-run, in turn possibly invalidating old code
and updates, and making new updates. The algorithm that propagates these
changes is called a change propagation algorithm and it is guaranteed to return
the output to the same state as if the static algorithm was run directly on the
modified input. The efficiency of the approach for a particular static algorithm
and class of input/test changes can be analyzed using trace stability, which can
be thought as an edit distance between computations represented as sequences
of operations [ABH+04].

4 For example, the standard incremental 3D convex hull algorithm can perform a
plane-side-test between a face and a point twice, once when deleting a face and once
when identifying the conflict between a point and the face.

The approach can make it significantly simpler to implement kinetic algo-
rithms for a number of reasons: only the static algorithms need to be imple-
mented5; algorithms are trivial to compose as static algorithms compose in the
normal way; and simultaneous update of multiple certificates are possible be-
cause the change propagation algorithm can handle any number of changes.
Acar et al. [ABTV06] used the ability to process multiple updates to help deal
with numerical inaccuracy. The observation was that if the roots can be limited
to an interval in time (e.g. using interval arithmetic), then one need only identify
a position in time not covered by any root. It is then safe to move the simula-
tion forward to that position and simultaneously process all certificates before
it. Although the approach using floating-point number arithmetic worked for 2D
examples in that paper, it has proved to be more difficult to find such positions
in time for problems in three dimensions.

In this paper, we propose another approach to advancing time for robust
motion simulation and apply it to a 3D convex hull algorithm. We then evaluate
the approach experimentally. The approach is a hybrid between kinetic event-
based scheduling and classic fixed-time sampling. The idea is to partition time
into a lattice of intervals of fixed size δ, and only identify events to the resolution
of an interval. If many roots fall within an interval, they are processed as a batch
without regard to their ordering. As with kinetic event-based scheduling, we
maintain a priority queue, but in our approach, the queue maintains non-empty
intervals each possibly with multiple events. To separate roots to the resolution
of intervals, we use Sturm sequences in a similar way as used for exact separation
of roots [GK99], but the fixed resolution allows us to stop the process early. More
specifically, in exact separation, one finds smaller and smaller intervals (e.g. using
binary search) until all roots fall into separate intervals. In our case, once we
reach the lattice interval, we can stop without further separation. This means
that if events are degenerate and happen at the same time, for example, we need
not determine this potentially expensive fact.

For kinetic 3D convex hulls, we use a static randomized incremental convex
hull algorithm [CS89,BDH96,MR95] and kinetize it using self-adjusting com-
putation. To ensure that the algorithm responds to kinetic events efficiently, we
make some small changes to the standard incremental 3D convex-hull algorithm.
This makes progress on the problem of kinetic 3D convex hulls, which was iden-
tified in late 1990s [Gui98]. To the best of our knowledge, currently the best way
to compute the 3D kinetic convex hulls is to use the kinetic Delaunay algorithm
of the CGAL package [Boa07], which computes the convex hull as a byproduct
of the 3D Delaunay triangulation (of which the convex hull would be a subset).
As shown in our experiment, this existing solution generally requires processing
many more events than necessary for computing convex hulls.

We present experimental results for the the proposed kinetic 3D convex hull
algorithm with the robust motion simulator. Using our implementation, we can
run simulations with tens of thousands of moving points in 3D and test their
accuracy. We can perform robust motion simulation by processing an average

5 In the current system, some annotations are needed to mark changeable values.

of about two certificate failures per step. The 3D hull algorithm seems to take
(poly) logarithmic time on average to respond to a certificate failure as well
as an integrated event—an insertion or deletion that occurs during a motion
simulation.

2 Robust Motion Simulation on a Lattice

We propose an approach to robust motion simulation that combines event-based
kinetic simulation and the classic idea of fixed-time sampling. The motivation
behind the approach is to avoid ordering the roots of polynomials, because it
requires high-precision exact arithmetic when the roots are close. To achieve
this, we discretize the time axis to form a lattice {k · δ | k ∈ Z+} defined by the
precision parameter δ. We then perform motion simulations at the resolution
of the lattice by processing the certificates that fail within an interval of the
lattice simultaneously. This approach requires that the update mechanism used
for revising the computed property be able to handle multiple certificate failures
at once. In this paper, we use self-adjusting computation, where computations
can respond to any change in their data correctly by means of a generic change
propagation algorithm. The correctness of change propagation has been proven
elsewhere, sometimes by providing machine-checked proofs [ABD07,AAB08].

For robust motion simulations, we will need to perform the following opera-
tions:

– Compute the signs of a polynomial and its derivatives at a given lattice
point.

– Compute the intervals of the lattice that contain the roots of a polynomial.

In our approach, we assume that the coefficients of the polynomials are integers
(up to a scaling factor) and use exact integer arithmetic to compute the signs
of the polynomial and its derivatives. For finding the roots, we use a root solver
described below.

The Root Solver. Our root solver relies on a procedure, which we call a Sturm
query, that returns the number of roots of a square-free polynomial that are
smaller than a given lattice point. To answer such a query, we compute the
Sturm sequence (a.k.a. standard sequence) of the polynomial, which consists of
the intermediary polynomials generated by the Euclid’s algorithm for finding
the greatest common divisor (GCD) of the polynomial and its derivative. The
answer to the query is the difference in the number of alternations in the signs
of the sequence at −∞ and at the query point. Using the Sturm query, we can
find the roots of a square-free polynomial by performing a variant of a binary
search.6 We can eliminate the square-free assumption by a known technique that
factors the polynomial into square and square-free polynomials.

6 In practice, we start with an approximation computed by floating-point arithmetic.

time
0 1 2 3 4 5 6 7* * * *

a cb d e f xi
h

Fig. 1. The lattice (δ = 1) and the events (certificate failures).

Motion Simulation. We maintain a priority queue of events (initially empty), and
a global simulation time (initially 0). We start by running the static algorithm
in the self-adjusting framework. This computes a certificate polynomial for each
comparison. For each certificate, we find the lattice intervals at which the sign
of the corresponding polynomial changes, and for each such interval, we insert
an event into the priority queue. After the initialization, we simulate motion by
advancing the time to the smallest lattice point t such that the lattice interval
[t− δ, t) contains an event. To find the new time t we remove from the priority
queue all the events contained in the earliest nonempty interval. We then change
the outcome of the removed certificates and perform a change-propagation at
time t. Change propagation updates the output and the queue by inserting new
events and removing invalidated ones. We repeat this process until there is no
more certificate failure. Figure 1 shows a hypothetical example with δ = 1. We
perform change propagation at times 1, 2, 3, 5, 7. Note that multiple events are
propagated simultaneously at time 2 (events b and c), time 5 (events e and f),
and time 7 (events h, i and, x).

When performing change propagation at a given time t, we may encounter a
polynomial that is zero at t representing a degeneracy. In this case, we use the
derivatives of the polynomial to determine the sign immediately before t. Using
this approach, we are able to avoid degeneracies throughout the simulation, as
long as the certificate polynomials are not identically zero.

We note that the approach described here is quite different from the approach
suggested by Ali Abam et al. [AAdBY06]. In that approach, root isolation is
avoided by allowing certificate failures to be processed out of order. This can
lead to incorrect transient results and requires care in the design of the kinetic
structures. We do not process certificates out of order but rather as a batch.

3 Algorithm

In the kinetic framework based on self-adjusting computation [ABTV06], we
can use any static algorithm directly. The performance of the approach, how-
ever, depends critically on the cost of the change propagation algorithm when
applied after changes are made to input or predicate values. In particular, when
invoked, the change-propagation algorithm updates the current trace (sequence
of operations together with their data) by removing outdated operations and re-
executing parts of the algorithm that cannot be reused from the current trace.
The performance of change propagation therefore depends on some form of the
edit distance between the execution trace before and after the changes. This
edit distance has been formalized in the definition of trace stability [ABH+04].
In this section, we describe a variant of the randomized incremental convex-hull

algorithm [CS89,BDH96,MR95], and remark on some of its features that are
crucial for stability—i.e., that minimize the number of operations that need to
be updated when a certificate fails.

Given S ⊆ R3, the convex hull of S, denoted by conv(S), is the smallest
convex polyhedron enclosing all points in S. During the execution of the al-
gorithm on input S, each face f of the convex hull will be associated with a
set Σ(f) ⊂ S of points (possibly empty). Each input point p will be given a
real number π(p) ∈ [0, 1], called its priority. Each face f will have the priority
π(f) := min{π(p) : p ∈ Σ(f)}. We say that a face of the hull is visible from a
point if the point is outside the plane defined by the face.

The algorithm takes as input a set of points S = {p1, p2, . . . , pn}, and per-
forms the following steps:

1. Assign to each pi a random priority π(pi) ∈ [0, 1].
2. Initialize H := conv(A4), where A4 is the set of four highest-priority points.
3. Pick a center point c inside the convex body H.
4. For each f ∈ H, set Σ(f) := {p ∈ S \H : the ray −→cp penetrates f}.
5. While ∃f ∈ H such that Σ(f) 6= ∅:

(a) Choose the face f∗ with the highest priority, and let p∗ ∈ Σ(f) be the
point with the highest priority.

(b) Delete all faces on H visible from p∗. This creates a cavity in the convex
hull whose boundary is defined by horizon edges that are incident to
both deleted and live faces.

(c) Update H by creating new faces each of which consists of p∗ and a
horizon edge to fill up the cavity. Set Σ(f) := {p∗ ∈ S \H : the ray

−→
cp∗

penetrates f} for each new faces f .

In our implementation, we maintain a priority queue of faces ordered by
priorities of the faces. We also store at each face the point in Σ(f) with priority
π(f). This allows us to perform step 5(a) efficiently.

Even though the algorithm presented above is fairly standard, certain key
elements of this implementation appear to be crucial for stability—without them,
the algorithm would be unstable. For stability, we want the edit distance between
the traces to be small. Towards this goal, the algorithm should always insert
points in the same order—even when new points are added or old points deleted.
We ensure this by assigning a random priority to every input point. The use of
random priorities makes it easy to handle new points, and obviates the need to
explicitly remember the insertion order.

For better stability, we also want the insertion of a point p to visit faces of the
convex hull in the same order every time. While the presented algorithm cannot
guarantee this, we use the following heuristic to enhance stability. The point-
to-face assignment with respect to a center point c ensures that the insertion
of p∗ always starts excavating at the same face, increasing the likelihood that
the faces are visited in the same order. Note that the choice of the center point
is arbitrary, with the only requirement that the center point has to lie in the

convex hull. Our implementation takes c to be the centroid of the tetrahedron
formed by A4.

4 Implementation

Our implementation consists of three main components: 1) the self-adjusting-
computation library, 2) the incremental 3D convex-hull algorithm, and 3) the
motion simulator. Previous work [ABBT06] provided an implementation of the
self-adjusting computation library. The library requires that the user adds some
notations to their static algorithms to mark what values can change and what
needs to be memoized. These notations are used by the system to track the
dependences and know when to reuse subcomputations.

In our experiments, we use both the original static 3D convex-hull algorithm
and the self-adjusting version with the annotations added. The static version
uses exact arithmetic predicates to determine the outcomes of comparisons pre-
cisely (we use the static version for checking the robustness of the simulation).
The self-adjusting version uses the root solver to find the roots of the polyno-
mial certificates, and inserts them into the event queue of the motion simulator.
We implement a motion simulator as described in Section 2. Given a precision
parameter δ and a bound Mt on the simulation time, the simulator uses an
event scheduler to perform a motion simulation on the lattice with precision δ
until Mt is reached. We model the points with an initial location traveling at
constant speed in a fixed direction. For each coordinate, we use B` and Bv bits
to represent the initial location and the velocity respectively; B` and Bv can be
assigned to arbitrary positive natural numbers.

5 Experiments

We describe an experimental evaluation of our kinetic 3D convex-hull algorithm.
The evaluation investigates the effectiveness of our approach according to a
number of metrics proposed in the previous work [BGH99], i.e., responsiveness,
efficiency, locality, and compactness. Following that, we report timing results for
the integrated dynamic and kinetic experiments.

Experimental Setup. All of the experiments were performed on a 2.66Ghz dual-
core Xeon machine, with 8 GB of memory, running Ubuntu Linux 7.10. We
compiled the applications with the MLton compiler [MLt,Wee06] with the option
“-runtime ram-slop 0.75,” directing the run-time system to allocate at most
75% of system memory. Our timings measure the wall-clock time (in seconds).

Input Generation. In our experiments, we pick the initial positions of the points
on each axis to fit into 20 bits, i.e., B` = 20, and the velocity along each axis to
fit into 8 bits, i.e, Bv = 8. We pick both the initial locations and the velocities
uniformly randomly from the cube [−1.0, 1.0]3. We perform motion simulations
on lattice defined by δ = 2−10, with a maximum time of Mt = 227. With this
setting, we process an average of about two certificates simultaneously.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 0 5000 10000 15000 20000 25000

Ti
m

e
(s

ec
)

Input Size (n)

CGAL
Our algorithm

Fig. 2. Static algorithms compared.

CGAL Our Algorithm
Input # Total # Total
Size Events Time (s) Events Time (s)
22 357 13.42 71 2.66
49 1501 152.41 151 11.80
73 2374 391.31 218 23.42
109 4662 1270.24 316 40.37
163 7842 3552.48 380 70.74
244 15309 12170.08 513 125.16

Fig. 3. Simulations compared.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 5000 10000 15000 20000 25000

Ti
m

e
(s

ec
)

Input Size (n)

Kinetic w/ Sturm
15x(Static w/ Sturm)

90x(Static w/ Floating)

Fig. 4. Kinetic and static runs.

Checking for robustness. We check that our algorithm simulates motion robustly
by comparing it to our exact static algorithm after each event in the kinetic
simulation. When the inputs are large (more than 1000 points), we check the
output at randomly selected events (with varying probabilities between 1 and
20%) to save time.

Baseline Comparison. To assess the efficiency of the static version of our algo-
rithm, we compare it to CGAL 3.3’s implementation of the incremental convex-
hull algorithm. Figure 2 shows the timings for our static algorithm and for the
CGAL implementation with the Homogeneous<double> kernel. Inputs to the
algorithms are generated by sampling from the same distribution; the reported
numbers averaged over three runs. Our implementation is about 30% slower than
CGAL’s. Implementation details or our use of a high-level, garbage-collected lan-
guage may be causing this difference.

We also want to compare our kinetic implementation with an existing ki-
netic implementation capable of computing 3D convex hulls. Since there is no
direct implementation for kinetic 3D convex hulls, we compare our implemen-
tation with CGAL’s kinetic 3D Delaunay-triangulation implementation, which
computes the convex hull as part of the triangulation. Figure 3 shows the timings
for our algorithm and for CGAL’s implementation of kinetic 3D Delaunay (us-
ing the Exact_simulation_traits traits). These experiments are run until the
event queue is empty. As expected, the experiments show that kinetic Delaunay
processes many more events than necessary for computing convex hulls.

Kinetic motion simulation. To perform a motion simulation, we first run our
kinetic algorithm on the given input at time t = 0, which we refer to as the
initial run. This computes the certificates and inserts them into the priority

queue of the motion scheduler. Figure 4 illustrates the running time for the
initial run of the kinetic algorithm compared to that of our static algorithm
which does not create certificates. Timings show a factor of about 15 gap between
the kinetic algorithm (using Sturm sequences) and the static algorithm that uses
exact arithmetic. The static algorithm runs by a factor of 6 slower when it uses
exact arithmetic compared to using floating-point arithmetic. These experiments
indicate that the overheads of initializing the kinetic simulations is moderately
high: more than an order of magnitude over the static algorithm with exact
arithmetic and almost two orders of magnitude over the the static algorithm with
floating-point arithmetic. This is due to both the cost of creating certificates and
to the overhead of maintaining the dependence structures used by the change
propagation algorithm.

After completing the initial run, we are ready to perform the motion simu-
lation. One measure of the effectiveness of the motion simulation is the average
time for a kinetic event, calculated as the total time for the simulation divided
by the number of events. Figure 5 shows the average times for a kinetic event
when we use our δ-precision root solver. These averages are for the first 5 · n
events on an input size of n. The average time per kinetic event appears asymp-
totically bounded by the logarithm of the input size. A kinetic structure is said
to be responsive if the cost per kinetic event is small, usually in the worst case.
Although our experiments do not indicate responsiveness in the worst case, they
do indicate responsiveness in the average case.

One concern with motion simulation with kinetic data structures is that the
overhead of computing the roots can exceed the speedup that we may hope to
obtain by performing efficient updates. This does not appear to be the case in
our system. Figure 6 shows the speedup for a kinetic event, computed as the
time for change propagation divided by the time for a from-scratch execution of
the static algorithm using our solver.

In many cases, we also want to be able to insert and remove points or change
the motion parameters during the motion simulation. This is naturally supported
in our system, because self-adjusting computations can respond to any combi-
nation of changes to their data. We perform the following experiment to study
the effectiveness of our approach at supporting these integrated changes. During
the motion simulation, at every event, the motion function of an input point is
updated from r(t) to 3

4r(t). We update these points in the order they appear in
the input, ensuring that every point is updated at least once. From this exper-

 0

 0.003

 0.006

 0.009

 0.012

 0.015

 0 5000 10000 15000 20000 25000

Ti
m

e
(s

ec
)

Input Size (n)

Time per Kinetic Event
0.0012!log(n)

Fig. 5. Time per kinetic event.

 0
 50

 100
 150
 200
 250
 300
 350

 0 5000 10000 15000 20000 25000

Sp
ee

du
p

Input Size

Speedup

Fig. 6. Speedup for a kinetic event.

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014

 0 5000 10000 15000 20000 25000

Ti
m

e
(s

ec
)

Input Size (n)

Dynamic+Kinetic Event
0.0012!log(n)

Fig. 7. Time per integrated event.

 0

 100

 200

 300

 400

 500

 0 5000 10000 15000 20000 25000

In
te

rn
al

/E
xt

er
na

l R
at

io

Input Size (n)

Interval / External
0.035!log4(n)

Fig. 8. Interval/external events.

iment, we report the average time per integrated event, calculated by dividing
the total time to the number of events. Figure 7 shows the average time per
integrated event for different input sizes. The time per integrated event appears
asymptotically bounded by the logarithm of the input size and are similar to
those for kinetic events only. A kinetic structure is said to have good locality
if the number of certificates a point is involved in is small. We note that the
time for a dynamic change is directly affected by the number of certificates it
is involved in. Again, although our experiments do not indicate good locality in
the worst case, they do indicate good locality averaged across points.

In a kinetic simulation, we say that an event is internal if it does not cause
the output to change. Similarly, we say that an event is external if it causes
the output to change. A kinetic algorithm is said to be efficient if the ratio of
interval events to external events is small. Figure 8 shows this ratio in complete
simulations with out algorithm. The ratio can be reasonably large but appears
to grow sublinearly.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0 5000 10000 15000 20000 25000

Ce

rti
fic

at
es

 (M
illi

on
)

Input Size (n)

20!n!log(n)
Certificates

Fig. 9. Number of certificates.

Another measure of the effectiveness
of a kinetic motion simulation is com-
pactness, which is a measure of the to-
tal number of certificates that are live at
any time. Since our implementation uses
change-propagation to update the com-
putation when a certificate fails, it guar-
antees that the total number of certifi-
cates is equal to the number of certifi-
cates created by a from-scratch execution at the current position of the points.
Figure 9 shows the total number of certificates created by a from-scratch run of
the algorithm with the initial positions. The number of certificates appears to
be bounded by O(n log n).

6 Conclusion

We present a technique for robust motion simulation based on a hybrid of kinetic
event scheduling and fixed-time sampling. The idea behind the approach is to
partition the time line into a lattice of intervals and perform motion simulation
at the resolution of an interval by processing the events in the same interval
altogether, regardless of their relative order. To separate roots to the resolution

of intervals, we use Sturm sequences in a similar way as used for exact separation
of roots in previous work, but the fixed resolution allows us to stop the process
early. The approach critically relies on self-adjusting computation, which enables
processing multiple events simultaneously. Although the hybrid technique using
kinetic-event-scheduling and fixed-time sampling was primarily motivated by
robustness issues, it may also be helpful in situations where explicit motion
prediction is difficult [AGE+02].

We apply the approach to the problem of kinetic convex hulls in 3D by kine-
tizing a version of the incremental convex-hull algorithm via self-adjusting com-
putation. We implement the motion simulator and the algorithm and perform an
experimental evaluation. Our experiments show that our algorithm is effective
in practice: we are able to run efficient robust simulations involving thousands
of points. Our experiments also indicate that the data structure can respond to
a kinetic event, as well as an integrated dynamic change (an insertion/deletion
during motion simulation) in logarithmic time in the size of the input. To the
best of our knowledge, this is the first implementation of kinetic 3D convex hulls
that can guarantee robustness and efficiency for reasonably large input sizes.

References

[AAB08] Umut A. Acar, Amal Ahmed, and Matthias Blume. Imperative self-
adjusting computation. In Proceedings of the 25th Annual ACM Sym-
posium on Principles of Programming Languages (POPL), 2008.

[AAdBY06] Mohammad Ali Abam, Pankaj K. Agarwal, Mark de Berg, and Hai Yu.
Out-of-order event processing in kinetic data structures. In European Sym-
posium on Algorithms. Lecture Notes in Computer Science, volume 4168,
pages 624–635. Springer, 2006.

[ABBT06] Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tang-
wongsan. An experimental analysis of self-adjusting computation. In
Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2006.

[ABD07] Umut A. Acar, Matthias Blume, and Jacob Donham. A consistent se-
mantics of self-adjusting computation. In Proceedings of the 16th Annual
European Symposium on Programming (ESOP), 2007.

[ABH+04] Umut A. Acar, Guy E. Blelloch, Robert Harper, Jorge L. Vittes, and Mav-
erick Woo. Dynamizing static algorithms with applications to dynamic
trees and history independence. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2004.

[ABTV06] Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Jorge L. Vittes.
Kinetic Algorithms via Self-Adjusting Computation. In Proceedings of the
14th Annual European Symposium on Algorithms (ESA), pages 636–647,
September 2006.

[Aca05] Umut A. Acar. Self-Adjusting Computation. PhD thesis, Department of
Computer Science, Carnegie Mellon University, May 2005.

[AGE+02] Pankaj K. Agarwal, Leonidas J. Guibas, Herbert Edelsbrunner, Jeff Erick-
son, Michael Isard, Sariel Har-Peled, John Hershberger, Christian Jensen,
Lydia Kavraki, Patrice Koehl, Ming Lin, Dinesh Manocha, Dimitris

Metaxas, Brian Mirtich, David Mount, S. Muthukrishnan, Dinesh Pai, El-
isha Sacks, Jack Snoeyink, Subhash Suri, and Ouri Wolefson. Algorithmic
issues in modeling motion. ACM Comput. Surv., 34(4):550–572, 2002.

[AH06] Umut A. Acar and Benôıt Hudson. Optimal-time dynamic mesh refine-
ment: preliminary results. In Proceedings of the 16th Annual Fall Workshop
on Computational Geometry, 2006.

[BDH96] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The Quick-
hull Algorithm for Convex Hulls. ACM Trans. Math. Softw., 22(4):469–483,
1996.

[BGH99] Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures
for mobile data. Journal of Algorithms, 31(1):1–28, 1999.

[Boa07] CGAL Editorial Board. CGAL User and Reference Manual, 3.3 edition,
2007.

[CS89] Kenneth L. Clarkson and Peter W. Shor. Applications of random sam-
pling in computational geometry,II. Discrete and Computational Geome-
try, 4(1):387–421, 1989.

[GK99] Leonidas J. Guibas and Menelaos I. Karavelas. Interval methods for kinetic
simulations. In SCG ’99: Proceedings of the fifteenth annual symposium
on Computational geometry, pages 255–264. ACM Press, 1999.

[GR04] Leonidas Guibas and Daniel Russel. An empirical comparison of techniques
for updating delaunay triangulations. In SCG ’04: Proceedings of the twen-
tieth annual symposium on Computational geometry, pages 170–179, New
York, NY, USA, 2004. ACM Press.

[Gui98] Leonidas J. Guibas. Kinetic data structures: a state of the art report. In
WAFR ’98: Proceedings of the third workshop on the algorithmic founda-
tions of robotics, pages 191–209, 1998.

[Gui04] L. Guibas. Modeling motion. In J. Goodman and J. O’Rourke, edi-
tors, Handbook of Discrete and Computational Geometry, pages 1117–1134.
Chapman and Hall/CRC, 2nd edition, 2004.

[MLt] MLton. http://mlton.org/.
[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-

bridge University Press, 1995.
[RKG07] Daniel Russel, Menelaos I. Karavelas, and Leonidas J. Guibas. A package

for exact kinetic data structures and sweepline algorithms. Comput. Geom.
Theory Appl., 38(1-2):111–127, 2007.

[Rus07] Daniel Ruseel. Kinetic Data Structures in Practice. PhD thesis, Depart-
ment of Computer Science, Stanford University, March 2007.

[Wee06] Stephen Weeks. Whole-program compilation in mlton. In ML ’06: Pro-
ceedings of the 2006 workshop on ML, pages 1–1, New York, NY, USA,
2006. ACM.

