
Coda: A Highly Available File System
for a Distributed Workstation Environment

M. Satyanarayanan
School of Computer Science
Carnegie Mellon University

Abstract

Coda is a file system for a large-scale distributed computing environment composed of
Unix workstations. It provides resiliency to server and network failures through the use
of two distinct but complementary mechanisms. One mechanism, server replication,
involves storing copies of a file at multiple servers. The other mechanism, disconnected
operation, is a mode of execution in which a caching site temporarily assumes the role
of a replication site. Disconnected operation is particularly useful for supporting
portable workstations. The design of Coda optimizes for availability and performance,
but provides the highest degree of consistency attainable in the light of those objectives.
Measurements from a prototype show that the performance cost of providing high
availability in Coda is reasonable.

1. Introduction
The use of a location-transparent distributed file system to share data among workstations is common practice
today [5]. A consequence of growing dependence upon such file systems is concern about the availability of data
stored in them. Coda is a distributed file system that is resilient to failures that typically occur in a workstation
environment. It provides high availability through the use of two distinct but complementary mechanisms, server
replication and disconnected operation. Our goal in building Coda was to offer the maximum availability at the
best performance, and to offer the highest degree of consistency attainable within those constraints. This paper is a
brief overview of the key architectural features of Coda.

2. Base Architecture
Many aspects of Coda are inherited from the Andrew file system (AFS) [4], a large-scale distributed file system that
has been in use at Carnegie Mellon University since late 1984. Like AFS, Coda makes a distinction between
servers, which are relatively few in number, and clients, which are far more numerous. Servers are physically
secure, run trusted system software and are monitored by operational staff. Clients may be modified in arbitrary
ways by users, are physically dispersed, and may be left unattended or turned off for long periods of time. Although

1clients and servers both run Unix , users can execute programs only on clients. Clients and servers communicate
using a remote procedure call mechanism that supports encryption and performs mutual authentication

Each client runs a process called Venus that handles remote file system requests using the local disk as a file cache.
Files and directories are cached in their entirety by clients. Once a file or directory is cached from a server, the
client receives a callback on it. A callback is a promise by the server that it will notify the client before allowing
any other client to modify the object. Callbacks allow clients to maintain cache consistency while minimizing
client-server interactions.

The consistency model of Coda is an approximation to that of AFS, which in turn is an approximation to the model
offered by Unix. Unix allows multiple processes to read and write a file simultaneously, with modifications by one
process being immediately visible to all other processes. AFS offers a model of consistency that is close enough to

1Unix is a trademark of AT&T.

1

Unix to be compatible with most applications, yet is highly scalable. Processes sharing a file at a single site see
exact Unix semantics. Processes at different sites see modifications at the granularity of file open and close
operations.

In the absence of failures the Coda model of consistency is identical to that of AFS. In the presence of failures,
Coda strives to maximize availability. It denies access to a copy of data only if it is certain that the copy is
inconsistent, and maintains this policy even in the presence of network partitions. Although this strategy could lead
to conflicting updates, the infrequency of write-sharing in Unix environments [2], makes such conflicts unlikely.
We have adopted the view, first suggested by Locus [6], that conflicting updates are acceptable if they are rare,
promptly detected, and often easily repaired. A version vector [3] mechanism is used by Coda to detect
inconsistencies. The high-availability mechanisms of Coda can be supressed for files that must remain consistent at
all times.

3. Server Replication
The unit of replication in Coda is a volume. A volume is a collection of files that are stored on one server and form
a partial subtree of the shared file name space. The set of servers that contain replicas of a volume is its volume
storage group (VSG). Data that does not have to be highly available may be stored in non-replicated volumes.
Coda also supports read-only replication of volumes, a facility inherited from AFS.

For each volume from which it has cached data, Venus keeps track of the subset of the VSG that is currently
accessible. This subset is referred to as the accessible volume storage group (AVSG), and is identical to the VSG in
the absence of failures. A server is deleted from the AVSG when an operation on it times out. It is added back to
the AVSG when Venus is able to reestablish communication with the server. Depending on the failure mode of the
system and on the locations of clients, different clients could have different AVSGs for a volume.

The replication strategy we use is a variant of the read-one, write-all approach. When a file is closed after
modification, it is transferred to all members of the AVSG. This approach is simple to implement and maximizes
the probability that every replication site has current data at all times. Server CPU load is minimized because the
burden of data propagation is on the client rather than the server. This in turn improves scalability, since the server
CPU is the bottleneck in many distributed file systems. The key drawback, latency of synchronous propagation, is
addressed in Coda by the use of a parallel remote procedure call mechanism.

When servicing a cache miss, a client obtains data from one member of its AVSG called the preferred server. The
preferred server can be chosen at random or on the basis of performance criteria such as physical proximity, server
load, or server CPU power. Although data is transferred only from one server, the other servers are contacted to
verify that the preferred server does indeed have the latest copy of the data. If this is not the case, the member of the
AVSG with the latest copy is made the preferred site and the AVSG is notified that some of its members have stale
replicas. Once data is cached at a client, a callback is established with the preferred server.

4. Disconnected Operation
Disconnected operation makes possible a compromise between total dependence on servers and complete autonomy
of clients, and begins when no member of a VSG is accessible. Unlike server replication, it provides resiliency
without the storage overhead of multiple replicas or the performance penalty of replication protocols. But it only
provides access to data that was cached at the client at the start of disconnected operation. When disconnected
operation ends, modified files and directories from disconnected volumes are propagated to the AVSG.

Coda clients view disconnected operation as a temporary state and revert to normal operation at the earliest
opportunity. Transitions between normal and disconnected operation are normally transparent to a user. In normal
operation a cache miss is transparent to a user, and only imposes a performance penalty. But in disconnnected

2

operation a miss impedes computation until normal operation is resumed or until the user aborts the corresponding
file system call. Consequently it is important to avoid cache misses during disconnected operation.

During brief failures, the normal LRU caching policy of Venus may be adequate to avoid cache misses to a
disconnected volume. This is most likely to be true if a user is editing or programming and has been engaged in this
activity long enough to fill his cache with relevant files. But it is unlikely that a client could operate disconnected
for an extended period of time without generating references to files that are not in the cache.

Coda therefore allows a user to specify a prioritized list of files and directories that Venus should strive to retain in
the cache. Objects of the highest priority level are sticky and must be retained at all times. As long as the local disk
is large enough to accomodate all sticky files and directories, the user is assured that he can always access them.
Since it is often difficult to know exactly what file references are generated by a certain set of high-level user
actions, Coda provides the ability for a user to bracket a sequence of high-level actions and for Venus to note the file
references generated during these actions.

Disconnected operation can also be entered voluntarily, when a client is deliberately disconnected from the network.
This might happen, for instance, if the client is a portable personal computer and its user wishes to take it with him
on his travels. With a large disk cache the user can operate isolated from Coda servers for an extended period of
time. The file name space he sees is unchanged, but he has to be careful to restrict his references to cached files and
directories. From time to time, he may reconnect his client to the network, thereby propagating his modifications to
Coda servers.

By providing the ability to move seamlessly between zones of normal and disconnected operation, Coda may be
able to simplify the use of cordless technologies in distributed file systems. Cordless media such as cellular
telephone, packet radio, or infra-red communication. typically have limitations such as short range, inability to
operate inside buildings with steel frames, or line-of-sight constraints.

5. Status
At the time of writing this paper, in early 1989, our prototype of Coda is functional in many respects. The essential
elements of server replication and disconnected operation have been implemented. One can sit down at a Coda
client and execute Unix applications without recompilation or relinking. Execution continues transparently when
contact is lost with a server due to a crash or network failure. In the absence of failures, using a Coda client feels no
different from using an AFS client.

Preliminary measurements with the Andrew benchmark [1] shows that the degradation due to replication is
relatively small. With one replica, Coda performs about 5% worse than with a non-replicated volume. With two
and three replicas, it performs 9% and 11% worse respectively. With three replicas, Coda performs 28% worse than
a local Unix file system. It should be emphasized that these measurements are from an untuned prototype, and we
expect significant improvement as we refine Coda.

6. Conclusion
The increasing dependence of users on distributed file systems makes the availability of these systems a matter of
concern. The two mechanisms of Coda that address this issue, server replication and disconnected operation,
provide resiliency in the face of many failures while minimally impacting performance. Although Coda is far from
maturity, our initial experience with it reflects favorably on its design.

3

References

[1] Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A., Satyanarayanan, M., Sidebotham, R.N., West, M.J.
Scale and Performance in a Distributed File System.
ACM Transactions on Computer Systems 6(1), February, 1988.

[2] Ousterhout, J., Da Costa, H., Harrison, D., Kunze, J., Kupfer, M., Thompson, J.
A Trace-Driven Analysis of the Unix 4.2 BSD File System.
In Proceedings of the 10th ACM Symposium on Operating System Principles, Orcas Island. December,

1985.

[3] Parker, D.S. Jr., Popek, G.J., Rudisin, G., Stoughton, A., Walker, B.J., Walton, E., Chow, J.M., Edwards, D.,
Kiser, S., Kline, C.
Detection of Mutual Inconsistency in Distributed Systems.
IEEE Transactions on Software Engineering SE-9(3), May, 1983.

[4] Satyanarayanan, M., Howard, J.H., Nichols, D.N., Sidebotham, R.N., Spector, A.Z., West, M.J.
The ITC Distributed File System: Principles and Design.
In Proceedings of the 10th ACM Symposium on Operating System Principles, Orcas Island. December,

1985.

[5] Satyanarayanan, M.
A Survey of Distributed File Systems.
In Traub, J.F., Grosz, B., Lampson, B., Nilsson, N.J. (editors), Annual Review of Computer Science. Annual

Reviews, Inc, 1989.
Also available as Technical Report CMU-CS-89-116, Department of Computer Science, Carnegie Mellon

University, February, 1989.

[6] Walker, B., Popek, G., English, R., Kline, C., Thiel, G.
The LOCUS Distributed Operating System.
In Proceedings of the 9th ACM Symposium on Operating System Principles, Bretton Woods. October, 1983.

i

Table of Contents
1. Introduction 0
2. Base Architecture 0
3. Server Replication 1
4. Disconnected Operation 1
5. Status 2
6. Conclusion 2

