
B u s i n e s s C o m p u t i n g

THE PROCESS GROUP APPROACH TO
RELIABLE D I S T R I B U T E D
C O M P U T I N G Kenneth P. Birman
One might expect the reliability of a distributed
system to correspond directly to the reliability of
its constituents, but this is not always the case.
The mechanisms used to structure a distributed
system and to implement cooperation between
components play a vital role in determining
the reliability of the system. Many
contemporary distributed operating
systems have placed emphasis on com-
munication performance, overlooking
the need for tools to integrate com-
ponents into a reliable whole. The
communication primitives supported
give generally reliable behavior, but
exhibit problematic semantics when
transient failures or system config-
uration changes occur. The resulting
building blocks are, therefore, unsuit-
able for facilitating the construction of
systems where reliability is important.

This article reviews 10 years of
research on ISIS, a system that pro-
vides tools to support the construc-
tion of reliable distributed software.
The thesis underlying ISIS is that
development of reliable distributed
software can be simplified using pro-
cess groups and group programming
tools. This article describes the ap-
proach taken, surveys the system,
and discusses experiences with real
applications.

It will be helpful to illustrate
group programming and ISIS in a
setting where the system has found
rapid acceptance: brokerage and
trading systems. These systems inte-
grate large numbers of demanding
applications and require timely reac-
tion to high volumes of pricing and

trading information. 1 It is not un-
common for brokers to coordinate
trading activities across multiple
markets.

Trading strategies rely on accurate
pricing and market-volatility data,
dynamically changing databases giv-
ing the firm's holdings in various
equities, news and analysis data, and
elaborate financial and economic
models based on relationships be-
tween financial instruments. Any dis-
tributed system in support of this
application must serve multiple com-
munities: the firm as a whole, where
reliability and security are key con-
siderations; the brokers, who depend
on speed and the ability to customize
the trading environment; and the
system administrators, who seek uni-
formity, ease of monitoring and con-
trol. A theme of this article is that all
of these issues revolve around the
technology used to "glue the system
together." By endowing the corre-
sponding software layer with pre-
dictable, fault-tolerant behavior, the
flexibility and reliability of the over-

IAl though this class o f systems certainly de-
mands high per formance , there are no real-
time deadlines or hard time constraints, such as
in the FAA's Advanced Automat ion System
[14]. This issue is discussed fu r the r in the sec-
tion "ISIS and O t h e r Distributed Comput ing
Technologies."

all system can be greatly enhanced.
Figure 1 illustrates a possible in-

terface to a trading system. The dis-
play is centered around the current
position of the account being traded,
showing purchases and sales as they
occur. A broker typically authorizes
purchases or sales of shares in a
stock, specifying limits on the price
and the number of shares. These in-
structions are communicated to the
trading floor, where agents of the
brokerage or bank trade as many
shares as possible, remaining within
this authorized window. The display
illustrates several points:

• Information backplane. The broker
would construct such a display by in-
terconnecting elementary widgets
(e.g., graphical windows, computa-
tional widgets) so that the output of
one becomes the input to another.
Seen in the large, this implies the
ability to publish messages and sub-
scribe to messages sent from program
to program on topics that make up
the "corporate information back-
plane" of the brokerage. Such a
backplane would support a naming
structure, communication interfaces,
access restrictions, and some sort of
selective history mechanism. For ex-
ample, when subscribing to a topic,

¢OMMUNICATIONSOWTHllACM December 1993/Vol.36, No.12 3~

® B u s i n e s s C o m p u t i n g

an application will often need key
messages posted to that topic in the
past.
• C u s t o m i z a t i o n . The display suggests
that the system must be easily cus-
tomized. The information backplane
must be organized in a systematic
way (so that the broker can easily
track down the name of communica-
tion streams of interest) and flexible
(allowing the introduct ion of new
communicat ion streams while the
system is active).
• H i e r a r c h i c a l s t r u c t u r e . Although the
t rader will treat the wide-area system
in a seamless way, communicat ion
disruptions are far more common on
wide-area links (say, from New York
to Tokyo or Zurich) than on local-
area links. This gives the system a
hierarchical structure composed of
local-area systems which are closely
coupled and rich in services, inter-
connected by less reliable and
higher-latency wide-area communi-
cation links.

What about the reliability implica-
tions of such an architecture? In Fig-
ure 1, the t rader has g raphed a com-
puted index of technology stocks
against the price of IBM, and it is
easy to imagine that such customiza-
tion could include computat ions crit-
ical to the t rading strategy of the
firm. In Figure 2, the analysis pro-
gram is '"shadowed" by addit ional
copies, to indicate that it has been
made fault- tolerant (i.e., it would
remain available even if the broker 's
workstation failed). A broker is un-
likely to be a sophisticated program-
mer, so fault-tolerance such as this
would have to be in t roduced by the
sys tem-- the t rader 's only action
being to request it, perhaps by speci-
fying the degree of reliability needed
for this analytic program. This
means the system must automatically
replicate or checkpoint the computa-
tion, placing the replicas on proces-
sors that fail independent ly from the
broker 's workstation, and activating a
backup if the pr imary fails.

The requirements of modern
t rading environments are not unique
to the application. It is easy to re-
phrase this example in terms of the
issues confronted by a team of seis-
mologists cooperat ing to in terpret
the results of a seismic survey under
way in some remote and inaccessible

region, a doctor reviewing the status
of patients in a hospital f rom a work-
station at home, a design group col-
laborat ing to develop a new product ,
or application programs cooperat ing
in a factory-floor process control set-
ting. The software of a modern tele-
communicat ions switching product is
faced with many of the same issues,
as is software implement ing a data-
base that will be used in a large dis-
t r ibuted selting. To build applica-
tions for the networked envi-
ronments of the future, a technology
is needed that will make it as easy to
solve these types of problems as it is
to build graphical user interfaces
(GUIs) today.

A central premise of the 1SIS proj-
ect, shared with several o ther efforts
[2, 14, 19, 22, 25] is that suppor t for
p rogramming with d i s t r i b u t e d g r o u p s

o f c o o p e r a t i n g p r o g r a m s is the key to
solving problems such as the ones
previously mentioned. For example,
a fault- tolerant data analysis service
can be implemented by a group of
programs that adapt t ransparent ly to
failures and recoveries. The publica-
tion/subscription style of interaction
involves an anonymous use of pro-
cess groups: here, the group consists
of a set of publishers and subscribers
that vary dramatically as brokers
change the instruments they trade.
Each interacts with the group
through a group name (the topic),
but the group membersh ip is not
t racked or used within the computa-
tion. Al though the processes publish-
ing or subscribing to a topic do not
cooperate directly, when this struc-
ture is employed, the reliability of the
application will depend on the reli-
ability of group communication. It is
easy to see how problems could arise
if, for example, two brokers monitor-
ing the same stock see different pric-
ing information.

Process groups of various kinds
arise naturally th roughout a distrib-
uted system. Yet, cur rent distr ibuted
comput ing environments provide lit-
tle suppor t for group communica-
tion pat terns and programming.
These issues have been left to the
application p rogrammer , and appli-
cation p rogrammers have been
largely unable to respond to the chal-
lenge. In short, contemporary dis-
t r ibuted comput ing environments

prevent users from realizing the po-
tential of the distr ibuted comput ing
infrastructure on which their appli-
cations run.

Process Groups
Two styles of process g roup usage
are seen in most ISIS applications:

A n o n y m o u s g r o u p s : These arise
when an application publishes data
under some "topic," and other pro-
cesses subscribe to that topic. For an
application to opera te automatically
and reliably, anonymous groups
should provide certain propert ies:

1. It should be possible to send mes-
sages to the group using a g r o u p a d -

dress . The high-level p rog rammer
should not be involved in expanding
the group address into a list of desti-
nations.
2. I f the sender and subscribers
remain operational , messages should
be del ivered exactly once. I f the
sender fails, a message should be de-
livered to all or none of the subscrib-
ers. The application p rog rammer
should not need to worry about mes-
sage loss or duplication.
3. Messages should be del ivered to
subscribers in some sensible order .
For example, one would expect mes-
sages to be delivered in an o rde r con-
sistent with causal dependencies: if a
message m is published by a p rogram
that first received m] . . . mi , then m
might be dependen t on these pr ior
messages. I f some other subscriber
will receive m as well as one or more
of these pr ior messages, one would
expect them to be del ivered first.
St ronger order ing propert ies might
also be desired, as discussed later.
4. It should be possible for a sub-
scriber to obtain a history of the
g r o u p - - a log of key events and the
o rde r in which they were received. 2
I f n messages are posted and the first
message seen by a new subscriber will
be message mi, one would expect
messages m l • • • m i - i t o be reflected
in the history, and messages m i . . .

m , , to all be del ivered to the new pro-
cess. I f some messages are missing
from the history, or included both in

2 T h e appl ica t ion i tself wou ld d i s t i ngu i sh mes-
sages that n e e d to be r e t a ined f r o m those that
can be d i sca rded .

~ 8 December 1993/Vol.36, No.12 COMMU~ICa'rlOM$OP'rHi AClW

the history and in the subsequent
postings, incorrect behavior might
result.

Explicit groups: A group is explicit
when its members cooperate directly:
they know themselves to be members
of the group, and employ algorithms
that incorporate the list o f members,
relative rankings within the list, or in
which responsibility for responding
to requests is shared.

Explicit groups have additional
needs stemming from their use of
group membership information: in
some sense, membership changes are
among the information being pub-
lished to an explicit group. For ex-
ample, a fault-tolerant service might
have a primary member that takes
some action and an ordered set of
backups that take over, one by one, if
the current primary fails. Here,
group membership changes (failure
of the primary) trigger actions by
group members. Unless the same
changes are seen in the same order
by all members, situations could arise
in which there are no primaries, or
several. Similarly, a parallel database
search might be done by ranking the
group members and then dividing
the database into n parts, where n is
the number of group members. Each
member would do 1/n'th of the work,
with the ranking determining which
member handles which fragment of
the database. The members need
consistent views of the group mem-
bership to perform such a search
correctly; otherwise, two processes
might search the same part of the
database while some other part re-
mains unscanned, or they might par-
tition the database inconsistently.

Thus, a number of technical prob-
lems must be considered in develop-
ing software for implementing dis-
tributed process groups:

• Support for group communication,
including addressing, failure atomic-
ity, and message delivery ordering.
• Use of group membership as an input.
It should be possible to use the group
membership or changes in member-
ship as input to a distributed algo-
rithm (one run concurrently by mul-
tiple group members).
• Synchronization. To obtain globally

/japan/quotes/ibm

f ~ ~ / n y s / q u O t e s / i b m [

~ Hitch =
(IBM + DEC + HP)A

Zurich: up]
Japan: closed]

Overall Position

Trades in progress
Stock Shares BIO Price
IBM 500 B 133-1/4
IBM 1500 B 132-118
IBM 1000 O 134-1/4
DEC 650 B 96-3/8

/japan/quotes/ibm I
I /nys/quotes/dec I I

I f ~ / n y s / q u O t e s / i b m Zurich: up I
Japan: closed

Overall Position

Trades in progress
Stock Shares B/O Price

iBM 500 B 133-1/4
IBM 1500 B 132-1/8
IBM 1000 O 134-114
DEC 650 B 96-3•8

correct behavior from group applica-
tions, it is necessary to synchronize
the order in which actions are taken,
particularly when group members
will act independently on the basis of
dynamically changing, shared infor-
mation.

The first and last of these prob-
lems have received considerable
study. However, the problems cited
are not independent: their integra-
tion within a single framework is
nontrivial. This integration issue
underlies our virtual synchrony exe-
cution model.

Bui lding D is t r ibu ted Services
O v e r C o n v e n t i o n a l Techno log ies
In this section we review the techni-
cal issues raised in the preceding sec-
tion. In each case, we start by de-
scribing the problem as it might be
approached by a developer working
over a contemporary computing sys-

Figure 1. Broker 's t r a d i n g sys tem

Figure 2. Mak ing an analyt ic
service f a u l t - t o l e r a n t

C S ~ S ~ Primary
Backup

Figure 3. Inconsistent c o n n e c -
t ion states

¢OIIIIUNICATIONBOPTHiA¢li December 1993/"/ol.36, No.12 39

tern, with. no special tools for group
programming. Obstacles to solving
the proh,lems are identified, and
used to motivate a general approach
to overcoming the problem in ques-
tion. Where appropriate, the actual
approach used in solving the prob-
lem within ISIS is discussed.

Conventional Message-Passing
Technologies
Contemporary operating systems
offer three classes of communication
services ['14]:

• Unreliable datagrams: These services
automatically discard corrupted mes-
sages, but do little additional process-
ing. Most messages get through, but
under some conditions messages
might be lost in transmission, dupli-
cated, or ,delivered out of order.
• Remote ,procedure call: In this ap-
proach, communication results from
a procedure invocation that returns a
result. RPC is a relatively reliable ser-
vice, but when a failure does occur,
the sender is unable to distinguish
among many possible outcomes: the
destination may have failed before or
after receiving the request, or the
network may have prevented or de-
layed delivery of the request or the
reply.
• Reliable data streams: Here, commu-
nication is performed over channels
that provide flow control and reli-
able, sequenced message delivery.
Standard stream protocols include
TCP, the ISO protocols, and TP4.
Because of pipelining, streams gen-
erally outperform RPC when an ap-
plication sends large volumes of data.
However, the standards also pre-
scribe rules under which a stream
will be broken, using conditions
based on timeout or excessive re-
transmissions. For example, suppose
that processes c, s] and s9 have con-
nections with one another - -perhaps ,
si and s2 are the primary and backup,
respectively, for a reliable service of
which c is a client.

Now, consider the state of this sys-
tem if the. connection from c to s 1
breaks due to a communication fail-
ure, while all three processes and the
other two connections remain opera-
tional (Figure 3). Much like the situa-
tion after a failed RPC, c and Sl will

now be uncertain regarding one an-
other's status. Worse, s9 is totally un-
aware of the problem. In such a situ-
ation, the application may easily
behave in an inconsistent manner. In
our primary-backup example, c
would cease sending requests to sl,
expecting s2 to handle them. s2, how-
ever, will not respond (it expects Sl to
do so).

In a system with more compo-
nents, the situation would be greatly
exacerbated. From this, one sees that
a reliable data stream has guarantees
little stronger than an unreliable one:
when channels break, it is not safe to
infer that either endpoint has failed;
channels may not break in a consis-
tent manner , and data in transit may
be lost. Because the conditions under
which a stream break are defined by
the standards, one has a situation in
which potentially inconsistent behav-
ior is unavoidable.

These considerations lead us to
make a collection of assumptions
about the network and message com-
munication in the remainder of the
article. First, we will assume the sys-
tem is structured as a wide-area net-
work (WAN) composed of local-area
networks (LANs) interconnected by
wide-area communication links.
(WAN issues will not be considered
in this article due to space con-
straints.) We assume that each LAN
consists of a collection of machines
(as few as two or three, or as many as
one or two hundred), connected by a
collection of high-speed, lowqatency
communication devices. If shared
memory is employed, we assume it is
not used over the network. Clocks
are not assumed to be closely syn-
chronized.

Within a LAN, we assume mes-
sages may be lost in transit, arrive out
of order, be duplicated, or be dis-
carded because of inadequate buf-
fering capacity. We also assume that
LAN communication partitions are
rare. The algorithms described later
in this article and the ISIS system it-
self may pause (or make progress in
only the largest partition) dur ing
periods of partition failure, resum-
ing normal operation only when nor-
mal communication is restored.

We will assume the lowest levels of
the system are responsible for flow
control and for overcoming message

loss and unordered delivery. In ISIS,
these tasks are accomplished using a
windowed acknowledgement proto-
col similar to the one used in TCP,
but integrated with a failure-detec-
tion subsystem. With this (nonstand-
ard) approach, a consistent system-
wide view of the state of components
in the system and of the state of com-
munication channels between them
can be presented to higher layers of
software. For example, the ISIS
transport layer will only break a com-
munication channel to a process in
situations in which it would also re-
port to any application monitor ing
that process that the process has
failed. Moreover, if one channel to a
process is broken, all channels are
broken.

Failure Model
Throughout this article, processes
and processors are assumed to fail by
halting, without initiating erroneous
actions or sending incorrect mes-
sages. This raises a problem: tran-
sient problems--such as an unre-
sponsive swapping device or a
temporary communication ou tage - -
can mimic halting failures. Because
we will want to build systems guaran-
teed to make progress when failures
occur, this introduces a conflict be-
tween "accurate" and "timely" failure
detection.

One way ISIS overcomes this
problem is by integrating the com-
munication transport layer with the
failure detection layer to make pro-
cesses appear to fail by halting, even
when this may not be the case: a fail-
stop model [30]. To implement such a
model, a system uses an agreement
protocol to maintain a system mem-
bership list: only processes included
in this list are permitted to partici-
pate in the system, and nonrespon-
sive or failed processes are dropped
[12, 28]. If a process dropped from
the list later resumes communication,
the application is forced to either
shut down gracefully or to run a "re-
connection" protocol. The message
transport layer plays an important
role, both by breaking connections
and by intercepting messages from
faulty processes.

In the remainder of this article we
assume a message transport and
failure-detection layer with the prop-

40 December 1993/Vol.36, No.12 ¢ O M M U N I C A T I O N S O F T H E A I I I M

erties of the one used by ISIS. To
summarize, a process starts execu-
tion by joining the system, interacts
with it over a period of time dur ing
which messages are delivered in the
order sent, without loss or duplica-
tion, and then terminates (if it termi-
nates) by halting delectably. Once a
process terminates, we will consider
it to be permanently gone from the
system, and assume that any state it
may have recorded (say, on a disk)
ceases to be relevant. If a process
experiences a transient problem and
then recovers and rejoins the system,
it is treated as a completely new en-
t i t y - n o attempt is made to automat-
ically reconcile the state of the system
with its state prior to the failure (re-
covery of this nature is left to higher
layers of the system and applica-
tions).

Building Groups Over Conventional
Technologies
Group Addressing. Consider the
problem of mapping a group address
to a membership list, in an applica-
tion in which the membership could
change dynamically due to processes
jo ining the group or leaving. The
obvious way to approach this prob-
lem involves a membership service [9,
12]. Such a service maintains a map
from group identifiers to member-
ship lists. Deferring fault-tolerance
issues, one could implement such a
service using a simple program that
supports remotely callable proce-
dures to register a new group or
group member, obtain the member-
ship of a group, and perhaps for-
ward a message to the group. A pro-
cess could then transmit a message
either by forwarding it via the nam-
ing service, or by looking up the
membership information, caching it,
and transmitting messages directly. 3
The first approach will perform bet-
ter for one-time interactions; the sec-
ond would be preferable in an appli-
cation that sends a stream of
messages to the group.

This form of addressing also raises
a scheduling question. The designer
of a distributed application will want

s In the latter case, one would also need a mech-
anism for invalidating cached address ing infor-
mation when the g r o u p membersh ip changes
(this is not a trivial problem, but the need for
brevity precludes discussing it in detail).

B u s i n e s s C o m p u t i n g

to send messages to all members of
the group, under some reasonable
interpretation of the term "all." The
question, then, is how to schedule the
delivery of messages so that the de-
livery is to a reasonable set of pro-
cesses. For example, suppose that a
process group contains three pro-
cesses, and a process sends many
messages to it. One would expect
these messages to reach all three
members, not some other set reflect-
ing a stale view of the group compo-
sition (e.g., including processes that
have left the group).

The solution to this problem fa-
vored in our work can be understood
by thinking of the group member-
ship as data in a database shared by
the sender of a multidestination mes-
sage (a multicast4), and the algorithm
used to add new members to the
group. A multicast "reads" the mem-
bership of the group to which it is
sent, holding a form of read-lock
until the delivery of the message oc-
curs. A change of membership that
adds a new member would be treated
like a "write" operation, requiring a
write-lock that prevents such an op-
eration from executing while a prior
multicast is under way. It will now
appear that messages are delivered
to groups only when the membership
is not changing.

A problem with using locking to
implement address expansion is cost.
Accordingly, ISIS uses this idea, but
does not employ a database or any
sort of locking. And, rather than
implement a membership server,
which could represent a single point
of failure, ISIS replicates knowledge
of the membership among the mem-
bers of the group itself. This is done
in an integrated manner , in order to
perform address expansion with no
extra messages or unnecessary delays
and guarantee the logical instantane-
ity property that the user expects.
For practical purposes, any message
sent to a group can be thought of as
reaching all members at the same
time.

4 In this article the term multicast refers to send-
ing a single message to the members of a pro-
cess group. The term broadcast, common in the
literature, is sometimes confused with the hard-
ware broadcast capabilities of devices like
Ethernet. While a multicast might make use of
hardware broadcast, this would simply repre-
sent one possible implementation strategy.

O
Logical time and causal depen-

dency. The phrase "reaching all of its
members at the same time" raises an
issue that will prove to be fundamen-
tal to message-delivery ordering.
Such a statement presupposes a tem-
poral model. What notion of time
applies to distributed process group
applications?

In 1978, Leslie Lamport published
a seminal paper that considered the
role of time in distributed algorithms
[21]. Lamport asked how one might
assign timestamps to the events in a
distributed system to correctly cap-
ture the order in which events oc-
curred. Real time is not suitable for
this: each machine will have its own
clock, and clock synchronization is at
best imprecise in distributed systems.
Moreover, operating systems intro-
duce unpredictable software delays,
processor execution speeds can vary
widely due to cache affinity effects,
and scheduling is often unpredict-
able. These factors make it difficult
to compare timestamps assigned by
different machines.

As an alternative, Lamport sug-
gested, one could discuss distributed
algorithms in terms of the depen-
dencies between the events making
up the system execution. For exam-
ple, suppose a process first sets some
variable x to 3, and then sets y = x.
The event corresponding to the lat-
ter operation would depend on the
former o n e - - a n example of a local
dependency. Similarly, receiving a
message depends on sending it. This
view of a system leads one to define
the potential causality relationship be-
tween events in the system. It is the
irreflexive transitive closure of the
message send-receive relation and
the local dependency relation for
processes in the system. If event a
happens before event b in a distrib-
uted system, the causality relation
will capture this.

In Lamport 's view of time, we
would say that two events are concur-
rent if they are not causally related:
the issue is not whether they actually
executed simultaneously in some run
of the system, but whether the system
was sensitive to their respective or-
dering. Given an execution of a sys-
tem, there exists a large set of equiva-
lent executions arrived at by
rescheduling concurrent events

¢OIMIMUNICATIONSOFTHIEAC:NI December 1993/Vol,36, Nos12 41

B u s i n e s s C o m p u t i n g
v

while retaining the event order ing
constraints represented by causality
relation. The key observation is that
the causal ,event ordering captures all the
essential ordering information needed to
describe the execution: any two physical
execution.s with the same causal
event o rder ing describe indistin-
guishable runs of the system.

Recall our use o f the phrase
"reaching all o f its members at the
same time." Lampor t has suggested
that for a system described in terms
of a causal event order ing, any set of
concurrent events, one per process,
can be thought of as represent ing a
logical instant in time. Thus, when
we say that all members of a group
receive a message at the same time,
we mean that the message delivery
events are concurrent and totally
o rdered with respect to group mem-
bership c]hange events. Causal de-
pendency provides the fundamenta l
notion of t ime in a distr ibuted sys-
tem, and plays an impor tant role in
the remainder of this section.

Message delivery ordering. Con-
sider Figure 4, part (A), in which
messages mb m2, m 3 and m 4 are sent
to a group consisting of processes Sl,
s2, and ss. Messages ml and m~ are
sent concurrently and are received in
different orders by s2 and ss. In many
applications, s2 and ss would behave
in an uncoordinated or inconsistent
manner if this occurred. A designer
must, therefore, anticipate possible
inconsistent message order ing. For
example, one might design the appli-
cation to tolerate such mixups, or
explicitly prevent them from occur-
r ing by delaying the processing of ml
and m 2 within the p rogram until an
order ing has been established. The
real danger is that a designer could
overlook tlhe whole i s sue- -a f te r all,
two simultaneous messages to the
p rogram tlhat arrive in different se-
quences may seem like an improb-
able scenar io- -y ie ld ing an applica-
tion that usually is correct, but may
exhibit abnormal behavior when un-
likely sequences of events occur, or
under periods of heavy load. (Under
load, multicast delivery latencies rise,
increasing the probabili ty that con-
cur rent multicasts could overlap).

This is only one of several delivery
order ing problems illustrated in Fig-
ure 4. Consider the situation when s3

receives message m3. Message ms was
sent by s] after receiving m2, and
might refer to or depend on m 2. For
example, m 2 might authorize a cer-
tain broker to t rade a part icular ac-
count, and m3 could be a t rade the
broker has initiated on behalf of that
account. Our execution is such that ss
has not yet received m2 when ms is
delivered. Perhaps m2 was discarded
by the opera t ing system due to a lack
of buffer ing space. It will be retrans-
mitted, but only after a br ief delay
dur ing which ms might be received.

Why might this matter? Imagine
that ss is displaying buy/sell orders on
the t rading floor, ss will consider ms
invalid, since it will not be able to
confirm that the t rade was autho-
rized. An application with this prob-
lem might fail to carry out valid trad-
ing requests. Again, al though the
problem is solvable, the question is
whether the application designer will
have anticipated the problem and
p rog ra mme d a correct mechanism to
compensate when it occurs.

In our work on ISIS, this problem
is solved by incl.uding a context rec-
ord on each message. I f a message
arrives out of order , this record can
be used to detect the condition, and
to delay delivery until pr ior messages
arrive. The context representat ion
we employ has size l inear in the num-
ber of members of the g roup within
which the message is sent (actually, in
the worst case a message might carry
multiple such context records, but
this is extremely rare). However, the
average size can be greatly reduced
by taking advantage of repeti t ious
communicat ion patterns, such as the
tendency of a process that sends to a
group to send multiple messages in
succession [11]. The imposed over-
head is variable, but on the average
small. Other solutions to this prob-
lem are described in [9, 26].

Message m 4 exhibits a situation
that combines several of these issues.
m 4 is sent by a process that previously
sent m] and is concurrent with m2, ms,
and a membership change of the
group. One sees here a situation in
which all of the o rder ing issues cited
thus far arise simultaneously, and in
which failing to address any of them
could lead to errors within an impor-
tant class of applications. As shown,
only the group addressing proper ty

proposed in the previous section is
violated: were m4 to tr igger a concur-
rent database search, process Sl
would search the first third of the
database, while s~ searches the sec-
ond ha/f- -one-s ixth of the database
would not be searched. However, the
figure could easily be changed to
simultaneously violate o ther order -
ing propert ies.

State transfer. Figure 4, par t (B)
illustrates a slightly di f ferent prob-
lem. Here, we wish to t ransfer the
state of the service to process s3: per-
haps ss represents a p rogram that
has restar ted after a failure (having
lost pr ior state) or a server that has
been added to redistr ibute load. In-
tuitively, the state of the server will
be a data structure reflecting the data
managed by the service, as modif ied
by the messages received pr ior to
when the new member jo ined the
group. However, in the execution
shown, a message has been sent to
the server concurrent with the mem-
bership change. A consequence is
that ss receives a state which does not
reflect message m4, leaving it incon-
sistent with Sl and s2. Solving this
problem involves a complex synchro-
nization algori thm (not presented
here), probably beyond the ability of
a typical dis tr ibuted applications pro-
grammer .

Fault tolerance. Up to now, our
discussion has ignored failures. Fail-
ures cause many problems; here, we
consider jus t one. Suppose the
sender of a message were to crash
after some, but not all, destinations
receive the message. The destina-
tions that do have a copy will need to
complete the transmission or discard
the message. The protocol used
should achieve "exactly-once deliv-
ery" o f each message to those desti-
nations that remain operational , with
bounded overhead and storage.
Conversely, we need not be con-
cerned with delivery to a process that
fails dur ing the protocol, since such a
process will never be heard f rom
again (recall the fail-stop model).

Protocols to solve this problem can
be complex, but a fairly simple solu-
tion will illustrate the basic tech-
niques. This protocol uses three
rounds of RPCs as illustrated in Fig-
ure 5. Dur ing the first round, the

4 2 December 1993/Vol.36, No.12 C O N N U N I C A Y I O H | Olin ? H I I ACIN

sender sends the message to the des-
tinations, which acknowledge re-
ceipt. Al though the destinations can
deliver the message at this point, they
need to keep a copy: should the
sender fail dur ing the first round,
the destination processes that have
received copies will need to finish the
protocol on the sender 's behalf. In
the second round, if no failure has
occurred, then the sender tells all
destinations that the first round has
finished. They acknowledge this
message and make a note that the
sender is enter ing the third round.
During the third round, each desti-
nation discards all information about
the message- -de le t ing the saved
copy of the message and any other
data it was maintaining.

When a failure occurs, a process
that has received a first- or second-
round message can terminate the
protocol. The basic idea is to have
some member of the destination set
take over the round that the sender
was running when it failed; processes
that have already received messages
in that round detect duplicates and
respond to them as they responded
after the original reception. The pro-
tocol is s traightforward, and we leave
the details to the reader.

This three- round multicast proto-
col does not obtain any form of pipe-
lined or asynchronous data flow
when invoked many times in succes-
sion, and the use of RPC limits the
degree of communicat ion concur-
rency dur ing each round (it would be
better to send all the messages at
once, and to collect the replies in par-
allel). These features make the pro-
tocol expensive. Much better solu-
tions have been described in the
l i terature (see [9, 11] for more detail
on the approach used in ISIS, and
for a summary of other work in the
area).

Recall that in the subsection "Con-
ventional Message-Passing Technol-
ogies," we indicated that systemwide
agreement on membership was an
impor tant proper ty of our overall
approach. It is interesting to realize
that a protocol such as this is greatly
simplified because failures are re-
por ted consistently to all processes in
the system. If failure detection were
by an inconsistent mechanism, it
would be very difficult to convince

(A)

C S1 S2 S3

M4

r n r

M5

$1

M

TliE

(B)

$2

$3

Round1

Round 2

Round 3

S.

J

J

$2

B

J

J

S3

OK to deliver message

Acknowledge, no other action

OK to garbage collect

oneself that the protocol is correct
(indeed, as stated, the protocol could
deliver duplicates if failures are re-
por ted inaccurately). The meri t of
solving such a problem at a low level
is that we can then make use of the
consistency propert ies of the solution
when reasoning about protocols that
react to failures.

Summary of issues. The previous
discussion pointed to some of the
potential pitfalls that confront the
developer of group software working
over a conventional operat ing sys-
tem: (1) weak suppor t for reliable
communication, notably inconsis-
tency in the situations in which chan-
nels break, (2) group address expan-
sion, (3) delivery order ing for
concurrent messages, (4) delivery
order ing for sequences of related
messages, (5) state transfers, and
(6) failure atomicity. This list is not
exhaustive: we have overlooked
questions involving real-time deliv-
ery guarantees, and persistent data-

Figure 4. Message-order ing
prob lems

Figure S. T h r e e - r o u n d rel iable
mul t icast

COMMUNICATIONS OF THE ACM December 1993/Vol.36, No.12 43

bases and files. However, our work
on ISIS treats process group issues
under the assumption that any real-
time deadlines are long compared to
communicat ion latencies, and that
process states are volatile, hence we
view these issues as beyond the scope
of the current article. 5 The list does
cover the major issues that arise in
this more restrictive domain. [5]

At the beginning of this section,
we asserted that modern opera t ing

plexity associated with working out
the solutions and integrat ing them in
a single system will be a significant
barr ier to application developers.
The only practical approach is to
solve these problems in the distrib-
uted comput ing environment itself,
or in the opera t ing system. This per-
mits a solution to be engineered in a
way that will give good, predictable
per formance and takes full advan-
tage of hardware and opera t ing sys-

IS iS TOOLS a t P r o c e s s Group L e v e l
Process groups: Create, delete, join (transferring state).

Group multlcast: CBCAST, ABCAST, col lect ing 0, 1 QUORUM or ALL replies (0 re-
plies gives an asynchronous multicast).

Synchronization: LoCking, with symbolic strings to represent locks. Deadlock
detection or avoidance must be addressed at the application level. Token pass-
ing.

Replicated data: implemented by broadcasting updates to group having cop-
Ies. Transfer values to processes that join using state transfer facility. Dynamic
system reconfiguratlon using replicated configuration data. Checkpoint/update
logging, spooling for state recovery after failure.

Monltorlrtg facilities: Watch a process or site, trigger actions after failures and
recoveries. Monitor changes to process group membership, site failures, and
so f o r t h .

Distributed execution facilities: Redundant computation (all take same action).
Subdivided among multiple servers. Coordinator-cohort (primary/backup).

Automated recovery: When a site recovers, Programs automatically restart.
For the first site to recover, group state is restored from logs (or initialized by
software). For other sites, a process group join and transfer state is initiated.

WAN communication: Reliable long-haul message passing and file transfer facility.

systems lack the tools needed to de-
velop group-based software. This
assertion goes beyond standards such
as Unix to include next-generat ion
systems such as NT, Mach, CHORUS
and Amoeb;a. 6 A basic premise of this
article is that, a l though all of these
problems can be solved, the c o r n -

5 These issues can be addressed within the tools
layer of ISIS, and in fact the cu r ren t system in-
cludes an optional subsystem for managemen t
of persistent data.

6Mach IPC provides s t rong guarantees o f reli-
ability in its communica t ion subsystem. How-
ever, Mach may experience u n b o u n d e d delay
when a node failure occurs. C H O R U S includes
a po r t -g roup mechanism, but with weak seman-
tics, pa t te rned .after earlier work on the V sys-
tem [15]. Amoeba, which initially lacked g r o u p
suppor t , has recently been extended to a mech-
anism apparen t ly motivated by ou r work on
ISIS [19].

tem features. Fur thermore , provid-
ing process groups as an under ly ing
tool permits the p rog ra mme r to con-
centrate on the problem at hand. I f
the implementat ion of process
groups is left to the application de-
signer, nonexper ts are unlikely to
use the approach. The brokerage
application of the introduct ion
would be extremely difficult to build
using the tools provided by a conven-
tional opera t ing system.

V i r t u a l S y n c h r o n y
It was observed earl ier in this article
that integration of g roup program-
ming mechanisms into a single envi-
ronment is also an impor tant prob-
lem. Our work addresses this issue
through an execution model called

virtual synchrony, motivated by pr io r
work on transaction serializability.
We will present the approach in two
stages. First, we discuss an execution
model called close synchrony. This
model is then relaxed to arrive at the
virtual synchrony model. A compari-
son of our work with the serializabil-
ity model appears in the section
"ISIS and Other Distr ibuted Com-
put ing Technologies." The basic idea
is to encourage p rogrammers to as-
sume a closely synchronized style of
distr ibuted execution [10, 31]:

• Execution of a process consists of a
sequence of events, which may be
internal computat ion, message trans-
missions, message deliveries, or
changes to the membersh ip of
groups that it creates or joins.
• A global execution of the system
consists of a set o f process execu-
tions. At the global level, one can talk
about messages sent as multicasts to
process groups.
• Any two processes that receive the
same multicasts or observe the same
group membersh ip changes see the
cor responding local events in the
same relative order .
• A multicast to a process group is
del ivered to its full membership. The
send and delivery events are consid-
ered to occur as a single, instanta-
neous event.

Close synchrony is a powerful
guarantee. In fact, as seen in Figure
6, it eliminates all the problems iden-
tified in the preceding section:

• Weak communication reliability guar-
antees: A closely synchronous com-
munication subsystem appears to the
p rog ra mme r as completely reliable.
• Group address expansion: In a closely
synchronous execution, the member-
ship of a process group is fixed at the
logical instant when a multicast is
delivered.
• Delivery ordering for concurrent mes-
sages: In a closely synchronous exe-
cution, concurrent ly issued multi-
casts are distinct events. They would,
therefore, be seen in the same o rde r
by any destinations they have in com-
mon.
* Delivery ordering for sequences of re-
lated messages: In Figure 6, par t (A),
process Sl sent message ms after re-

4 December 1993/Vol.36, No.12 ¢OMMUNICATIOHS OP THIE A¢IM

ceiving m2, hence m3 may be causally
dependen t on ms. Processes execut-
ing in a closely synchronous model
would never see anything inconsist-
ent with this causal dependency rela-
tion.
• State transfer: State transfer occurs
at a well-defined instant in time in
the model. I f a group member
checkpoints the group state at the
instant when a new member is
added, or sends something based on
the state to the new member , the
state will be well def ined and com-
plete.
• Failure atomicity: The close syn-
chrony model treats a multicast as a
single logical event, and reports fail-
ures through group membership
changes that are o rde red with re-
spect to multicast. The all or nothing
behavior of an atomic multicast is
thus implied by the model.

Unfortunately, al though closely
synchronous execution simplifies
distr ibuted application design, the
approach cannot be applied directly
in a practical setting. First, achieving
close synchrony is impossible in the
presence of failures. Say that pro-
cesses s] and s2 are in group G and
message m is multicast to G. Consider
Sl at the instant before it delivers m.
According to the close synchrony
model, it can only deliver m if sz will
do so also. But sl has no way to be
sure that s2 is still operational, hence
s~ will be unable to make progress
[36]. Fortunately, we can finesse this
issue: if s2 has failed, it will hardly be
in a position to dispute the assertion
that m was delivered to it first!

A second concern is that maintain-
ing close synchrony is expensive. The
simplicity of the approach stems in
part f rom the fact that the entire
process group advances in lockstep.
But, this also means that the rate of
progress each group member can
make is limited by the speed of the
other members, and this could have a
huge performance impact. What is
needed is a model with the concep-
tual simplicity of close synchrony, but
that is capable of efficiently support-
ing very high th roughput applica-
tions.

In distr ibuted systems, high
th roughput comes from asynchronous
interactions: pat terns of execution in

B u s i n e s s C o m p u t i n g ®

Time

M

0 2

M1

M~

Sl S2 S3

M a - ~

, , C r a s h

(A)

S 1 S2

Ms

(B)

$3

Time

P1 $1
M1

M2

M3

M4

Ms

which the sender of a message is per-
mitted to continue executing without
waiting for delivery. An asynchro-
nous approach treats the communi-
cations system like a bounded buffer,
blocking the sender only when the
rate of data product ion exceeds the
rate of consumption, or when the
sender needs to wait for a reply or
some other input (Figure 7). The
advantage of this approach is that the
latency (delay) between the sender
and the destination does not affect
the data transmission r a t e - - t h e sys-
tem operates in a pipel ined manner ,
permit t ing both the sender and des-
tination to remain continuously ac-
tive. Closely synchronous execution
precludes such pipelining, delaying
execution of the sender until the
message can be delivered.

This motivates the virtual syn-
chrony approach. A virtually syn-
chronous system permits asynchro-
nous executions for which there
exists some closely synchronous exe-
cution indistinguishable from the

Figure 6. ClOSely synchronous
execution

Figure 7. Asynchronous pipe-
lining

COMMUNICATIONS OII THI iI¢M December 1993/Vol.36, No,12 4S

0 B u s i n e s s C o m p u t i n g

asynchronous one. In general, this
means that for each application,
events need to be synchronized only
to the degree that the application is
sensitive to event ordering. In some
situations, this approach will be iden-
tical to close synchrony. In others, it
is possible to deliver messages in dif-
ferent orders at different processes,
without the application noticing.
When such a relaxation of order is
permissible, a more asynchronous
execution results.

Order sensitivity in distributed sys-
tems. We are led to a final technical
question: "when can synchronization
be relaxed in a virtually synchronous
distributed system?" Two forms of
ordering turn out to be useful; one is
"stronger" than the other, but also
more costly to support.

Consider a system with two pro-
cesses, Sl and s2, sending messages
into a group G with members g~ and
g2. sl sends message m] to G and, con-
currently, sz sends m 2. In a closely
synchronous system, g] and g2 would
receive these messages in identical
orders. If, for example, the messages
caused updates to a data structure
replicated within the group, this
property could be used to ensure
that the replicas remain identical
through tlhe execution of the system.
A multicast with this property is said
to achieve an atomic delivery ordering,
and is denoted ABCAST. ABCAST
is an easy primitive to work with, but
costly to implement. This cost stems
from the tollowing consideration: An
ABCAST message can only be deliv-
ered when it is known that no prior
ABCAST remains undelivered. This
introduce,; latency: messages ml and
m2 must he delayed before they can
be delivered to g] and g,2. Such a de-
livery latency may not be visible to
the application. But, in cases in which
s~ and s2 need responses from gl and/
or g2, or where the senders and desti-
nations are the same, the application
will experience a significant delay
each time an ABCAST is sent. The
latencies involved can be very high,
depending on how the ABCAST
protocol is. engineered.

Not all applications require such a
strong, costly, delivery ordering.
Concurrent systems often use some
form of synchronization or mutual

exclusion mechanism to ensure that
conflicting operations are performed
in some order. In a parallel shared-
memory environment, this is nor-
mally done using semaphores
around critical sections of code. In a
distributed system, it would normally
be done by using some form of lock-
ing or token passing. Consider such a
distributed system, having the prop-
erty that two messages can be sent
concurrently to the same group only
when their effects on the group are inde-
pendent. In the preceding example,
either Sl and s2 would be prevented
from sending concurrently (i.e., if ml
and m 2 have potentially conflicting

M1

S~ S 2

Figure 8. Causal ordering

effects on the states of the members
of G), or if they are permitted to send
concurrently, the delivery orders
could be arbitrarily interleaved, be-
cause the actions on receiving such
messages commute.

It might seem that the degree of
delivery ordering needed would be
first-in, first-out, (FIFO). However,
this is not quite right, as illustrated in
Figure 8. Here we see a situation in
which s], holding mutual exclusion,
sends message ml, but then releases
its mutual exclusion lock to s2, which
sends m 2. Perhaps, m] and m2 are
updates to the same data item; the
order of delivery could therefore be
quite important. Although there is
certainly a sense in which ml was sent
"first," notice that a FIFO delivery
order would not enforce the desired
ordering, since FIFO order is usually
defined for a (sender, destination)
pair, and here we have two senders.
The ordering property needed for
this example is that if mr causally pre-
cedes m2, then ml should be deliv-
ered before m2 at shared destina-

tions, corresponding to a multicast
primitive denoted CBCAST. Notice
that CBCAST is weaker than AB-
CAST, because it permits messages
that were sent concurrently to be de-
livered to overlapping destinations in
different sequences. 7

The major advantage of CBCAST
over ABCAST is that it is not subject
to the type of latency cited previ-
ously. A CBCAST message can be
delivered as soon as any prior mes-
sages have been delivered, and all the
information needed to determine
whether any prior messages are out-
standing can be included, at low
overhead, on the CBCAST message
itself. Except in unusual cases where
a prior message is somehow delayed
in the network, a CBCAST message
will be delivered immediately on re-
ceipt.

The ability to use a protocol such
as CBCAST is highly dependent on
the nature of the application. Some
applications have a mutual exclusion
structure for which causal delivery
ordering is adequate, while others
would need to introduce a form of
locking to be able to use CBCAST
instead of ABCAST. Basically,
CBCAST can be used when any con-
flicting multicasts are uniquely or-
dered along a single causal chain. In
this case, the CBCAST guarantee is
strong enough to ensure that all the
conflicting multicasts are seen in the
same order by all recipients--
specifically, the causal dependency
order. Such an execution system is
virtually synchronous, since the out-
come of the execution is the same as
if an atomic delivery order had been
used.

The CBCAST communication
pattern arises most often in a process
group that manages replicated (or
coherently cached) data using locks
to order updates. Processes that up-
date such data first acquire the lock,
then issue a stream of asynchronous
updates, and then release the lock.

7The statement that CBCAST is "weaker" than
ABCAST may seem imprecise: as we have
stated the problem, the two protocols simply
provide different forms of ordering. However,
the ISIS version of ABCAST actually extends
the partial CBCAST ordering into a total one: it
is a causal atomic muhicast primitive. An argu-
ment can be made that an ABCAST protocol
that is not causal cannot be used asyuchro-
nously, hence we see strong reasons for imple-
menting ABCAST in this manner.

4 6 December 1993/Vol.36, No.12 COmMUNlCA~'|OHSO, THIACM

There will generally be one update
lock for each class of related data
items, so that acquisition of the up-
date lock rules out conflicting up-
dates. 8 However, mutual exclusion
can sometimes be inferred from
other propert ies of an algorithm,
hence such a pat tern may arise even
without an explicit locking stage. By
using CBCAST for this communica-
tion, an efficient, pipel ined data flow
is achieved. In particular, there will
be no need to block the sender of a
multicast, even momentari ly, unless
the group membership is changing at
the time the message is sent.

The t remendous performance
advantage of CBCAST over AB-
CAST may not be immediately evi-
dent. However, when one considers
how fast modern processors are in
comparison with communication
devices, it should be clear that any
primitive that unnecessarily waits
before delivering a message could
introduce substantial overhead. For
example, it is common for an appli-
cation that replicates a table of pend-
ing requests within a group to multi-
cast each new request, so that all
members can maintain identical cop-
ies of the table. In such cases, if the
way that a request is handled is sensi-
tive to the contents of the table, the
sender of the multicast must wait
until the multicast is del ivered before
acting on the request. Using AB-
CAST the sender will need to wait
until the delivery o rde r can be deter-
mined. Using CBCAST, the update
can be issued asynchronously, and
applied immediately to the copy
maintained by the sender. The
sender thus avoids a potentially long
delay, and can immediately continue
computat ion or reply to the request.
When a sender generates bursts of
updates, also a common pattern, the
advantage of CBCAST over AB-
CAST is even greater, because multi-
ple messages can be buffered and

s In ISIS applications, locks are used primari ly
for mutual exclusion on possibly conflicting
operations, such as updates on related data
items. In the case of replicated data, this results
in an a lgor i thm similar to a pr imary copy up-
date in which the "pr imary" copy changes dy-
namically. The execution model is nontransac-
tional, and there is no need for read-locks or for
a two-phase locking rule. This is discussed fur-
ther in the section "ISIS and O t h e r Distributed
Comput ing Technologies."

sent in one packet, giving a pipelin-
ing effect.

The distinction between causal
and total event order ings (CBCAST
and ABCAST) has parallels in other
settings. Al though ISIS was the first
distr ibuted system to enforce a causal
delivery order ing as part of a com-
munication subsystem [7], the ap-
proach draws on Lamport ' s pr ior
work on logical notions of time.
Moreover, the approach was in some
respects anticipated by work on pri-
mary copy replication in database
systems [6]. Similarly, close syn-
chrony is related both to Lampor t
and Schneider 's state machine approach
to developing distr ibuted software
[32] and to the database serializability
model, to be discussed further. Work
on parallel processor architectures
has yielded a memory update model
called weak consistency [16, 35], which
uses a causal dependency principle to
increase parallelism in the cache of a
parallel processor. And, a causal cor-
rectness proper ty has been used in
work on lazy update in shared mem-
ory multiprocessors [1] and distrib-
uted database systems [18, 20]. A
more detailed discussion of the con-
ditions under which CBCAST can be
used in place of ABCAST appears in
[10, 31].

Summary of Benefits Due to Virtual
Synchrony
Brevity precludes a more detai led
discussion of virtual synchrony, or
how it is used in developing distrib-
uted algorithms within ISIS. I t may
be useful, however, to summarize the
benefits of the model:

• Allows code to be developed as-
suming a simplified, closely synchro-
nous execution model;
• Supports a meaningful notion of
group state and state transfer, both
when groups manage replicated
data, and when a computat ion is
dynamically part i t ioned among
group members;
• Asynchronous, pipel ined commu-
nication;
• Trea tment of communication, pro-
cess group membership changes and
failures th rough a single, event-
or iented execution model;
• Failure handl ing through a consis-
tently presented system membership

list in tegrated with the communica-
tion subsystem. This is in contrast to
the usual approach of sensing fail-
ures through timeouts and broken
channels, which does not guarantee
consistency.

The approach also has limitations:

• Reduced availability dur ing LAN
part i t ion failures: only allows prog-
ress in a single parti t ion, and hence
tolerates at most Ln/2J - 1 simulta-
neous failures, if n is the number of
sites current ly operational;
• Risks incorrectly classifying an
operat ional site or process as faulty.

The virtual synchrony model is
unusual in offer ing these benefits
within a single framework. More-
over, theoretical arguments exist that
no system that provides consistent
distr ibuted behavior can completely
evade these limitations. Our experi-
ence has been that the issues ad-
dressed by virtual synchrony are en-
countered in even the simplest
distr ibuted applications, and that the
approach is general, complete, and
theoretically sound.

The ISiS TOOlkit
The ISIS toolkit provides a collection
of higher-level mechanisms for
forming and managing process
groups and implement ing group-
based software. This section illus-
trates the specifics of the approach
by discussing the styles of process
groups suppor ted by the system and
giving a simple example of a distrib-
uted database application.

ISIS is not the first system to use
process groups as a p rogramming
tool: at the time the system was ini-
tially developed, Cheriton's V system
had received wide visibility [15].
More recently, group mechanisms
have become common, exemplified
by the Amoeba system [19], the
CHORUS opera t ing system [26], the
Psync system [29], a high availability
system developed by Ladin and Lis-
kov [20], IBM's AAS system [14], and
Transis [3]. Nonetheless, ISIS was
first to propose the virtual synchrony
model and to offer high-perfor-
mance, consistent solutions to a wide
variety of problems through its tool-
kit. The approach is now gaining
wide acceptance. 9

C l O M M U H I C A T I O N | o F ' r i l l A C M December 1993/Vol.36, No.12 4' /

Server Client

Peer Client server group
group

Diffusion Hierarchical
group group

Figure S. S ty les o f g r o u p s

Styles of Groups
The efficiency of a distributed sys-
tem is limited by the information
available to the protocols employed
for communication. This was a con-
sideration in developing the ISIS
process group interface, in which a
trade-off had to be made between
simplicity of the interface and the
availability of accurate information
about group membership for use in
multicast address expansion. Conse-
quently, the ISIS application inter-
face introduces four styles of process
groups that differ in how processes
interact with the group, illustrated in
Figure 9 (anonymous groups are not
distinguished from explicit groups at
this level of the system). ISIS is opti-
mized to detect and handle each of
these cases efficiently. The four
styles of process groups are:

Peer groups: These arise where a set
of processes cooperate closely, for
example, to replicate data. The
membership is often used as an input
to the algorithm used in handling
requests, as for the concurrent data-
base search described earlier.
Client-server groups: In ISIS, any pro-
cess can communicate with any
group given the group's name and
appropriate permissions. However,
if a nonmember of a group will mul-
ticast to it repeatedly, better perfor-
mance is obtained by first registering
the sender as a client of the group;
this permits the system to optimize

9At the time of this writing our group is work-
ing with the Open Software Foundation on in-
tegration of a new version of the technology
into Mach (the OSF 1/AD version) and with
Unix International, which plans a reliable
group mechanism for UI Atlas.

the group addressing protocol.
Diffusion groups: A diffusion group is a
client-server group in which the cli-
ents register themselves but in which
the members of the group send mes-
sages to the full client set and the cli-
ents are passive sinks.
Hierarchical groups: A hierarchical
group is a structure built from multi-
ple component groups, for reasons
of scale. Applications that use the
hierarchical group initially contact its
root group, but are subsequently re-
directed to one of the constituent
"subgroups." Group data would nor-
mally be partitioned among the sub-
groups. Although tools are provided
for multicasting to the full member-
ship of the hierarchy, the most com-
mon communication pattern involves
interaction between a client and the
members of some subgroup.

There is no requirement that the
members of a group be identical, or
even coded in the same language or
executed on the same architecture.
Moreover, multiple groups can be
overlapped and an individual pro-
cess can belong to as many as several
hundred different groups, although
this is uncommon. Scaling is dis-
cussed later in this article.

The Toolkit Inter face
As noted earlier, the performance of
a distributed system is often limited
by the degree of communication
pipelining achieved. The develop-
ment of asynchronous solutions to
distributed problems can be tricky,
and many ISIS users would rather
employ less efficient solutions than
risk errors. For this reason, the tool-
kit includes asynchronous imple-
mentations of the more important
distributed programming para-

digms. These include a synchroniza-
tion tool that supports a form of
locking (based on distributed to-
kens), a replication tool for manag-
ing replicated data, a tool for fault-
tolerant primary-backup server de-
sign that load-balances by making
different group members act as the
primary for different requests, and
so forth (a partial list appears in the
sidebar "ISIS Tools at a Process
Group Level)," Using these tools,
and following programming exam-
ples in the ISIS manual, even non-
experts have been successful in de-
veloping fault-tolerant, highly asyn-
chronous distributed software.

Figures 10 and 11 show a com-
plete, fault-tolerant database server
for maintaining a mapping from
names (ascii strings) to salaries (inte-
gers). The example is in the C
programming language. The server
initializes ISIS and declares the pro-
cedures that will handle update and
inquiry requests. The isis_rrlsX.nloop
dispatches incoming messages to
these procedures as needed (other
styles of main loop are also sup-
ported). The formatted-I/O style of
message generation and scanning is
specific to the C interface, where
type information is not available at
run time.

The "state transfer" routines are
concerned with sending the current
contents of the database to a server
that has just been started and is join-
ing the group. In this situation, ISIS
arbitrarily selects an existing server
to do a state transfer, invoking its
state sending procedure. Each call
that this procedure makes to
xfer_out will cause an invocation of
rcv_state on the receiving side; in
our example, the latter simply passes
the message to the update procedure
(the same message format is used by
sen6__state and update). Of course,
there are many variants on this basic
scheme. For example, it is possible to
indicate to the system that only cer-
tain servers should be allowed to
handle state transfer requests, to re-
fuse to allow certain processes to join,
and so forth. The client program
does a pg_looRup to find the server.
Subsequently, calls to its query and
update procedures are mapped into
messages to the server. The BCAST
calls are mapped to the appropriate

48 December 1993/Vo1.36, No.12 COMMUNICA / IOHS OF THE ACM

Figure 10. A simple database
server

Figure 11. A cl ient of the simple
database service

default for the g r o u p - - A B C A S T in
this case.

The database server of Figure 10
uses a r edundan t style of execution
in which the client broadcasts each
request and will receive multiple,
identical replies from all copies. In
practice, the client will wait for the
first reply and ignore all others. Such
an approach provides the fastest pos-
sible reaction to a failure, but has the
disadvantage of consuming n times
the resources of a fault- intolerant
solution, where n is the size of the
process group. An alternative would
have been to subdivide the search so
that each server performs 1/n'th of
the work. Here, the client would
combine responses from all the serv-
ers, repeat ing the request if a server
fails instead of replying, a condit ion
readily detected in ISIS.

ISIS interfaces have been devel-
oped for C, C+ +, Fortran, Common
Lisp, Ada and Smalltalk, and ports of
ISIS exist for Unix workstations and
mainframes from all major vendors,
as well as for Mach, CHORUS, ISC
and SCO Unix, the DEC VMS sys-
tem, and Honeywell 's Lynx operat-
ing system. Data within messages is
represented in the binary format
used by the sending machine, and
converted to the format of the desti-
nation on receipt (if necessary), auto-
matically and transparently.

Who Uses ISIS, and How?
Brokerage
A number of ISIS users are con-
cerned with financial comput ing sys-
tems such as the one cited at the be-
ginning of this article. Figure 12
illustrates such a system, now seen
from an internal perspective in
which groups under lying the services
employed by the broker become evi-
dent. A client server architecture is
used, in which the servers filter and
analyze streams of data. Fault-toler-
ance here refers to two very different
aspects of the application. First, fi-
nancial systems must rapidly restart
failed components and reorganize
themselves so that service is not in-

B u s i n e s s C o m p u t i n g

¢ O I W M U N I C A T I O N S O P T H E A C M December 1993/Vol.36, No.12 49

B u s i n e s s C o m p u t i n g

t e r rupted by software or hardware
failures. Second, there are specific
system functions that require fault-
tolerance at the level of files or data-
base, such as a guarantee that after
rebooting, a file or database manager
will be able to recover local data files
at low cost. ISIS was designed to ad-
dress the first type of problem, but
includes several tools for solving the
latter one.

The approach generally taken is to
represent key services using process
groups, replicating service state in-
formation so that even if one server
process fails the other can respond to
requests on its behalf. Dur ing peri-
ods when n service programs are
operational , one can often exploit
the redundancy to improve response
time; thus, ra ther than asking how
much such an application must pay
for fault-tolerance, more appropr i -
ate questions concern the level of
replication at which the overhead
begins to outweigh the benefits of
concurrency, and the minimum ac-
ceptable per formance assuming k
component failures. Fault-tolerance
is something of a side effect of the
replication ;approach.

A significant theme in financial
comput ing is use of a subscription/
publication style. The basic ISIS
communicat ion primitives do not
spool messages for future replay,
hence an application runn ing over
the system, the NEWS facility, has
been developed to suppor t this func-
tionality.

A final aspect of brokerage sys-
tems is that they require a dynami-
cally varying collection of services. A
firm may work with dozens or hun-
dreds of financial models, predict ing
market behavior for the financial in-
s truments being t raded under vary-
ing market conditions. Only a small
subset of these services will be
needed at any time. Thus, systems of
this sort generally consist of a proces-
sor pool on which services can be
started as necessary, and this creates
a need to suppor t an automatic re-
mote execution and load balancing
mechanism. The heterogeneity of
typical networks complicates this
problem, by' in t roducing a pattern-
matching aspect (i.e., certain pro-
grams may be subject to licensing
restrictions, or require special pro-

cessors, or may simply have been
compiled for some specific hardware
configuration). This problem is
solved using the ISIS network re-
source manager , an application de-
scribed later.

Database Replication and Triggers
Although the ISIS computat ion
model differs from a transactional
model (see also the section "ISIS and
Other Distributed Comput ing Tech-
nologies"), ISIS is useful in con-
structing distr ibuted database appli-
cations. In fact, as many as half of the
applications with which we are famil-
iar are concerned with this problem.

Typical uses of ISIS in database
applications focus on replicating a
database for fault-tolerance or to
suppor t concurrent searches for
improved per formance [2]. In such
an architecture, the database system
need not be aware that ISIS is pres-
ent. Database clients access the data-
base through a layer of software that
multicasts updates (using ABCAST)
to the set of servers, while issuing
queries directly to the least loaded
server. The servers are supervised by
a process group that informs clients
of load changes in the server pool,
and supervises the restart of a failed
server from a checkpoint and log of
subsequent updates. It is interesting
to realize that even such an unsophis-
ticated approach to database replica-
tion addresses a widely perceived
need among database users. In the
long run, of course, comprehensive
suppor t for applications such as this
would require extending ISIS to sup-
por t a transactional execution model
and to implement the XA/XOpen
standards.

Beyond database replication, ISIS
users have developed WAN data-
bases by placing a local database sys-
tem on each LAN in a WAN system.
By moni tor ing the update traffic on
a LAN, updates of importance to
remote users can be intercepted and
distr ibuted through the ISIS WAN
architecture. On each LAN, a server
monitors incoming updates and ap-
plies them to the database server as
necessary. To avoid a costly concur-
rency control problem, developers of
applications such as these normally
part i t ion the database so that the
data associated with each LAN is di-

rectly upda ted only from within that
LAN. On remote LANs, such data
can only be quer ied and could be
stale, but this is still sufficient for
many applications.

A final use of ISIS in database set-
tings is to implement database trig-
gers. A tr igger is a query that is incre-
mentally evaluated against the
database as updates occur, causing
some action immediately if a speci-
fied condit ion becomes true. For
example, a broker might request that
an alarm be sounded if the risk asso-
ciated with a financial position ex-
ceeds some threshold. As data enters
the financial database maintained by
the brokerage, such a query would be
evaluated repeatedly. The role of
ISIS is in providing tools for reliably
notifying applications when such a
t r igger becomes enabled, and for
developing programs capable of tak-
ing the desired actions despite fail-
ures.

Major ISiS-based Utilities
In the preceding subsection, we al-
luded to some of the fault- tolerant
utilities that have been built over
ISIS. The re are current ly five such
systems:

• NEWS: This application supports
a collection o f communicat ion topics
to which users can subscribe (obtain-
ing a replay of recent postings) or
post messages. Topics are identif ied
with file-system style names, and
it is possible to post to topics on a
remote network using a "mail ad-
dress" notation; thus, a Swiss broker-
age firm might post some quotes to
"~GENEVA~QUOTES~IBM@NEW-YORK."
The application creates a process
group for each topic, monitoring
each such group to maintain a his-
tory of messages posted to it for re-
play to new subscribers, using a state
t ransfer when a new member joins.
• NMGR: This p rogram manages
batch-style jobs and per forms load
sharing in a dis tr ibuted setting. This
involves moni tor ing candidate ma-
chines, which are collected into a
processor pool, and then scheduling
jobs on the pool. A pat tern-matching
mechanism is used for job place-
ment. I f several machines are suit-
able for a given job, criteria based on
load and available memory are used

~ 0 December 1993/Vol.36, No.12 ¢OMMIUINICATIOM| 01 u THI I A ¢ M

Historical

Trader

Price

qolatility

BIDIq

Monitor
control

LAN Manager

Analysis and
database module:

ut
)

", t , , , ,
Data feeds

" " " ' • ' • d • Japan, Zurich, etc.
Long-haul/WAN Spooler

to select one (these criteria can read-
ily be changed). When employed to
manage critical system services (as
opposed to running batch-style jobs),
the program monitors each service
and automatically restarts failed
components. Parallel make is an ex-
ample of a distr ibuted application
p rogram that uses NMGR for job
placement: it compiles applications
by farming out compilation subtasks
to compatible machines.
• DECEIT: This system [33] pro-
vides fault-tolerance NFS-compatible
file storage. Files are replicated both
to increase per formance (by support-
ing parallel reads on different repli-
cas) and for fault tolerance. The level
of replication is varied depending on
the style of access detected by the sys-
tem at run time. After a failed node
recovers, any files it managed are
automatically brought up to date.
The approach conceals file replica-
tion from the user, who sees an NFS-
compatible file-system interface.
• META/LOMITA: META is an ex-
tensive system for building fault-
tolerant reactive control applications
[24, 37]. I t consists of a layer for in-
s t rument ing a distr ibuted application
or environment, by defining s e n s o r s

and actuators. A sensor is any typed
value that can be polled or moni-
tored by the system; an actuator is
any entity capable of taking an action
on request. Built-in sensors include

the load on a machine, the status of
software and hardware components
of the system, and the set of users on
each machine. User-def ined sensors
and actuators extend this initial set.

The "raw" sensors and actuators
of the lowest layer are mapped to ab-
stract sensors by an intermediate
layer, which also supports a simple
database-style interface and a trig-
gering facility. This layer supports an
entity-relation data model and con-
ceals many of the details of the physi-
cal sensors, such as polling frequency
and fault tolerance. Sensors can be
aggregated, for example by taking
the average load on the servers that
manage a replicated database. The
interface supports a simple tr igger
language, that will initiate a prespeci-
fled action when a specified condi-
tion is detected.

Running over META is a distrib-
uted language for specifying control
actions in high-level terms, called
LOMITA. LOMITA code is embed-
ded into the Unix CSH command
interpreter . At run time, LOMITA
control statements are expanded into
distr ibuted finite state machines trig-
gered by events that can he sensed
local to a sensor or system compo-
nent; a process group is used to im-
plement aggregates, per form these
state transitions, and to notify appli-
cations when a moni tored condition
arises.

Figure 12. Process group archi-
tec ture of brokerage system

• SPOOLER/LONG-HAUL FACIL-
ITY: This subsystem is responsible
for wide-area communicat ion [23]
and for saving messages to groups
that are only active periodically. It
conceals link failures and presents an
exactly-once communication inter-
face.

Other ISiS Applications
Although this section covered a vari-
ety of ISIS applications, brevity pre-
cludes a systematic review of the full
range of software that has been de-
veloped over the system. In addit ion
to the problems cited, ISIS has been
appl ied to telecommunications
switching and "intelligent network-
ing" applications, military systems,
such as a proposed replacement for
the AEGIS aircraft tracking and
combat engagement system, medical
systems, graphics and virtual reality
applications, seismology, factory au-
tomation and product ion control,
reliable management and resource
scheduling for shared comput ing
facilities, and a wide-area weather
predict ion and storm tracking system
[2, 17, 35]. ISIS has also proved pop-
ular for scientific comput ing at labo-
ratories such as CERN and Los Ala-
mos, and has been appl ied to such

C O M M U N i C A T I O N S O F T H i A C M December 1993/Vol.36, No.12 S ~

problems as a programming envi-
ronment for automatically introduc-
ing parallelism into data-flow appli-
cations [4], a beam focusing system
for a partic][e accelerator, a weather-
simulation that combines a highly
parallel ocean model with a vec-
torized atmospheric model and dis-
plays output on advanced graphics
workstations, and resource manage-
ment software for shared supercom-
puting facilities.

It should also be noted that al-
though this article has focused on
LAN issues, ISIS also supports a
WAN architecture and has been used
in WANs composed of up to 10
LANs. a° Many of the applications
cited are structured as LAN solutions
interconnected by a reliable, but less
responsive, WAN layer.

ISIS and Otl~er Distributed
Computing Technologies
Our discussion has overlooked the
types of real-time issues that arise in
the Advanced Automation System, a
next-generation air-traffic control
system being; developed by IBM for
the FAA [13, 14], which also uses a
process-group-based computing
model. Similarly, one might wonder
how the ISIS execution model com-
pares with transactional database
execution models. Unfortunately,
these are complex issues, and it
would be difficult to do justice to
them without a lengthy digression.
Briefly, a technology like the one
used in AAS differs from ISIS in
providing strong real-time guaran-
tees provided that timing assump-
tions are respected. This is done by
measuring timing properties of the
network, ha::dware, and scheduler
on which the system runs and de-
signing protocols to have highly pre-
dictable behavior. Given such infor-
mation about the environment, one
could undertake a similar analysis of
the ISIS protocols, although we have
not done so. As noted earlier, experi-
ence suggests that ISIS is fast enough

~°The WAN archi tecture o f ISIS is similar to
the LAN structure, but because WAN partit ions
are more common, encourages a more asyn-
ch ronous p r o g r a m m i n g style. WAN communi-
cation and link state is logged to disk files (un-
like LAN communicat ion) , which enables ISIS
to re t ransmit messages lost when a WAN parti-
tion occurs and to suppress duplicate messages.
WAN issues are discussed in more detail in [23].

for even very demanding applica-
tions. 1

The relationship between ISIS
and transactional systems originates
in the fact that both virtual syn-
chrony and transactional serializabil-
ity are order-based execution models
[6]. However, where the "tools" of-
fered by a database system focus on
isolation of concurrent transactions
from one another, persistent data
and rollback (abort) mechanisms,
those offered in ISIS are concerned
with direct cooperation between
members of groups, failure han-
dling, and ensuring that a system can
dynamically reconfigure itself to
make forward progress when partial
failures occur. Persistency of data is a
big issue in database systems, but
much less so in ISIS. For example,
the commit problem is a form of reli-
able multicast, but a commit implies
serializability and permanence of the
transaction being committed, while
delivery of a multicast in ISIS pro-
vides much weaker guarantees.

Conclusions
We have argued that the next gener-
ation of distributed computing sys-
tems will benefit from support for
process groups and group program-
ming. Arriving at an appropriate
semantics for a process group mech-
anism is a difficult problem, and
implementing those semantics would
exceed the abilities of many distrib-
uted application developers. Either
the operating system must imple-
ment these mechanisms or the reli-
ability and performance of group-
structured applications is unlikely to
be acceptable.

The ISIS system provides tools for
programming with process groups.
A review of research on the system
leads us to the following conclusions:

I1A process that experiences a t iming fault in
the protocols on which the AAS was originally
based could receive messages that o ther pro-
cesses reject, or reject messages others accept,
because the criteria for accept ing or rejecting a
message uses the value o f the local clock [13].
This can lead to consistency violations. More-
over, i f a fault is t ransient (e.g., the clock is sub-
sequently resynchronized with o ther clocks),
the inconsistency o f such a process could spread
if it initiates new multicasts, which o ther pro-
cesses will accept. However, this p rob lem can be
overcome by chang ing the protocol, and the
au thor unders tands this to have been done as
par t o f the implementat ion o f the AAS system.

• Process groups should embody
strong semantics for group member-
ship, communication, and synchroni-
zation. A simple and powerful model
can be based on closely synchronized
distributed execution, but high per-
formance requires a more asynchro-
nous style of execution in which com-
munication is heavily pipelined. The
virtual synchrony approach combines
these benefits, using a closely syn-
chronous execution model, but de-
riving a substantial performance
benefit when message ordering can
safely be relaxed.
• Efficient protocols have been de-
veloped for supporting virtual syn-
chrony.
• Nonexperts find the resulting sys-
tem relatively easy to use.

This article was written as the first
phase of the ISIS effort approached
conclusion. We feel the initial system
has demonstrated the feasibility of a
new style of distributed computing.
As reported in [11], ISIS achieves
levels of performance comparable to
those afforded by standard technolo-
gies (RPC and streams) on the same
platforms. Looking to the future, we
are now developing an ISIS "micro-
kernel" suitable for integration into
next-generation operating systems
such as Mach, NT, and CHORUS.
This new system will also incorporate
a security architecture [26] and a
real-time communication suite. The
programming model, however, will
be unchanged.

Process group programming
could ignite a wave of advances in
reliable distributed computing, and
of applications that operate on dis-
tributed platforms. Using current
technologies, it is impractical for typ-
ical developers to implement high-
reliability software, self-managing
distributed systems, to employ repli-
cated data or simple coarse-grained
parallelism, or to develop software
that reconfigures automatically after
a failure or recovery. Consequently,
although current networks embody
tremendously powerful computing
resources, the programmers who
develop software for these environ-
ments are severely constrained by a
deficient software infrastructure. By
removing these unnecessary obsta-
cles, a vast groundswell of reliable

S2 December 1993/Voi.36, No.12 ¢ O M M U N I C A T I O N S O F T H | A C M

distributed application development
can be unleashed.

Acknowledgments
The ISIS effort would not have been
possible without extensive contribu-
tions by many past and present mem-
bers of the project, users of the sys-
tem, and researchers in the field of
distributed computing. Thanks are
due to: Ozaip Babaoglu, Micah Beck,
T im Clark, Robert Cooper, Brad
Glade, Barry Gleeson, Holger Her-
zog, Guerney Hunt , Tommy Joseph,
Ken Kane, Cliff Krumvieda, Jacob
Levy, Messac Makpangou, Keith
Marzullo, Mike Reiter, Aleta Ric-
ciardi, Fred Schneider, Andre
Schiper, Frank Schmuck, Stefan
Sharkansky, Alex Siegel, Don Smith,
Pat Stephenson, Robbert van
Renesse, and Mark Wood. In addi-
tion, the author also gratefully ac-
knowledges the help of Mauren Rob-
inson, who prepared the original
figures for this article. []

References
1. Ahamad, M., Burns, J., Hutto, P. and

Neiger, G. Causal memory. Tech.
Rep., College of Computing, Georgia
Institute of Technology, Atlanta, Ga,
July 1991.

2. Allen, T.A., Sheppard, W. and Con-
don, S. Imis: A distributed query and
report formatting system. In Proceed-
ings of the SUN Users Group Meeting,
Sun Microsystems Inc., 1992, pp. 94-
101.

3. Amir, Y., Dolev, D., Kramer, S. and
Malki, D. Transis: A communication
subsystem for high availability. Tech.
Rep. TR 91-13, Computer Science
Dept., The Hebrew University of Je-
rusalem, Nov. 1991.

4. Babaoglu, O., Alvisi, L., Amoroso, S.,
Davoli, R. and Giachini, L.A. Paralex:
An environment for parallel pro-
gramming distributed systems. In
Proceedings of the Sixth ACM Interna-
tional Conference on Supercomputing
(Washington, D.C., July 1992), pp.
178-187.

5. Bache, T.C. et. al. The intelligent
monitoring system. Bull. Seismological
Soc. Am. 80, 6 (Dec. 1990), 59-77.

6. Bernstein, P.A., Hadzilacos, V. and
Goodman, N. Concurrency Control and
Recovery in Database Systems. Addison-
Wesley, Reading, Mass., 1987.

7. Birman, K.P. Replication and avail-
ability in the ISIS system. In Proceed-
ings of the Tenth ACM Symposium on
Operating Systems Principles (Orcas Is-

B u s i n e s s C o m p u t i n g

land, Wash. Dec. 1985), ACM
SIGOPS, pp. 79-86.

8. Birman, K. and Cooper, R. The ISIS
project: Real experience with a fault
tolerant programming system. Euro-
pean SIGOPS Workshop, Sept. 1990.
To be published in Oper. Syst. Rev.
(Apr. 1991). Also available as Cornell
University Computer Science Depart-
ment Tech. Rep. TR90-1138.

9. Birman, K.P. and Joseph, T.A. Ex-
ploiting virtual synchrony in distrib-
uted systems. In Proceedings of the
Eleventh ACM Symposium on Operating
Systems Principles (Austin, Tex., Nov.
1987), ACM SIGOPS, pp. 123-138.

10. Birman, K. and Joseph, T. Exploiting
replication in distributed systems. In
Distributed Systems, Sape Mullender,
Editor, ACM Press, Addison-Wesley,
New York, 1989, pp. 319-368.

11. Birman, K., Schiper, A. and Stephen-
son, P. Lightweight causal and atomic
group multicast. ACM Trans. Comput.
Syst. 9, 3 (Aug. 1991).

12. Cristian, F. Reaching agreement on
processor group membership in syn-
chronous distributed systems. Tech.
Rep. RJ5964, IBM Research Labora-
tory, March 1988.

13. Cristian, F., Aghili, H., Strong, H.R.
and Dolev, D. Atomic broadcast:
From simple message diffusion to
Byzantine agreement. In Proceedings
of the Fifteenth International Symposium
on Fault-Tolerant Computing, (Ann
Arbor, Michigan,June 1985), Institu-
tion of Electrical and Electronic Engi-
neers, pp. 200-206. A revised ver-
sion as IBM Tech. Rep. RJ5244.

14. Cristian F. and Dancey, R. Fault-
tolerance in the advanced automation
system. Tech. Rep. RJ7424, IBM Re-
search Laboratory, San Jose, Calif.,
Apr. 1990.

15. Cheriton, D. and Zwaenepoel, W.
The distributed V kernel and its per-
formance for diskless workstations.
In Proceedings of the Ninth A CM Sympo-
sium on Operating Systems Principles.
(Bretton Woods, New Hampshire,
Oct. 1983), ACM SIGOPS, pp. 129-
140.

16. Dubois, M., Scheurich, C. and Briggs,
F. Memory access buffering in multi-
processors. In Proceedings of the Thir-
teenth Annual International Symposium
on Computer Architecture (June 1986),
pp. 434-442.

17. Johansen, D. Stormcast: Yet another
exercise in distributed computing. In
Distributed Open Systems in Perspective,
Dag Johansen and Frances Brazier,
Eds, IEEE, New York, 1993.

18. Joseph T. and Birman, K. Low cost
management of replicated data in
fault-tolerant distributed systems.

ACM Trans. Comput. Syst. 4, 1 (Feb.
1989), 54-70.

19. Kaashoek, M.F., Tanenbaum, A.S.,
Flynn-Hummel, S. and Bal H.E. An
efficient reliable broadcast protocol.
Oper. Syst. Rev. 23, 4 (Oct. 1989), 5-
19.

20. Ladin, R., Liskov, B. and Shrira, L.
Lazy replication: Exploring the se-
mantics of distributed services. In
Proceedings of the Tenth ACM Sympo-
sium on Principles of Distributed Comput-
ing (Quebec City, Quebec, Aug.
1990), ACM SIGOPS-SIGACT, pp.
43-58.

21. Lamport, L. Time, clocks, and the
ordering of events in a distributed
system. Commun. ACM 21, 7 (July
1978), 558-565.

22. Liskov, B. and Ladin, R. Highly-avail-
able distributed services and fault-
tolerant distributed garbage collec-
tion. In Proceedings of the Fifth ACM
Symposium on Principles of Distributed
Computing (Calgary, Alberta, Aug.
1986), ACM SIGOPS-SIGACT, pp.
29-39.

23. Makpangou, M. and Birman, K. De-
signing application software in wide
area network settings. Tech. Rep. 90-
1165, Department of Computer Sci-
ence, Cornell University, 1990.

24. Marzullo, K., Cooper, R., Wood, M.
and Birman, K. Tools for distributed
application management. IEEE Com-
put. (Aug. 1991).

25. Peterson, L. Preserving context infor-
mation in an ipc abstraction. In Sixth
Symposium on Reliability in Distributed
Software and Database Systems, IEEE
(March 1987), pp. 22-31.

26. Peterson, L.L., Bucholz, N.C. and
Schlichting, R. Preserving and using
context information in interprocess
communication. ACM Trans. Comput.
Syst. 7, 3 (Aug. 1989), 217-246.

27. Reiter, M., Birman, K.P, and Gong,
L. Integrating security in a group ori-
ented distributed system. In Proceed-
ings of the IEEE Symposium on Research
in Security and Privacy (May 1992),
pp. 18-32.

28. Ricciardi, A. and Birman, K. Using
process groups to implement failure
detection in asynchronous environ-
ments. In Proceedings of the Eleventh
ACM Symposium on Principles of Distrib-
uted Computing (Montreal, Quebec,
Aug. 1991), ACM SIGOPS-SIGACT.

29. Rozier, M., Abrossimov, V., Armand,
M., Hermann, F., Kaiser, C.,
Langlois, S., Leonard, P. and
Neuhauser, W. The CHORUS dis-
tributed system. Comput. Syst. (Fall
1988), pp. 299-328.

CONTINUED ON PAGE 103

COMMUNICATIOH|OPTHiACM December 1993/Vol.36, No.12 S ~

C O N T I N U E D F R O M P A G E $ 3

30. Schlichting, R.D. and Schneider, F.B.
Fail-stop processors: An approach to
des igning fault- tolerant comput ing
systems. ACM Trans. Comput. Syst. 1, 3
(Aug. 1983), 222-238.

31. Schmuck, F. T h e use o f efficient
broadcast primitives in asynchronous
distr ibuted systems. Ph.D. disserta-
tion, Cornell University, 1988.

32. Schneider, F.B. Implement ing fault-
tolerant services using the state ma-
chine approach: A tutorial. ACM
Comput. Surv. 22, 4 (Dec. 1990), 299 -
319.

33. Siegel, A., Birman, K. and Marzullo,
K. Deceit: A flexible distr ibuted file
system. Tech. Rep. 89-1042, Depart-
men t o f Compute r Science, Cornell
University, 1989.

34. Tanenbaum, A. Computer Networks.
Prentice-Hall, second ed,, 1988.

35. Torrellas, J. and Hennessey, J. Esti-
mat ing the pe r fo rmance advantages
o f relaxing consistency in a shared
memory multiprocessor. Tech. rep.
CSL-TN-90-365, Compute r Systems

Laboratory, Stanford University,
Feb. 1990.

36. Turek, J. and Shasha, D. T h e many
faces of Consensus in distr ibuted sys-
tems. IEEE Comput. 25, 6 (1992), 8 -
17.

37. Wood, M. Construct ing reliable reac-
tive systems. Ph.D. dissertation, Cor-
nell University, Depar tmen t of Com-
puter Science, Dec. 1991.

CR Categories and Subject Descrip-
tors: C.2.1 [Computer-Communication
Networks]: Network Archi tecture and
Design--network communications; C.2.2
[Computer-Communication Networks]:
Network Protocols--protocol architecture;
C.2.4 [Computer-Communication Net-
works]: Distributed Systems--distributed
applications; D.4.4 [Operat ing Systems]:
Communicat ions management--message
sending, network communications; D.4.5
[Opera t ing Systems]: Reliability--fault
tolerance; D.4.7 [Operating Systems]:
Organization and Design--distributed sys-
tems

Genera l Terms: Algorithms, Reliability

Additional Key Words and Phrases:
Fault-tolerant process groups, message
order ing, multicast communicat ion

About the Author:
KENNETH P. BIRMAN is an associate
professor in the C ompu t e r Science de-
pa r tment at Cornell University and presi-
den t and CEO o f ISIS Distributed Sys-
tems, Inc. Cur ren t research interests
include a range o f problems in distrib-
uted comput ing and fault-tolerance, and
he has developed a number o f systems in
this general area. Author's Present Ad-
dress: Cornell University, Depar tment o f
Compute r Science, 4105A Upson Hall,
Ithaca, NY 14853;
emaii: ken@cs.cornell, edu

Funding for the work presented in this article
was provided under DARPA/NASA grant
NAG-2-593, and by grants from IBM, HP, Sie-
mens, GTE and Hitachi.

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publi-
cation and its date appear, and notice is give that
copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

© ACM 0002-0782/93/1200-036 $1.50

C O N T I N U E D F R O M P A G E 6 5

Additional Key Words and Phrases:
Decision suppor t systems, exper t systems,
integration frameworks, intelligent sys-
tems

About the Authors:
M. K. EL-NAJDAWI is an associate pro-
fessor o f operat ions managemen t and
managemen t informat ion systems at Vil-
lanova University. His research interests
are in the areas of product ion scheduling,
integration o f IS technologies, inventory
management , and applications o f ES and
AI in decision making. Author's Present
Address: T h e College o f Commerce and

Finance, Villanova University, Villanova,
PA 19085; email: elnajdaw@ucis.vill .edu

A N T H O N Y C. STYLIANOU is an assis-
tant professor of managemen t informa-
tion systems and director o f the Academy
for Appl ied Research in Informat ion Sys-
tems at the University o f Nor th Carolina
at Charlotte. His cur ren t research inter-
ests include the evaluation, integration,
and implementa t ion o f ES, knowledge-
based DSS, and neural networks, the ap-
plication o f TQM in the informat ion sys-
tems area, and issues related to strategic
IS p lanning and change of managemen t
dur ing mergers and acquisitions. Au-

Don't be
left in the

thor's Present Address: T h e Belk Col-
lege o f Business Administrat ion, Univer-
sity o f Nor th Carolina, Charlotte, NC
28223; email: astyl ian@unccvm.uncc.edu

For a complete list of references, contact the
authors.

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publi-
cation and its date appear, and notice is give that
copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

© ACM 0002-0782/93/1200-054 $1.50

Call for your FREE
ACM publications catalog:

1-800-342-6626
(In NY, or outside the US and

Canada, call 1-212-626-0500)

COMMUM|~AT|OMt O~THI I ACM December 1993/Vol.36, No.12 1 0 3

