EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson,
Scott Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry

Xerox Palo“.zkl-to ﬁésearch Center

Abstract

When a database is replicated at many sites, maintaining
mutual consistency among the sites in the face of updates is a
significant problem. This paper describes several randomized
algorithms for distributing updates and driving the replicas to-
ward cousistency. The algorithms are very simple and require few
guarantees from the underlying communication system, yet they
ensure that the effect of every update is eventually reflected in all
replicas. The cost and performance of the algorithms are tuned
by choosing appropriate distributions in the randomization step.
The algorithms are closely analogous to epidemics, and the epi-
demiology literature aids in understanding their behavior. One
of the algorithms has been implemented in the Clearinghouse
servers of the Xerox Corporate Internet, solving long-standing
problems of high traffic and database inconsistency.

0. Introduction

Considering a database replicated at many sites in a large,
heterogeneous., slightly unreliable and slowly changing network
of several hundred or thounsand sites. we examine several meth-
ods for achieving and maintaining consistency between the sites.
Each database update is injected at a single site and must be
propagated to all the other sites or supplanted by a later update.
The sites can become fully consistent only when all updating ac-
tivity has stopped and the system has hecome quiescent, On the
other hand, assuming a reasonable update rate, most information
at any given site is current. This relaxed form of consistency has
been shown to be gnite useful in practice [Bi]. Our goal is to
design algorithms that are efficient and robust and that scale
gracefully as the number of sites increases.

Important factors to be considercd in examiuing algorithms for
solving this problem inchude

e the time required for an update to propagate to all sites, and

s the network traffic generated in propagating a single update.
Ideally network traffic is proportional to the size of the up-
date times the number of servers, but some algorithms create
much more trafhc,

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the ACM copyright notice and
the fitle of the publication and its date appear, and notice is given that copying is by permis-
sion of the Association for Computing Machinery. To copy otherwise, or 1o republish, re-
quires a fee and / or specific permission.

© 1987 ACM 0-89791-239-X/87/0008/0001 75¢

-

In this paper we present analyses. simulation results and
practical experience using several strategies for spreading up-
dates. The methods examined include:

1. Direct mail: each new update is immediately mailed from its
entry site to all other sites. This is timely and reasonably
efficient, but not entirely reliable since individual sites do not
always know about all other sites and since mail is sometimes
lost.

2. Anti-entropy: every site regularly chooses another site at
random and by exchanging database contents with it ve-
solves any differences between the two. Anti-entropy is ex-
tremely reliable but requires examining the contents of the
database and so cannot be used too frequently. Analysis and
simulation show that anti-entropy, while reliable. propagates
updates much more slowly than direct mail.

3. Rumor mongering: sites are initially “ignorant™; when a site
receives a new update it becomes a “hot rumor”; while a
site holds a hot rumor, it periodically chooses another site at
random and ensures that the other site has seen the update:
when a site has tried to share a hot rumor with too many
sites that have alrcady seen it, the site stops treating the
rumor as hot and retains the update without propagating
it further. Rumor cycles can be more frequent than anti-
entropy cycles because they require fewer resources af each
site. but there is some chance that an update will not reach
all sites.

Anti-entropy and rumor mongering are both examples of
epidemic processes. and results from the theory of epidemics [Ba'
are applicable. Our understanding of these mechanisms benefit -
greatly from the existing mathematical theory of epidemiology.
although our goals differ (we would he pleased with the rapid andd
complete spread of an update). Moreover, we have the freedom
to design the epidemic mechanism. rather than the problem of
modeling an existing disease. We adopt the terminology of the
epidemiology literature and call a site holding an update it is
willing to share “infective.” A site that has not yet received an
update is called “susceptible” and a site that has received an
update but is no longer willing”to®share it is called “removed.”
Anti-entropy is an example of a “simple epidemic™: onc in which
sites are always either susceptible or infective.

Choosing partners uniformly results in fairly high network
traffic. leading us to consider spatial distributions in which the
choice tends to favor nearby servers. Analyses and simulations
on the actual topology of the Xerox Corporate Internet reveal
distributions for both anti-entropy and rumor mongering that
converge nearly as rapidly as the uniforin distribution while re-
ducing the average and maximum traffic per link. The resulting

anti-entropy algorithm has been installed on the Xerox Corporate
[nternet and has resuited in a significant performance improve-
ment.

We should point out that extensive replication of a database
is expensive. It should be avoided whenever possible by hierar-
chical decomposition of the database or by caching. For example.
Lampson [La] proposes a hierarchical data structure that avoids
high replication. Even so. the results of our paper are inter-
esting because they indicate that significant replication can he
achieved, with simple algorithms, at each level of a hierarchy or
in the backhone of a caching scheme.

0.1 Motivation

This work originated in our study of the Clearinghouse Ser-
vers [Op] on the Xerox Corporate Internet (CIN). The worldwide
CIN comprises several hundred Ethernets connected by gateways
(on the CIN these are called internetwork routers) and phone
lines of many different capacities. Several thousand workstations,
servers and computing hosts are connected to CIN. A packet
cnronte from a machine in Japan to one in Europe may traverse
as many as 14 gateways and 7 phone lines.

The Clearinghouse service maintains translations from
three-level. hierarchical names to machine addresses, user identi-
ties. ete. The top two levels of the hierarchy partition the name
space into a set of domains. Each domain may be stored (repli-
cated) on as few as one or as many as all of the Clearinghouse
servers. of which there are several hundred.

Several domains are in fact stored at all Clearinghouse ser-
vers in CIN. In early 1986, many of the nectwork’s observable
performance problems could be traced to traffic created in trying
to achieve consistency on these highly replicated domains. As
the network size increased, updates to domains stored at even
just a few servers propagated very slowly.

When we first approached the problem, the Clearinghouse
servers were using both direct mail and anti-entropy. Anti-
entropy was run on each domain, in theory, once per day (by
each server) between imidnight and 6 a.m. local time. In fact.
servers often did not complete anti-entropy in the allowed time
because of the load on the network. ’

Our first discovery was that anti-entropy had been followed
by a remailing step: the correct database value was mailed to
all sites when two anti-entropy participants had previously dis-
agreed. More disagreement among the sites led to much more
traffic. For a domain stored at 300 sites, 90,000 mail messages
might be introduced each night. This was far bevond the capac-
itv of the network. and resulted in breakdowns in all the network
services: mail. file transfer. name lookup. etc.

Since the remailing step was clearly unworkable on a large
network our first ohservation was that it had to be disabled. Fur-
ther analysis showed that this would be insufficient: certain key
links in the network would still be overloaded by anti-entropy
traffic. Our explorations of spatial distributions and rumor mon-
gering arose from our attempt to further reduce the network load
imposed by the Clearinghouse update process.

0.2 Related Work

The algorithms in this paper are intended to maintain a
widelyv-replicated directory. or name look-up, database. Rather
than using transaction based mechanisms that attempt to achieve
“one-capy serializabilityv” {for example [Gi}). we use mechanisms
that drive the replicas towards eventual agreement. Such mech-
anisms were apparently first proposed by Johnson et al. [Jo]
and have heen used in Grapevine [Bi] and Clearinghounse [Op].

Experience with these systems has suggested that some prob-
lems remain: in particular, that some updates (with low prob-
ability} do not reach all sites. Lampson [La] proposes a hierar-
chical data structure that avoids high replication. but still re-
quires some replication of each component. say by six to a dozen
servers. Primary-site update algorithms for replicated databases
have been proposed that synchronize updates by requiring them
to be applied to a single site; the update site then takes re-
sponsibility for propagating updates to all replicas. The DARPA
domain system. for example. employs an algorithm of this sort
[Mo]. Primary-site update avoids problems of update distribu-
tion addressed by the algorithms described in this paper, but
suffers from centralized control.

Two features distinguish our algorithms from previous mech-
anisms. First, the previous mechanisms depend on various guar-
antees from underlying communications protocols and on main-
taining consistent distributed control structures. For example,
in Clearinghouse the initial distribution of updates depends on
an underlying guarantecd mail protocol, which in practice fails
from time to time due to physical queue overflow. even though
the mail queunes are maintained on disk storage. Sarin and Lynch
[Sa] present a distributed algorithm for discarding obsolete data
that depends on guaranteed, properly ordered. message delivery.
together with a detailed data structure at each server (of size
Q(n?)) describing all other servers for the same database. Lamp-
son et al. [La] envision a sweep moving deterministicallv aronnd
a ring of servers. held together hy pointers from one server to the
next. These algorithms depend upon varions mutual consistency
properties of the distributed data structure. e.g.. in Lampson’s
algorithm the pointers must define a ring. The algorithms in
this paper mercly depend on eventual delivery of repeated nies-
sages. and do not require data structures at one server describing
information held at other scrvers.

Second. the algorithms deseribed in this paper are random-
ized: that is, there arc mauy points in the algorithm at which
each server makes an independent randoin choice [Ra. Begd). In
distinction, the previons mechanisms are deterministic. For ex-
ample, in both the anti-entropyv and the rumor mongering algo-
rithms. a server randomly chooses a partner. In sonte versions of
the rumor mongering algoritlnn, a server makes a random choice
to remain infective, or become removed. The use of random
choice prevents us from making such claims as: “the informa-
tion will converge in time proportional to the diameter of the
network.” The best that we can claim is that in the absence of
further updates, the probability that the information has not
converged is exponentially decreasing with time. On the other
hand. we belicve that the use of randomized protocols makes onr
algorithms straightforward to implement correctly using simple
data structures.

0.3 Plan of this paper

Section 1 formalizes the notion of a replicated database and
presents the bhasic techniques for achieving consistency. Section
2 describes a technique for deleting items from the database:
deletions arc more complicated than other changes because the
deleted item must he represented by a surrogate until the news of
the deletion has spread to all the sites. Section 3 presents simu-
lation and analytical results for non-uniform spatial distributions
in the choice of anti-entropy and rumor-mongering partners.

1. Basic Techniques

This section introduces our notion of a replicated database
and presents the basie direet mail, anti-entropy and complex epi-
demic protocols together with their analyses.

1.1 Notation

Cousider a network counsisting of a set. § of n sites, cach
stoving a copy of a database. The database copy at site s € S is
a tunc-varying partial function

sValueOf : K — (0:V xt:T)

where K is a set of keys (names). V is a set of values, and T is a
set of timestamps. V contains the distinguished clement NIL but
is otherwise unspecified. T is totally ordered by <. We interpret
s.ValueOf[k} = (NIL,) to mean that the item identified by & has
been deleted from the database. That is, from a database client’s
perspective, s. ValueOf[k] = (NIL, #} is the same as *s.ValueOf{#]
is undefined.”

The exposition of the distribution techniques in Sections 1.2
and 1.3 is simplified by considering a database that stores the
value and timestamp for only a single name. This is done without
loss of generality since the algorithms treat each name separately.
So we will say

8. ValueOf € (v: V xt:T)

i.e., 5.ValueOf is just an ordered pair consisting of a value and a
timestamp. As hefore, the first component may be NIL, mean-
ing the item was deleted as of the thme indicated by the second
component.

The goal of the update distribution process is to drive the
system towards

Vs, 8" € § : 5. ValueOf = 5" ValueOf

There is one operation that clients may invoke to update the
database at any given site, s: ’

Update[v : V] = s.ValueOf « (v, Nowl[})

where Now is a function returning a globally unique timestamp.
One hopes that the timestamps returned by Now|] will he ap-
proximately the current Greenwich Mean Time- if not, the algo-
rithms work formally but not practically. The intcrested reader
is referred to the Clearinghouse[Op] and Grapevine|Bi] papers
for a further description of the role of the timestamps in building
a usable database. For our purposes here, it is sufficient to know
that a pair with a larger timestamp will always supersede onc
with a smaller timestamp.

1.2 Direct Mail

The direct mail strategy attempts to notify all other sites of
an update soon after it occurs. The basic algorithm, executed at
a site s where an update occurs is:

FOR EACH s’ € § DO
PostMail{to : §', msg : (“Update”, 5.ValueOf})
ENDLOOP

Upon receiving the message (“Update”, (v,t)) site s executes

IF s.ValueOf.t <+ THEN
s.ValueOf — (v,t)

The opcration PostMail is expected to be nearly, but not
completely. reliable. It queues messages so the sender isn't de-
layed. The queues are kept in stable storage at the mail server
s0 they are unaffected by server crashes. Nevertheless, PostMail
can fail: messages may be discarded when queues overflow or

their destinations are inaccessible for a long tnne. In addition to
this basic fallibilitv of the mail svsten. the direct mml imay also
fail when the source site of an update does not have acenrate
knowledge of S, the set of sites.

In the Grapevine system [Bi] the hurden of detecting and
correcting failures of the direct mail strategy was placed on the
people administering the network. [n networks with only a few
tens of servers this proved adequate,

Direct mail generates o messages per update: each message
traverses all the network links between its sonree and destination.
So in units of (links - messages) the traffic is proportional to the
number of sites times the average distance between sites.

1.3 Anti-entropy

The Grapevine designers recognized that handling failnres of
direct mail in a large neiwork would be beyvond people’s ability,
They proposed anti-entropy as a mechanism that could be run in
the background to recover automatically from such failures [Bi).
Anti-entropy was not implemented as part of Grapevine. but the
design was adopted essentially unchanged for the (learinghouse.
In its most basic form anti-entropy is expressed by the following
algorithm periodically executed at each site s:

FOR SOME s’ € § DO
ResolveDifference[s, s')
ENDLOOP

The procedure ResolveDifferencels, s'] is carried out by the
two servers in cooperation. Depending on its design, its cffect
may be expressed in one of three ways, called push. pull and
push-pull:

ResolveDifference : PROC|s, s'] = { -~ push
IF s5.ValueOf.t > s'.ValueOf.t THEN
s’ .ValueOf « s.ValueOf
}

ResolveDifference : PROC[s, s’} = { -- pull
IF 5.ValueOf.t < s'.ValueOf.t THEN
s.ValueOf — s' . ValueOf
}

ResolveDifference : PROC|s, s’} = { -- push-pull
SELECT TRUE FROM
s.ValueOf.t > s'.ValueOf.t = 5" . ValueOf — s.ValneOf:
5. ValueOf.t < &' ValueOf.t = s.ValueOf — &' .ValueOf:
ENDCASE = NULL:

For the moment we assume that site s’ is chosen uniformiy
at random from the set S, and that each site executes the anti-
entropy algorithm once per period.

It is a basic result of epidemic theory that simple epidemics.
of which anti-entropy is one, eventually infect the entive popula-
tion. The theory also shows that starting with a single infected
site this is achieved in expected time proportional to the log of
the population size. The constant of proportionality is sensitive
to which ResolveDifference procedure is used. For push. the exact
formula is log,{n) + In(n) + O(1) for large n [Pil.

It is comforting to know that even if mail fails completely.
leaving an update known at only a single site. anti-entropy will

eventually distribute it throughout the network. Normally. how-
ever. we expect anti-entropy to distribute updates to only a few
sites. assuming most sites receive them by direct mail. Thus.
it is important to consider what happens when only a few sites
remain susceptible. In that case the big difference in behavior is
hetween push and pull. with push-pull behaving essentially like
pull. A simple deterministic model predicts the observed hehav-
ior. Let p; he the probability of a site’s remaining susceptible
after the /™" cvcle of anti-entropy. For pull, a site remains sus-
ceptible after the i + 1*' cycle if it was susceptible after the i
evele and it contacted a susceptible site in the 741 cycle. Thus.
we obtain the recurrence

Pyt = (pi)?

which converges very rapidly to 0 when p; is small. For push, a
site remains suseeptible after the i + 17" evcle if it was susceptible
after the i'" evele and no infectious site chose to contact it in the
i+ 1" cycle. Thus. the analogous recurrence relation for push is

1 n{l=p,)
Pitr = Pi (1 - —)
n

which also converges to 0. hut much less rapidly, since for very
small p, (and large n) it is approximately

pit1 = pie”!

This strongly suggests that in practice, when anti-entropy is used
as a backup for some other distribution mechanism such as direct
mail. either pull or push-pull is greatly preferable to push, which
hehaves poorly in the expected case.

As expressed here the anti-entropy algorithm is very expen-
sive. since it involves a comparison of two complete copies of the
database. one of which is sent over the network. Normally the
copies of the database are in nearly complete agreement, so most
of the work is wasted. Given this observation, a possible perfor-
mance improvement is for cach site to maintain a checksum of
its database contents. recomputing the checksum incrementally
as the database is updated. Sites performing anti-entropy first
exchange checksums. comparing their full databases only if the
checksiums disagree. This scheme saves a great deal of network
trathe. assuining the checksums agree most of the time. Unfor-
tunatelv. it is common for a very recent update to he known hy
some but not all sites. Checksums at different sites are likely
to disagree unless the time required for an update to be sent to
all sites is small relative to the expected time between new up-
dates. As the size of the network increases, the time required
to distribute an update to all sites increases, so the naive use of
checksums described above hecomes less and less useful.

A more sophisticated approach to using checksums defines a
time window 7 large enough that updates are expected to reach
all sites within time 7. As in the naive scheme, each site main-
tains a checksum of its database. In addition, the site maintains
a recent update list. a list of all entries in its database whose ages
(measured by the difference between their timestamp values and
the site’s local clock) are less than 7. Two sites s and s’ perform
anti-entropy by first exchanging recent update lists, using the
lists to update their databases and checksums. and then com-
paring checksums. Only if the checksums disagree do the sites
compare their entire databases.

Exchanging recent upclate lists hefore comparing checksums
ensures that if one site has received a change or delete recentlv,
the corresponding obsolete entry does not contribute to the other
site’s checksiun. Thas. the checksum comparison is very likely to

succeed. making a full database comparisou unnecessary. In that
case. the expected traffic generated by an anti-entropy compar-
ison is just the expected size of the recent update list. which is
bounded by the cxpected nmunher of updates occurring on the
network in time 7. Note that the choice of 7 to exceed the ex-
pected distribution time for an update is critical: if 7 is chosen
poorly. or if growth of the network drives the expected update
distribution time above 7. checksum comparisons will usually fail
and network traffic will rise to a level slightly higher than what
would be produced by anti-entropy without checksums.

A simple variation on the above scheme, which does not re-
quire a priori choice of a value for 7, can he used if each site
can maintain an inverted index of its database by timestamp.
Two sites perform anti-entropy by exchanging updates in reverse
timestamp order, incrementally recomputing their checksums,
until agrecient of the checksums is achieved. While it is nearly
ideal from the standpoint of network traffic, this scheme may not
he desirable in practice beranse of the expense of maintaining an
additional inverted index at each site.

1.4 Complex Epidemics

As we have seen already. direct mailing of updates has sev-
eral problems: it can fail because of message loss. or because
the originator has incomplete information about other database
sites. and it introduces an O(n) bottleneck at -the originating
site. Some of these problems would be remedied by a broadcast
mailing mechanism. but most likely that mechanisin would itself
depend on distributed information. The epidemic mechanisins
we are about to describe do avoid these problems. but they have
a different, explicit probability of failure that must be studied
carefully with analvsis and simmlations. Fortunately this proba-
bility of failure can be made arbitrarily small. We refer to these
mechanisms as “complex™ epidemics only to distinguish them
from anti-entropy which is a simple epidemic; complex epidemics
still have simple implementations.

Recall that with respect to an individual update, a database
is either susceptible (it does not know the update). infective (it
knows the update and is actively sharing it with others). or re-
moved (it knows the update but is not spreading it). It is a rela-
tively casy matter to implenent this so that a sharing step does
not require a complete pass through the database. The sender
keeps a list of infeetive updates. and the recipient tries to insert
cach update into its own database and adds all new npdates to
its infective list. The only complication lies in deciding when to
remove an update from the infective list.

Before we discuss the design of a “good™ epidemiic, let’s look
at one example, usually called rumor spreading in the cpidemi-
ology literature.

Rumor spreading is based on the following scenario: There
are n individuals. initially inactive (susceptible). We plant a ru-
mor with one person who becomes active (infective), phoning
other people at random and sharing the rumor. Every person
hearing the rumor also becomes active and likewise shares the
rumor. When an active individual makes an unnecessary phone
call (the recipient already knows the rumor). then with probabil-
ity 1/k the active individual loses intercst in sharing the rumor
(the individual becomes removed). We would like to know how
fast the system converges to an inactive state (a state in which
no onc is infective) and the percentage of people who know the
rumor { e removed) when this state is reached.

Following rhe epidemiology literature. rumor spreading can
be modeled qetcministically with a pair of differential equations.
We let » 7. and r represent the fraction of individunals snsceptible.
infective. and removed respectively, so that s +7 +r = 1t

ds .

— = —s§i

a ()
@ = +s8i — l(1 -~ 8)i

dt k ‘

The first equation suggests that susceptibles will be infected ac-
cording to the product si. The second equation has an additional
term for loss due to individuals making unnecessary phone calls.
A third equation for r is redundant.

A standard technique for dealing with equations like (*) is
toa take the ratio [Ba]. This eliminates ¢ and lets us solve for i as
a function of s: .

di _ k4l 1
ds k ks
. k+1 1
i(s) = — s+ ~logs+e
& k
where ¢ is a constant of integration that can be determined by
the initial conditions: i(1 — ¢} = e. For large n, € goes to zero,
giving:

k+1

c:—-k——

and a solution of
k+1 1
i(s) = %(1)+ 7 logs.

The function 7(s) is zero when

g = pm kD=

This is an implicit equation for s, but the dominant term shows s
decreasing exponentially with k. Thus increasing & is an effective
way of insuring that alinost everybody hears the rumor. For
example. at & = 1 this formula suggests that 20% will miss that
rumnor., while at & = 2 only 6% will miss it.

Variations

So far we have seen only one complex epidemie, based on
the rumor spreading technique. In general we would like to un-
derstand how to design a “good™ epidemic, so it is worth pausing
now to review the criteria used to judge epidemics. We are prin-
cipally concerned with:

1. Residue. This is the value of s when 7 is zero, that is,
the remaining susceptibles when the epidemic finishes. We
would like the residue to be as small as possible, and, as
the above analysis shows, it is feasible to make the residne
arbitrarily small.

2. Traffic. Presently we are measuring traffic in’ database up-
dates sent hetween sites. without regard for the topology of
the network. It is convenient to use an average, the number
of messages sent from a typical site:

_ Total update traffic
~ Number of sites

In section 3 we will refine this wetric to incorporate traffic
on individual links.

3. Delay. There are two interesting times. The average delay
is the difference between the time of the initial injection
of an update and the arrival of the update at a given site,
averaged over all sites, We will refer to this as t,,.. A similar
quantity. t;, .. is the delay until the reception hy the last site
that will receive the update during the epidemic. Update

messages may continue to appear in the network after ¢, .-

but they will never reach a susceptible site. We found it

necessary to introduce two times because they often behave
differently, and the designer is legitimately concerned about
bhoth times.

Next. let us consider a few simple vartations of rumor spreading.
First we will describe the practical aspects of the modifications.
and later we will discuss residue, traffic. and delay.

Blind vs. Feedback. The rumor cxample used feedback from
the recipient; a sender loses interest only if the recipient already
knows the rumor. A blind variation loses interest with probability
1/k regardless of the recipient. This obviates the need for the bit
vector response from the recipient.

Counter vs. Coin. Instead of losing interest with probability
1/k we can use a counter, so that we lose interest only after »
unnecessary contacts. The counters require keeping extra state
for elements on the infective lists. Note that we can combine
counter with blind, remaining infective for & cycles independent
of any feedback.

A surprising aspect of the above variations is that thev share
the same fundamental relationship hetween traffic and residue:

s = e—"l
This is relatively easy to see by noticing that there are nm up-
dates sent and the chance that a single site misses all these up-
dates is (1 — 1/n)"™. (Since m is not constant this relationship
depends on the moments around the mean of the distribution
of m going to zero as n — oo, a fact that we have observed
empirically, but have not proven.) Delay is the the only con-
sideration that distinguishes the above possibilities: simulations
indicate that counters and feedback improve the delay, with coun-~
ters playing a more significant réle than feedback.

Table 1. Performance of an epidemic on 1000 sites using re-
sponse and counters.

Counter Residue Traffic Convergence
k S m tove Liast
1 0.176 1.74 11.0 16.8
2 0.037 3.30 121 16.9
3 0.011 4.53 12.5 17.4
4 0.0036 5.64 12.7 17.5
5 0.0012 6.68 12.8 17.7

Table 2. Performance of an epidemic on 1000 sites using blind
and probabilistic.

Counter Residue Traffic Convergence |
k 8 m t:: e ’/.ml
1 0.960 0.04 19 38
2 0.205 1.59 17 33
3 0.060 2.82 15 32
4 0.021 3.91 14.1 32
5 0.008 4.95 13.8 32

Push vs, Pull. So far we have assumed that the all sites wonld
randomly choose destination sites and push infective updatoes to
the destinations. The push vs. pull distinction made already for
anti-entropy can be applied to rumor mongering as well. Pull
has some advantages, but the primary practical consideration is
the rate of update injection into the distributed database. If
there are numerous independent updates a pull request is likely
to find a source with a non-empty rumor list. triggering useful
information flow. By contrast. if the database is quiescent the

push algorithm ceases to introduce traffic overhead. while the pull
rariation continues to inject fruitless requests for updates. Our
own CIN application has a high enough update rate to warrant
the use of pull.

The chief advantage of pull is that it does significantly bet-
ter than the s = ™' relationship of push. Here the blind vs.
feedback and counter vs. coin variations are important. Simula-
tions indicate that the counter and feedback variations improve
residue, with counters being more important than feedback. We
have a recurrence relation modeling the counter with feedback
case that exhibits s = ¢=®0"") hehavior.

Table 3. Performance of a pull epidemic on 1000 sites using
response and countersi,

Counter Residue Traffic Convergence
k s m taue ast
1 3.1x10-? 2.70 9.97 17.63
2 58 x 1077 4.49 10.07 15.39
3 1.0 x 1078 6.09 10.08 14.00

T If more than one recipient pulls from a site in a single cycle then
at the end of the cycle the effects on the counter are as follows:
if any recipient needed the update then the counter is reset; if
all recipients did not need the update then one is added to the
counter.

Minimization. It is also possible to make use of the counters of
hoth parties in an exchange to make the removal decision. The
idea is to use a push and a pull together, and if both sites already
kunow the update, then only the site with the smaller counter is
incremented (in the case of equality both must be incremented).
This requires sending the counters over the network, but it resnlts
in the smallest residue we have seen so far.

Connection Limit. It is unclear whether connection limita-
tion should be seen as a difficulty or an advantage. So far we
have ignored connection limitations. Under the push model, for
example. we have assumed that a site can become the recipient
of more than one push in a single cycle, and in the case of pull
we have assumed that a site can scrvice an unlimited number of
requests. Since we plan to run the rumor spreading algorithms
frequently. realism dictates that we use a connection limit. The
connection limit affects the push and pull mechanism differently:
pull gets significantly worse, and, paradoxically, push gets signif-
icantlv hetter.

To sce why push gets better. assume that the database is
nearly quiescent. that is, only one update is being spread, and
that the connection lmit is one. If two sites contact the same
recipient then one of the contacts is rejected. The recipient still
gets the update, but with one less unit of traffic. (We have chosen
to measure traffic only in terms of updates sent. Some network
activity arises in attempting the rejected connection, but this is
less than that involved in transmitting the update. We have, in
essence. shortened a connection that was otherwise useless). How
many connections are rejected? Since an epidemic grows expo-
nentially. we assume most of the traffic occurs at the end when
nearly everybody is infective and the probability of rejection is
close to e~ !. So we would expect that push with connection limit
one would hehave like:

—Am A 1

s=e =
1-¢!t

Simulations indicate that the counter variations are closest to this
hehavior (counter with response being the most effective). The

probabilistic variations do not fit the ahove assumptions, since
thev do not have most of their traffic occurring when everybody
is infective. Nevertheless they still do better than s = ¢~"™. Inall
variations. since push on a nearly quiescent nctwork works best
with a connection limit of 1 it seems worthwhile to enforce this
limit even if more connections are possible.

Pull gets worse with a connection limit, because its good
performance depends on every site being a recipient in every
cycle. As soon as there is a finite connection failure probability
§. the asymptotics of pull changes. Assuming, as before, that
almost all the traff.c occurs when everyone is infective. then the
chance of a site missing an update during this active period is
roughly:

s=6" =e A=—-Iné

Fortunately, with only modest sized connection limits, the prob-
ability of failure hecomes extremely small, since the chance of a
site having j connections in a cycle is e71 /5.

Hunting. If a connection is rejected then the choosing site can
“hunt™ for alternate sites. Hunting is relatively inexpensive and
seems to improve all connection limited cases. In the extreme
case, a connection limit of 1 with infinite hunt limit results in a
complete permutation. Push and pull then become equivalent,
and the residue is very small.

1.5 Backing Up a Complex Epidemic with Anti-entropy

We have seen that a complex epidemic algorithm can spread
updates rapidly with very low network traffic. Unfortunately, a
complex epidemic can fail: that is. there is a nonzero probability
that the number of infective sites will fall to zero while some sites
remain susceptible. This event can be made extremely unlikely:
nevertheless. if it occurs. the system will be in a stable state in
which an update is known by some, but not all. sites. To elimi-
nate this possibility, anti-entropy can be run infrequently to back
up a complex epidemic, just as it is used in the Clearinghouse to
back up direct mail. This ensures with probability 1 that every
update eventually reaches (or is superseded at) everv site.

When anti-entropy is used as a backup mechanism, there is
a significant advantage in using a complex epidemic such as ru-
mor mongering rather than direct mail for initial distribution of
updates. Consider what shonld be done if a missing update is
discovered when two sites perform anti-entropy. A conservative
response would be to do nothing (except make the databases
of the two sites consistent, of course). relying on anti-entropy
eventually to deliver the update to all sites. A more aggressive
response would he to redistribute the update. using whatever
mechanism is used for the initial distribution; c.g., mail it to all
other sites or make it a hot rumer again. The conservative ap-
proach is adequate in the usnal case that the update is known
at all but a few sites. However, to deal with the occasional com-
plete failure of the initial distribution, a redistribution step is
desirable.

Unfortunately. the cost of redistribution hy direct mail can
be very high. The worst ease occurs when the initial distribution
manages to deliver an update to approximately half the sites. so
that on the next anti-entropy cycle each of O(n) sites attempts
to redistribute the update by mailing it to all » sites, generating,
O(n?; mail messages. The Clearinghouse originally did redistri-
hution. but we were forced to eliminate it because of its high
cost.

Using rumaor mongering instead of dircet mail wonld greatly
reduce the exported cost of redistribution. Rumor meongering is
ideal tor the simple case in which only a few sites fail to receive an

update. since a siugle hot rumor that is alveady known at nearly
all sites dies ont guickly without generating much network traffic.
[t also behaves well in the worst-case situation mentioned above:
if an update is distributed to approximately half the sites, then
O(n) copies of the update will he introduced as hot rumors in the
next round of anti-entropy. This actually generates less network
traffic than introducing the rumor at a single site.

2. Deletion and Death Certificates

Using either anti-entropy or rumor mongering, we cannot
delete an item from the database simply by removing a local
copy of the item, expecting the absence of the item to spread
to other sites. Just the opposite will happen: the propagation
mechanism will spread old copies of the item from elsewhere in
the database hack to the site where we have deleted it. Unless
we can simultancously delete all copies of an obsolete item from
the database, it will eventually be “resurrected” in this way.

To remedy this problem we replace deleted items with death
certificates. which carry time stamps and spread like ordinary
data. During propagation, when old copies of deleted items meet
death certificates, the old items are removed. If we keep a death
certificate long enough it eventually cancels all old copies of its
associated item. Unfortunately, this does not completely solve
the problem. We still must decide when to delete the death cer-
tificates themselves, or they will ultimately consume all available
storage at the sites.

One strategy is to retain each death certificate until it can
be determined that every site has received it. Sarin and Lynch
[Sa] deseribe a protocol for making this determination, based
on the distributed snapshot algorithm of Chandy and Lamport
{Ch]. Separate protocols are needed for adding and remnoving
sites (Sarin and Lynch do not describe the site addition protocol
in any detail). If any site fails permanently between the cre-
ation of a death certificate and the completion of the distributed
snapshot. that death certificate cannot be deleted until the site
removal protocol has been run. For a network of several hun-
dred sites this fact can be quite significant. In our experience,
there is a fairly high probability that at any time some site will
be down (or unirachable) for hours or even days, preventing the
distributed snap<hot or site deletion algorithm from completing.

A much simpler strategy is to hold death certificates for some
fixed threshold of time. such as 30 days. and then discard them.
With this scheme. we run the risk of obsolete items older than the
threshold heing resurrected. as described above. There is a clear
tradeoff between the amount of space devoted to death certifi-
cates and the risk of obsolete items being resurrected: increasing
the time threshold reduces the risk but increases the amount of
space consumed by death certificates,

2.1 Dormant Death Certificates

There s a distributed way of extending the time threshold
back much further than the space on any one server wonld per-
mit. This scheme, which we call dormant death certificates, is

based on the following ohservation. If a death certificate is older

than the expected time required to propagate it to all sites, then
the existence of an obsolete copy of the corresponding data item
anywhere in the network is unlikely. We can delete very old death
certificates at most sites, retaining “dormant” copies at only a
few sites. When an obsolete update encounters a dormant death
certificate, the death certificate can be “awakened” and propa-
gated again to all sites. This operation is expensive. but it will
oceur infrequently, T this way we can ensure that if a death cer-
tificate is present at any site in the network. resurrection of the

associated data item will not persist for any appreciable time.
Note the analogy to an bmmune reaction. with the awakened
death certificates behaving like antibodies.

The implementation uses two thresholds. 7, and 7. and at-
taches a list of r retention site names to cach death certificate.
When a death certificate is created. its retention sites are cho-
sen at random. The death certificate is propagated by the samc
mechanism used for ordinary updates. Each server retains all
death certificates timestamped within 7 of the current time.
Once 71 is reached, most servers delete the death certificate. but
every server on the death certificate’s retention site list saves a
dormant copy. Dormant death certificates are discarded when
7 + T2 is reached.

(For simplicity we ignore the differences between sites” local
clocks. It is realistic to assume that the clock synchronization
error is at most € << 77. This has no significant effect on the
arguments.)

Dormant death certificates will occasionally be lost due to
permanent server failures. For example, after one server half-life
the probabhility that all servers holding dormant copies of a given
death certificate have failed is 277, The value of r can be chosen
to make this probability acceptably small.

To compare this scheme to a scheme using a single fixed
threshold 7, assume that the rate of deletion is steady over time.
For equal space usage, assuming 7 > 71, we obtain

2 = (r—mn)nfr

That is, there is O(n) improvement in the amount of history we
can maintain. In our existing system, this would enable us to
increase the effective history from 30 days to several years.

At first glance, the dormant death certificate algorithm
would appear to scale indefinitely. Unfortunately. this is not
the case. The problem is that the expected time to propagate a
new death certificate to all sites, which grows with n, will even-
tually exceed the threshold value 1, which does not grow with
n. While the propagation time is less than 7y, it is seldom nec-
essary to reactivate old death certificates; after the propagation
time grows beyond 71, reactivation of old death certificates he-
comes more and more frequent. This introduces additional load
on the network for propagating the old death certificates, thereby
further degrading the propagation time. The ultimate result is
catastrophic failure. To avoid such a failure, system parameter-
must be chosen to keep the expected propagation time below 7.
As described above, the time required for a new update to prop-
agate through the network using anti-entropy is expected ta be
Oflog n). This implies that for sufficiently large networks 7. and
hence the space required at each server. eventually must grow as
O(logn).

2.2. Anti-Entropy with Dormant Death Certificates

If anti-entropy is used for distribunting updates. dormam
death certificates should not normally he propagated during anti-
entropy exchanges. Whenever a dormant deatli certificate en-
counters an obsolete data item, however, the death certificate
must be “activated” in some way. so it will propagate to all sites
and cancel the obsolete data item.

The obvious way to activate a death certificate is to set its
timestamp forward to the current clock value. This approach
might be acceptable in a system that did not allow deleted data
items to be “reinstated.” In general it is incorrect. hecause some-
where in the network there could be a legitimate update with a
timestamp hetween the original and revised timestamps of the
death certificate (e.g. an update reinstating the deleted item).

Such an update would incorrectly be cancelled hy the reactivated
death certificate.

To avoid this problem. we store a sccond timestamp, called
the activation timestamp. with cach death certificate. Initially
the ordinary and activation timestamps are the same. A death
certificate still cancels a corresponding data item if its ordinary
timestamp is greater than the timestamp of the item. However.
the activation timestamp controls whether a death certificate is
considered dormant and how it propagates. Specifically, a death
certificate is deleted (or considered dormant by a site on its site
list) when its activation timestamp grows older than 7; a dor-
mant death certificate is deleted when its activation timestamp
grows older than 7, + m: and a death certificate is propagated
by anti-entropy only if it is not dormant. To reactivate a death
certificate. we <et irs activation timestamp to the current time,
leaving its cidisnry thinestamp unchanged. This has the desired
effect of propagating the reactivated death certificate without
cancelling viore recent updates.

2.3. Rumor Mongering with Dormant Death Certificates

The uctivation timestamp mechanism described above for
anti-entropy works equallv well if rumor mongering is used for
distributing updates. Each death certificate is created as an ac-
tive rumor. Eventually it propagates through the network and
becomes inactive at all sites. Whenever a dormant death cer-
tificate encounters an ohsolete data item at some site, the death
certificate is activated by setting its activation timestamp to the
current time. In addition, it is made an active rumor again. The
notmal rumor mongering mechanism then distributes the reacti-
vated death certificate throughout the network.

3. Spatial Distributions

Up to this point we have regarded the network as uniform,
but in reality the cost of sending an update to a nearby site is
much lower than the cost of sending the update to a distant site.
To reduce commumication costs, we would like our protocols to
favor nearby neighbors, but there are drawbacks to too much
local favoritism. It is easiest to begin exploring this tradeoff on
a line.

Assume. for the moment, that the database sites are ar-
ranged on a lincar network, and that each site is one link from
its nearest neighbors. If we were using only nearest neighbors for
anti-entropy exchanges, then the traffic per link per cycle would
be (1), but it would take O(n) cycles to spread an update. At
the other extreme. if we were using uniform random connections,
then the average distance of a connection would be O(n), so that
even though the convergence would be O(logn) the traffic per
link per cvcle would be O(n). In general, let the probability of
connecting to a site at distance d be proportional to d™7, where
o is a parameter to be determined. Analysiz sivo 5 that the ex-
pected traffic per link is:

O(n), a < 0;
O(n/logn), a=1:
T(n)={ O(mn*). 1<a<?
O(log n). n=2;
o, a>2

Convergence times for the 7 distribution are much harder to
compute exactlyv. Informal equations and simulations suggest
that they follow the reverse pattern: for ¢ > 2 the convergence is
polyvnomial in n. and for @ < 2 the convergence is polvnomial in
log n. This strongly suggests using a d~Z distribution for spread-
ing updates on a line. since both traffic and convergence would
scale well as n goes to infinity.

A realistic network bears little resemblance to the linear ex-
ample used above (surprisingly, siall sections of the CIN are
in fact linear. hut the bulk of the netvork is more highly con-
nected). so it is not inunediatelv obvions how to generalize the
d~2 distribution. The above reasoning can be generalized to
higher dimeusional rectilinear meshes of sites, suggesting good
convergence (polynomial in log n) with distributions as tight as
d72P where D is the dimension of the mesh. Moreover. the traf-
fic drops to O(logn) as soon as the distribution is d= P+ so
we have a broader region of good hehavior. but it is dependent
on the dimension of the mesh. 7. This observation led us to
consider letting each site s independently choose connections ac-
cording to a distribution that is a function of @, (d), where Q.(d)
is the cnmulative number of sites at distance d or less from 5. On
a D-dimensional mesh. Q.(d) is O(d?), so that a distribution like
1/Q.(d)? is O(d—2"). regardless of the dimension of the mesh.
We conjectured that the Q,(d) function’s ahility to adapt to the
dimension of a mesh would make it work well in an arbitrary
network. and that the asviptotic properties would make distri-
butions hetween 1/dQ.(d) and 1/Q.(d)? have the best sealing
behavior. The next section deseribes further practical consid-
erations for the choice of distribution. and our experience with
1/Q.(d)%.

3.1 Spatial Distributions and Anti-Entropy

We argued above that a nonuniform spatial distribution can
significantly reduce the traffic generated by anti-entropy with-
out unacceptably increasing its convergence time. The network
topologies considered were very regular: D-dimensional rectilin-
ear grids.

Use of a nonuniform distribution becomes even more attrac-
tive when we consider the actual CIN topology. In particular, the
CIN includes small sets of eritical links, such as a pair of transat-
lantic links that ave the only routes connecting n;y sites in Europe
to ny sites in North .inevica. Currently ») is a few tens. and ny
is several hundred. Using a uniform distribution, the expected
number of conversations on these transatlantic links per round of
anti-entropy is 2nyny/(n) + n2). This is about 80 conversations.
shared between the two links. By comparison, when averaged
over all links. the expected traffic per link per evele is less than
6 conversations. It is the unacceptably high traffic on critical
links, rather than the average traffic per link. that makes uniform
anti-entropy too costly for use in our system. This observation
originally inspired our study of nonuniform spatial distributions.

To learn how network traffic conld be reduced, we performed
extensive stmulations of anti-entropy behavior using the actual
CIN topology and a number of different spatial distributions.

Preliminary results indicated that distributions parameter-
ized by Q.(d) adapt well to the “local dimnension” of the network
as suggested in Section 3. and perform significantly better than
distributions with any direct dependence on 4. In particular.
1/Q.(d)? outperforms 1/dQ.{d). The results using spatial dis-
tributions of the form Q.(d)~" for anti-entropy were very encour-
aging. However. early siinulations of rumor mongering wucovered
a few problem spots in the CIN topology when spatial distribu-
tions were used.

After examining these results, we developed a slightly dif-
ferent «lass of distributions that are less sensitive to sudden in-
creases i Qud). These distributions proved to be more effective
for both anti-entropy and ror mongering on the CIN topology.
Informali . Jet each site s huild a list of the other sites sorted
by theiv distance from s. and then seleet anti-entropy exchange
partners from the sorted list according to a function f(7). This

. function gives the probability of choosing a site as a funetion of

Table 4. Simulation results for anti-entropy, no connection liniit.

Spatial trost tare Compare Traffic Update Traffic
Distribution Average Bushey Average Bushey
uniform 7.81 5.27 5.87 75.74 5.85 74.43
a=12 10.04 6.29 2.00 11.19 2.61 17.52
a=14 10.31 6.39 1.93 8.77 2.49 14.10
a=1.6 10.94 6.70 1.71 5.72 2.27 10.88
an=138 11.97 7.21 1.52 3.74 2.07 7.68
a =20 13.32 7.76 1.36 2.38 1.89 5.87

Table 5. Simulation results for anti-entropy, connection limit 1.

Spatial trast tave Compare Traffic Update Traffic
Distribution Average Bushey Average Bushey
uniform 11.00 6.97 3.71 47.54 5.83 75.17
a=1.2 16.89 9.92 1.14 6.39 2.69 18.03
a=14 17.34 10.15 1.08 4.68 2.55 13.68
a=16 19.06 11.06 0.94 2.90 2.32 10.20
a=18 21.46 12.37 0.82 1.68 2.12 7.03
a=20 24.64 14.14 0.72 0.94 1.94 4.85

its position 7 in the list. For f we can use the spatial distribution
function that would be used on a uniform linear network. Of
course. two sites at the same distance from s in the real network
(but at different positions in the list) should not he selected with
different probabilities. We can arrange for this by averaging the
probabilities of selecting equidistant sites; i.e.. by selecting each
of the sites at distance d with probability proportional to

Q(d) .
_ Z::Q(:I—I) f(@)

M= G - =)

Letting f = /7. where a is a parameter to be determined,
and approximating the summation by an integral. we obtain

Q= 1)

~

— Q)=
Q) - Q(d-1)

Note for a = 2 the right side of (3.1.1) reduces to

pld) (3.1.1)

HA(Q(d = 1)Qu(d)).

which is O(d=2”7) on a D-dimensional mesh. as discussed in Sec-
tion 3.

Simulation results reported in this and the next section use
either nniform distributions or distributions of the above form
for selected valnes of a.

Table 4 summarizes results for the CIN topology using push-
pull anti-entropy with no connection limit. This table repre-
seuts 250 runs, each propagating a single update introduced at a
randomly-chosen site. The “Compare Traffic” figures represent
unmber of anti-entropy comparisons per cycle, averaged over all
network links and separately for the transatlantic link to Bushey,
Fugland. “Update Traffic” represents the total number of anti-
entropy exchanges in which the update had to be sent from
one site to the other. {The distinction between compare traf-
fic and update traffic can be significant. if checksums are used for
database comparison, as discussed in Section 1.3).

Two points are worth mentioning:

1. Comparing the a 2 results with the uniform case. con-
vergence time 4, degrades by less than a factor of 2, while

average traffic per round improves by a factor of more than 4.
Arguably, we could afford to perform anti-entropy twice as
frequently with the nonuniform distribution, thereby getting
an equivalent convergence rate with a slight improvement in
average traffic.

Again comparing the a = 2 results with the uniform vase.
the compare traffic on the transatlantic link falls from 75.74
to 2.38, a factor of more than 30. Traffic on this link is
now less than twice the mean. We view this as the most
important benefit of nonuniform distributions for the CIN
topology. Using this distribution. anti-entropy exchanges do
not overload critical network links.

The results in Table 4 assume no connection limit. This assump-
tion is quite unrealistic - the actual Clearinghouse servers can
support only a few anti-entropy connections at once. Table 5
gives simulation results under the most pessimistic assumption:
connection limit of 1 and hunt limit 0. As above, the table rep-
resents 250 runs, each propagating a single update introduced at
a randomly-chosen site.

Note:

3. The Compare Traffic figures in Table 5 are significantly lower
than those in Table 4, reflecting the fact that fewer successfui
connections are established per cvcle. The convergence times
in Table 5 are correspondingly higher than those in Table 4.
These effects are more pronounced with the less uniform
distributions.

. The total compare traffic (which is the product of conver-
gence time and Compare Traffic) does not change signifi-
cantly when the connection limit is imposed: the compare
traflic per cycle decreases, while the number of eveles in-
creases.

To summarize: using a’spatial distribution with anti-entropy can
significantly reduce traffic on critical links that would he “hot
spots” if a uniform distribution were used. The mast pessimistic
connection limit slows convergence but docs not significantly
change the total amount of traffic generated in distributing the
update; it just slows down distribution of the update somewhat.

Based on our early simulation results. a nonuniform anti-
entropy algorithm using a 1/¢Q)(d)? distribution was implemented
as part of an internal release of the Clearinghouse service, The

Table 6. Simulation results for push-pull rumor mongering.

Spatial k Hast tove Compare Traffic Update Traffic
Dist Avg Bushey Avg Bushey
unifori 4 7.83 5.32 8.87 114.0 5.84 75.87
a=12 6 10.14 6.33 3.20 18.0 2.60 17.25
a=14 5 10.27 6.31 2.86 13.0 2.49 14.05
a=16 8 11.24 6.90 2.94 9.80 227 10.51
a=138 7 12.04 7.24 2.40 5.91 2.08 7.69
n=2.0 6 13.09 7.74 1.99 3.44 1.90 5.94
new release has now heen installed on the entire CIN and has pro- 5. As the distribution is made less uniform, the mean total

duced dramatic improvements both in network load generated by
the Clearinghouse servers and in consistency of their databases.

3.2 Spatial Distributions and Rumors

Because anti-entropy exantines the entire data base on each
exchange. it is very robust. For example, consider a spatial dis-
tribution such that for every pair (s, s’) of sites there is a nonzero
probability that s will choose to exchange data with s, Tt is easy
to show that anti-entropy converges with probability 1 using such
a distribution. since under those conditions every site eventually
exchanges data directly with every other site.

Rumor mongering, on the other hand. runs to quiescence
every rumor eventually becomes inactive, and if it has not spread
to all sites by that tiine it will never do so. Thus it is not sufficient
that the site holding a new update eventually contact every other
site: the contact must occur “soon enough,” or the update can
fail to spread to all sites. This suggests that rumor mongering
might be less robust than anti-entropy against changes in spatial
distribution and network topology. In fact we have found this to
he the case.

Rumor mongering has a parameter that can be adjusted:
as the spatial distribution is made less uniform, we can increase
the value of & in the rumor mongering algorithm to compensate.
For push-pull rumor mongering on the CIN topology, this tech-
nique is quite effective. Table 6 gives simulation results for the
(Feedback, Counter. push-pull, No Connection Limit) variation
of rumor mongering described in Section 1.4, using increasingly
nonuniform spatial distributions, with & values adjusted to give
100/ distribution in each of 200 trials.

Observations:

1. Untortunately. convergence time figures in Table 6 cannot be
compared directly to those in Tables 2 and 3. Both figures
are given in cveles: however, the cost of an anti~entropy cycle
is a function of the database size, while the cost of a rumor
mongering cyele is a function of the number of active rumors
in the svstem.

2. Similarly the Compare traffic figures in Table 6 are not di-
rectly comparable to those in Tables 2 and 3. In general
rumor mongering comparisons should be cheaper than anti-
entropy comparisons, since they need to examine only the
list of hot rumors.

-

The Update traffic figures in Table 6 agree well with those
in Tables § and 3. This is not surprising; it suggests that
the distribution of lengths of fruitful exchanges is not seri-
onsly affected hy the anti-entropy or rumor mongering vari-
ant nsed.

1. s the distribution is made less uniforn. the k value required
to ensure complete distribution increases gradually. The
total number of cveles before convergence nereases fairly
rapidly.

10

traffic per link. decreases slightly; and the mean traffic on
the critical transatlantic link decreases dramatically.

Although the effect is not as dramatic as with anti-enfropy,
we conclude that a nonuniform spatial disteibution ean produce
a worthwhile iinprovement in the performance of push-pull nunor
mongering, particularly the traffic on critical network links.

The push and pull variants of munor mongering appear to
be much more sensitive than push-pull 10 the combination of
nonuniform spatial distribution and irregular network topology.
Using (Feedback, Counter. push, No Connection Limit) rumor
mongering and the spatial distribution (3.1.1) with @ = 1.2, the
value of k required to achieve 100% distribution in cach of 200
simulation trials was 36: convergence times were correspondingly
high. Simulations for larger a values did not complete overunight.
so the attempt was abandoned.

We do not vet fully understand this behavior. but two simple
examples illustrate the kind of problem that can arise. Both
examples relv on having isolated sites. fairly distant from the
rest of the network.

Figure 1 Figure 2
Us
U,
S
U, U,
t Us
Upn

Ug

First. consider a network like the one shown in Figure 1. in
which two sites s and + are near each other and slightly farther
away from sites uy. ..., u,, . which are all equidistant from s and
equidistant from ¢. (Tt is casy to construct such a network, since
we arc not required to have a database site at every network
node). Suppose s and t use a Q.(d)~? distribution to select
partiers. If 1 is larger than & there is a significant probability
that s and ¢ will sclect cach other as partners on & consecutive
cyeles. If push rumor mongering is being used and an update has
been introduced at s or #, this results in a catastrophic failure

the update is delivered to s and #: after b cyeles it ceases to
be a hot rummor without being delivered to any other site. If puil
is being used and the update is introduced in the main part of
the network. there is a significant chance that each time s or ¢
contacts a site u,. that site either does not vet know the update
or has known it =o long that it is no longer a hot rumor: the
resutlt is *hat neither s nor ¢ ever learns of the update.

As n second example. consider a network like the one shown
in Figure 2. sSive s is connected to the root uy of a complete
binary tree of n — 1 sites. with the distance {from 5 to ug greater

than the height of the tree. As above, suppose all sites use a
(Q.(d)~% distribution to select rumor mongering partners. If n
is large relative to k, there is a significant probability that in &
consecntive cveles no site in the tree will attempt to contact s.
Using push rumor mongering, if an update has been introduced
at some node of the tree, the update may fail to be delivered to
s until it has ceased to be a hot rumor anywhere.

More study will be needed before the relation between spa-
tial distribution and irregular network topology is fully under-
stood. The examples and simulation results above emphasize the
need to back up rumor mongering with anti-entropy to guarantee
complete coverage. Given such a guarantee, however, push-pull
rutnor mongering with a spatial distribution appears quite at-
tractive for the CIN.

4. Conclusions

It is possible to replace complex deterministic algorithms
for replicated database consistency with simple randomized al-
gorithms that require few guarantees from the underlying com-
munication system. The randomized anti-entropy algorithm has
been humplemented on the Xerox Corporate Internet providing
“impressive performance improvements both in achieving consis-
teney and reducing network overhead traffic. By using a well
chosen spatial distribution for selecting anti-entropy partners,
the implemented algorithm redices average link traffic by a fac-
tor of more than 4 and traffic on certain critical links by a factor
of 30 when compared with an algorithin using uniform selection
of partners.

The observation that anti-entropy behaves like a simple epi-
demie led us to consider other epidemic-like algorithms such as
rimor mongering, which shows promise as an efficient replace-
ment for the initial mailing step for distributing updates. A
backup anti-entropy scheme easily spreads the updates to the
few sites that do not receive them as a rumor.

Neither the epidemic algorithims nor the direct mail algo-
rithms can correctly spread the absence of an item without as-
sistance from death certificates. There is a trade-off between
the retention time for death certificates, the storage space con-
sumed. and the likelihood of old data undesirably reappearing
in the database, By retaining dormant death certificates at a
few sites we can signiticantly improve the network’s inmmunity to
obsolete data at a reasonable storage cost.

There are more issues to he explored. Pathological network
topologies present performance problems. One solhittion would be
to find algorithms that work well with all topologies; failing this,
one would like to characterize the pathological topologies. Work
still needs to be done on the analysis and design of epidemics.
So far we have avoided differentiating among the servers; better
performance might be achieved by constructing a dynamic hier-
archy, in which sites at high levels contact other high level servers
at long distances and lower level servers at short distances. (The
key problem with such a mechanism is maintaining the hierar-
chical structure.)

5. Acknowledgments

We would like to thank Mark Gealy. Suc Manning, and Don
Woods who implemented randomized anti-entropy in the Xerox
Clearinghouse Service and supervised the distribution of the new
code to over 300 sites in the Xerox Corporate Internet. We would
also like to thank Mike Paterson for his help with parts of the
analysis. Finallv. many thanks to Subhana Menis for thread-
ing the arcane prodnction maze required to produce the camera
ready copy of this paper.

11

References
[Ab] Karl Abrahamson, Andrew Addler. Lisa Higham. David
Kirkpatrick

Probahilistic Solitude Verification on a Ring,.

Proceedings of the Fifth Annual ACM Svmposium on Prin-
ciples of Distributed Computing.

Calgary, Alberta, Canada. 1986. Pages 161-173.

Baruch Awerbuch and Shimon Even.

Efficient and Reliable Broadcast is Achievable in an Even-
tually Counected Network.

Proceedings of the Third Annuaal ACM Svmposium on
Principles of Distributed Computing.

Vancouver, B.C., Canada. 1934, Pages 278-281.

[Ba] Norman T. J. Bailey.
The Mathematical Theory of Infectious Diseases and its
Applications (second edition).

Hafner Press, Second Edition, 1975.

[Be83]M. Ben-Or.
Another Advantage of Free Choice.
Proceedings of the Second Annnal ACM Svmposium on
Principles
of Distributed Computing.
Montreal, Quebec, Canada. 1983.

[Be85]M. Ben-Or
Fast Asynchronous Byzantine Agreement.
Proceedings of the Fourth Annual ACM Symposium on
Principles
of Distributed Computing.
Minaki, Outario, Canada. 1985, Pages 149-151.

[Bi] A. D. Birrell, R. Levin, R. M. Needham. and M. 1).
Schroeder.
Grapevine, An Exercise in Distributed Computing.
Communications of the ACM 25(4):260-274. 1982,
[Ch] K. M. Chandy and L. Lamport.
Distributed Snapshots: Determining Global States of Dis-
tributed Systems.
ACM Transactions on Computing Systems 3(1):63-75 1985
[Fr] J. C. Frauenthal.
Mathematical Modeling in Epidemiology, Pages 12-24,
Springer-Verlag. 1980.
[Gi] D. K. Gifford.
Weighted Voting for Replicated Data.
Proceedings of the Seventh Symposinm ou Operating Svs-
tems Principles ACM SIGOPS.
Pacific Grove. California. 1979. Pages 150-159.
[Jo] P. R. Johnson and R. H. Thomas.
The Maintenance of Duplicate Databases.
Bolt Beranek and Newman Inc., Arpanct Reguest for Clom-
ments (RFC)
677, 1975.
[La] Butler W. Lampson.

Designing a Global Name Service.

Proceedings of the Fifth Annual ACN Svmposium on Prin-
ciples of Distributed Computing.

Calgary. Alberta, Canada. 1986. Pages 1-10.

Mo

[Op]

(Pi]

[Ra]

(Sa]

P, Mockapetris.

The domain name system.

Proceedings IFIP 6.5 International Svmposium on Com-
puter Messaging.

Nottingham. England. May 1984.

Also available as:

USC Information Sciences Institute,

Report ISI/RS-84-133. June 1984.

Derek C. Oppen and Yogen K. Dalal.

The Clearinghouse: A Decentralized Agent for Locating
Named Objects in a Distributed Environment.

Xerox Technical Report: OPD-T8103, 1981.

Boris Pittel.

On Spreading a Rumor.

SIAM Journal of Applied Mathematics 47(1):213-223,
1987.

Michael O. Rabin.

Randomized Byzantine Generals.

2.4th Annual Symposium on Foundations of Computer Sci-
ence.

IEEE Computer Society, 1983, Pages 403-409.

S. K. Sarin and N. A. Lynch.

Discarding Obsolete Information in a Replicated Database
System.

IEEE Transactions on Software Engineering SE-13(1):39-
47 1987.

12

