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Abstract

In this paper, we seek to answer a simple question: “How
prevalent are denial-of-service attacks in the Internet to-
day?”. Our motivation is to understand quantitatively the
nature of the current threat as well as to enable longer-
term analyses of trends and recurring patterns of attacks.
We present a new technique, called “backscatter anal-
ysis”, that provides an estimate of worldwide denial-of-
service activity. We use this approach on three week-long
datasets to assess the number, duration and focus of at-
tacks, and to characterize their behavior. During this pe-
riod, we observe more than 12,000 attacks against more
than 5,000 distinct targets, ranging from well known e-
commerce companies such as Amazon and Hotmail to
small foreign ISPs and dial-up connections. We believe
that our work is the only publically available data quan-
tifying denial-of-service activity in the Internet.

1 Introduction

In February of 2000, a series of massive denial-of-service
(DoS) attacks incapacitated several high-visibility In-
ternet e-commerce sites, including Yahoo, Ebay, and
E*trade. Next, in January of 2001, Microsoft’s name
server infrastructure was disabled by a similar assault.
Despite attacks on high-profile sites, the majority of
attacks are not well publicized. Many other domes-
tic and foreign sites have also been victims, ranging
from smaller commercial sites, to educational institu-
tions, public chat servers and government organizations.

While it is clear from these anecdotal reports that
denial-of-service attacks continue to be a problem, there
is currently not much quantitative data about the preva-
lence of these attacks nor any representative character-
ization of their behavior. Unfortunately, there are mul-

tiple obstacles hampering the collection of an authorita-
tive denial-of-service traffic dataset. Service providers
and content providers consider such data sensitive and
private. Even if it were allowed, monitoring traf-
fic at enough sites to obtain a representative measure
of Internet-wide attacks presents a significant logistical
challenge. Consequently, the only contemporary public
data we are aware of is a CSI/FBI survey study [8]1.

We believe that a strong quantitative foundation is nec-
essary both for understanding the nature of today’s threat
and as a baseline for longer-term comparison and anal-
ysis. Our paper seeks to answer the simple question:
“How prevalent are denial-of-service attacks in the In-
ternet today?”. As a means to this end, we describe a
traffic monitoring technique called “backscatter analy-
sis” for estimating the worldwide prevalence of denial-
of-service attacks. Using backscatter analysis, we ob-
serve 12,805 attacks on over 5,000 distinct Internet hosts
belonging to more than 2,000 distinct organizations dur-
ing a three-week period. We further are able to estimate
a lower-bound on the intensity of such attacks – some of
which are in excess of 600,000 packets-per-second (pps)
– and characterize the nature of the sites victimized.

The remainder of this paper is organized as fol-
lows: Section 2 describes the underlying mechanisms
of denial-of-service attacks, Section 3 describes the
backscatter technique, and limitations arising from its
assumptions, and Section 4 explains our techniques for
classifying attacks from monitored backscatter traffic. In
Section 5 we describe our experimental platform, and
present our results in Section 6. Finally, in Sections 7
and 8 we cover related work and summarize our find-

1The primary result from this report is that 27 percent of security
professionals surveyed detected denial-of-service attacks during the
year 2000.



ings.

2 Background

Denial-of-service attacks consume the resources of a re-
mote host or network that would otherwise be used for
serving legitimate users. There are two principal classes
of attacks: logic attacks and flooding attacks. Attacks in
the first class, such as the “Ping-of-Death”, exploit ex-
isting software flaws to cause remote servers to crash or
substantially degrade in performance. Many of these at-
tacks can be prevented by either upgrading faulty soft-
ware or filtering particular packet sequences, but they re-
main a serious and ongoing threat. The second class,
flooding attacks, overwhelm the victim’s CPU, memory,
or network resources by sending large numbers of spu-
rious requests. Because there is typically no simple way
to distinguish the “good” requests from the “bad”, it can
be extremely difficult to defend against flooding attacks.
For the purposes of this study we will focus solely on
flooding attacks.

2.1 Attack types

There are two related consequences to a flooding attack –
the network load induced and the impact on the victim’s
CPU. To load the network, an attacker generally sends
small packets as rapidly as possible since most network
devices (both routers and NICs) are limited not by band-
width but by packet processing rate. Therefore, packets-
per-second are usually the best measure of network load
during an attack.

An attacker often simultaneously attempts to load the
victim’s CPU by requiring additional processing above
and beyond that required to receive a packet. For exam-
ple, the best known denial-of-service attack is the “SYN
flood” [6] which consists of a stream of TCP SYN pack-
ets directed to a listening TCP port at the victim. For
each such SYN packet received, the host victim must
search through existing connections and if no match is
found, allocate a new data structure for the connection.
Moreover, the number of these data structures may be
limited by the victim’s operating system. Consequently,
without additional protection, even a small SYN flood
can overwhelm a remote host. There are many similar
attacks that exploit other code vulnerabilities including
TCP ACK, NUL, RST and DATA floods, IP fragment
floods, ICMP Echo Request floods, DNS Request floods,
and so forth.

2.2 Distributed attacks

While a single host can cause significant damage by
sending packets at its maximum rate, attackers can (and

Packet sent Response from victim

TCP SYN (to open port) TCP SYN/ACK
TCP SYN (to closed port) TCP RST (ACK)
TCP ACK TCP RST (ACK)
TCP DATA TCP RST (ACK)
TCP RST no response
TCP NULL TCP RST (ACK)
ICMP ECHO Request ICMP Echo Reply
ICMP TS Request ICMP TS Reply
UDP pkt (to open port) protocol dependent
UDP pkt (to closed port) ICMP Port Unreach
... ...

Table 1: A sample of victim responses to typical attacks.

do) mount more powerful attacks by leveraging the re-
sources of multiple hosts. Typically an attacker com-
promises a set of Internet hosts (using manual or semi-
automated methods) and installs a small attack daemon
on each, producing a group of “zombie” hosts. This dae-
mon typically contains both the code for sourcing a va-
riety of attacks and some basic communications infras-
tructure to allow for remote control. Using variants of
this basic architecture an attacker can focus a coordinated
attack from thousands of zombies onto a single site.

2.3 IP spoofing

To conceal their location, thereby forestalling an effec-
tive response, attackers typically forge, or “spoof”, the IP
source address of each packet they send. Consequently,
the packets appear to the victim to be arriving from one
or more third parties. Spoofing can also be used to “re-
flect” an attack through an innocent third party. While
we do not address “reflector attacks” in this paper, we
describe them more fully in Section 3.3.

3 Basic methodology

As noted in the previous section, attackers commonly
spoof the source IP address field to conceal the loca-
tion of the attacking host. The key observation behind
our technique is that for direct denial-of-service attacks,
most programs select source addresses at random for
each packet sent. These programs include all of the most
popular distributed attacking tools: Shaft, TFN, TFN2k,
trinoo, all variants of Stacheldraht, mstream and Trin-
ity). When a spoofed packet arrives at the victim, the
victim usually sends what it believes to be an appropri-
ate response to the faked IP address (such as shown in
Table 1). Occasionally, an intermediate network device
(such as a router, load balancer, or firewall) may issue
its own reply to the attack via an ICMP message [21].
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Figure 1: An illustration of backscatter in action. Here the
attacker sends a series of SYN packets towards the victim V,
using a series of random spoofed source addresses: named C,
B, and D. Upon receiving these packets the victim responds by
sending SYN/ACKs to each of spoofed hosts.

Again, these ICMP messages are sent to the randomly
spoofed source address.

Because the attacker’s source address is selected at
random, the victim’s responses are equi-probably dis-
tributed across the entire Internet address space, an in-
advertent effect we call “backscatter”2. This behavior is
illustrated in Figure 1.

3.1 Backscatter analysis

Assuming per-packet random source addresses, reliable
delivery and one response generated for every packet in
an attack, the probability of a given host on the Internet
receiving at least one unsolicited response from the vic-
tim is ������ during an attack of � packets. Similarly, if one
monitors � distinct IP addresses, then the expectation of
observing an attack is:

�
	���
�� ���
��� �

By observing a large enough address range we can ef-
fectively “sample” all such denial-of-service activity on
the Internet. Contained in these samples are the identity
of the victim, information about the kind of attack, and a
timestamp from which we can estimate attack duration.
Moreover, given these assumptions, we can also use the
average arrival rate of unsolicited responses directed at
the monitored address range to estimate the actual rate

2We did not originate this term. It is borrowed from Vern Paxson
who independently discovered the same backscatter effect when an at-
tack accidentally disrupted multicast connectivity by selecting global
multicast addresses as source addresses [20].

of the attack being directed at the victim, as follows:

������� �
� �

�

where
� �

is the measured average inter-arrival rate of
backscatter from the victim and

�
is the extrapolated at-

tack rate in packets-per-second.

3.2 Address uniformity

The estimation approach outlined above depends on the
spoofed source addresses being uniformly distributed
across the entire IP address space. To check whether a
sample of observed addresses are uniform in our moni-
tored address range, we compute the Anderson-Darling
(A2) test statistic [9] to determine if the observations
are consistent with a uniform distribution. In particular,
we use the implementation of the A2 test as specified in
RFC2330 [19] at a 0.05 significance level.

3.3 Analysis limitations

There are three assumptions that underly our analysis:

� Address uniformity: attackers spoof source ad-
dresses at random.

� Reliable delivery: attack traffic is delivered reliably
to the victim and backscatter is delivered reliably to
the monitor.

� Backscatter hypothesis: unsolicited packets ob-
served by the monitor represent backscatter.

We discuss potential biases that arise from these assump-
tions below.

Key among our assumptions is the random selection of
source address. There are three reasons why this assump-
tion may not be valid. First, some ISPs employ ingress
filtering [12, 5] on their routers to drop packets with
source IP addresses outside the range of a customer’s net-
work. Thus, an attacker’s source address range may not
include any of our monitored addresses and we will un-
derestimate the total number of attacks.

“Reflector attacks” pose a second problem for source
address uniformity. In this situation, an attacker “laun-
ders” the attack by sending a packet spoofed with the
victim’s source address to a third party. The third party
responds by sending a response back towards the victim.
If the packets to the third partie are addressed using a
broadcast address (as with the popular smurf or fraggle
attacks) then third parties may further amplify the attack.
The key issue with reflector attacks is that the source ad-
dress is specifically selected. Unless an IP address in the
range we monitor is used as a reflector, we will be unable



to observe the attack. We have detected no instances of a
monitored host involved in this sort of attack. Our inabil-
ity to detect, “reflector attacks” cause us to underestimate
the total number of denial-of-service attacks.

Finally, if the distribution of source addresses is not
random, then any attempt to extrapolate the attack rate
via the arrival rate of responses will produce an arbi-
trarily biased result. This particular problem can be
mitigated by verifying that the distribution of observed
source addresses is indeed uniform within the set of �
addresses we observe.

Another limitation arises from our assumption that
packets are delivered reliably and that every packet gen-
erates a response. During a large attack it is likely that
packets from the attacker may be queued and dropped.
Those packets that do arrive may be filtered or rate-
limited by firewall or intrusion detection software [4] and
moreover some forms of attack traffic (e.g., TCP RST
messages) do not typically elicit a response. Finally, the
responses themselves may be queued and dropped along
the path back to our monitored address range. In partic-
ular, our estimate of the attack rate is necessarily limited
to the capacity of smallest bottleneck link between the
victim and our monitor. As with our random distribution
assumption, these limitations will cause us to underesti-
mate the number of attacks and the attack rate. However,
they may also bias our characterization of victims (e.g.,
if large e-commerce sites are more likely to have rate-
limiting software than educational sites, then we may
disproportionately underestimate the size of attacks on
this class of victim).

The final limitation of our technique is that we as-
sume unsolicited responses represent backscatter from
an attack. Any server on the Internet is free to send un-
solicited packets to our monitored addresses, and these
packets may be misinterpreted as backscatter from an
attack. It is possible to eliminate accidental errors by
choosing a quiescent address range for monitoring, fil-
tering those packet flows consistently destined to a single
host in the range and by high-pass filtering to only record
sufficiently long and voluminous packet flows. How-
ever, a concerted effort by a third-party to bias our results
would be difficult to detect and correct automatically.
The most likely source of such bias arises from misin-
terpretation of random port scans as backscatter. While
it is impossible to eliminate this possibility in general,
we will show that it is extremely unlikely to be a factor
in the vast majority of attacks we observe.

In spite of its limitations, we believe our overall ap-
proach is sound and provides at worst a conservative es-
timate of current denial-of-service activity.

4 Attack Classification

After collecting a large trace of backscatter packets, the
first task is post-processing the trace. For this we group
collections of related packets into clusters representing
attacks. The choice of a specific aggregation methodol-
ogy presents significant challenges. For example, it is
often unclear whether contemporaneous backscatter in-
dicating both TCP and ICMP-based attacks should be
classified as a single attack or multiple attacks. More dif-
ficult still is the problem of determining the start and end
times of an attack. In the presence of significant variabil-
ity, too lenient a threshold can bias the analysis towards
fewer attacks of longer duration and low average packet
rates, while too strict an interpretation suggests a large
number of short attacks with highly variable rates.

Without knowledge of the intent of the attacker or di-
rect observation of the attack as it orchestrated by the at-
tacker, it is impossible to create a synthetic classification
system that will group all types of attacks appropriately
for all metrics. Instead, we have chosen to employ two
distinct classification methods: a flow-based analysis for
classifying individual attacks – how many, how long and
what kind – and an event-based method for analyzing the
severity of attacks on short time scales.

4.1 Flow-based classification

For the purpose of this study, we define a flow as a se-
ries of consecutive packets sharing the same target IP ad-
dress and IP protocol. We explored several approaches
for defining flow lifetimes and settled on a fixed time-
out approach: the first packet seen for a target creates
a new flow and any additional packets from that target
are counted as belonging to that flow if the packets are
received within five minutes of the most recent packet
in this flow. The choice of parameters here can influ-
ence the final results, since a more conservative timeout
will tend to suggest fewer, longer attacks, while a shorter
timeout will suggest a large number of short attacks. We
chose five minutes as a human-sensible balance that is
not unduly affected by punctuated attacks or temporary
outages.

To reduce noise and traffic generated due to random
Internet misconfiguration (for instance, one NetBIOS
implementation/configuration sends small numbers un-
solicited packets to our monitored address range) we dis-
card all flows that do not have at least 100 packets and
a flow duration of at least 60 seconds. These param-
eters are also somewhat arbitrary, but we believe they
represent a reasonable baseline – below such thresholds
it seems unlikely that an attack would cause significant
damage. Finally, flows must contain packets sent to more
than one of our monitored addresses.



We examine each individual flow and extract the fol-
lowing information:

� TCP flag settings: whether the flow consists of
SYN/ACKs, RSTs, etc.

� ICMP payload: for ICMP packets that contain
copies of the original packet (e.g. TTL expired) we
break out the enclosed addresses, protocols, ports,
etc.

� Address uniformity: whether the distribution of
source addresses within our monitored range passes
the Anderson-Darling (A2) test for uniformity to the
0.05 significance level.

� Port settings: for source and destination ports (for
both UDP and TCP) we record whether the port
range is fixed, is uniform under the A2 test, or is
non-fixed and non-uniform.

� DNS information: the full DNS address of the
source address – the victim.

� Routing information: the prefix, mask and origin
AS as registered in our local BGP table on the morn-
ing of February 7th.

We generate a database in which each record charac-
terizes the properties of a single attack.

4.2 Event-based classification

Because the choice of flow parameters can impact the
estimated duration of an attack, the flow-based method
may obscure interesting time-domain characteristics. In
particular, attacks can be highly variable – with periodic
bursts of activity – causing the flow-based method to
vastly underestimate the short-term impact of an attack
and overestimate the long-term impact.

We use an event-based classification method keyed en-
tirely on the victim’s IP address over fixed time-windows
for examining time-domain qualities, such as the number
of simultaneous attacks or the distribution of attack rates,
For these analyses we divide our trace into one minute
periods and record each attack event during this period.
An attack event is defined by a victim emitting at least
ten backscatter packets during a one minute period. We
do not further classify attacks according to protocol type,
port, etc, as the goal is to estimate the instantaneous im-
pact on a particular victim. The result of this classifica-
tion is a database in which each record characterizes the
number of victims and the intensity of the attacks in each
one minute period.

Monitor

Hub

/8 Network

Internet

Figure 2: Our experimental backscatter collection platform.
We monitor all traffic to our /8 network by passively monitoring
data as it is forwarded through a shared hub. This monitoring
point represents the only ingress into the network.

5 Experimental platform

For our experiments monitored the sole ingress link into
a lightly utilized /8 network (comprising

� ���
distinct IP

addresses, or 1/256 of the total Internet address space).
Our monitoring infrastructure, shown in Figure 2, con-
sisted of a PC configured to capture all Ethernet traffic,
attached to a shared hub at the router terminating this
network. During this time, the upstream router did fil-
ter some traffic destined to the network (notably external
SNMP queries) but we do not believe that this signifi-
cantly impacted our results. We also have some evidence
that small portions of our address prefix are occasion-
ally “hijacked” by inadvertent route advertisements else-
where in the Internet, but at worst this should cause us
to slightly underestimate attack intensities. We collected
three traces, each roughly spanning one week, starting
on February 1st and extending to February 25th, and iso-
lated the inbound portion of the network.

6 Results

Using the previously described flows-based approach
(Section 4.1), we observed 12,805 attacks over the course
of a week. Table 2 summarizes this data, showing more
than 5,000 distinct victim IP addresses in more than
2,000 distinct DNS domains. Across the entire period we
observed almost 200 million backscatter packets (again,
representing less than

�

����� of the actual attack traffic dur-
ing this period).

In this section, we first show the overall frequency of
attacks seen in our trace, and then characterize the at-
tacks according to both the type of attack and the type of
victim.



Trace-1 Trace-2 Trace-3
Dates (2001) Feb 01 – 08 Feb 11 – 18 Feb 18 – 25
Duration 7.5 days 6.2 days 7.1 days

Flow-based Attacks:
Unique victim IPs 1,942 1,821 2,385
Unique victim DNS domains 750 693 876
Unique victim DNS TLDs 60 62 71
Unique victim network prefixes 1,132 1,085 1,281
Unique victim Autonomous Systems 585 575 677
Attacks 4,173 3,878 4,754
Total attack packets 50,827,217 78,234,768 62,233,762

Event-based Attacks:
Unique victim IPs 3,147 3,034 3,849
Unique victim DNS domains 987 925 1,128
Unique victim DNS TLDs 73 71 81
Unique victim network prefixes 1,577 1,511 1,744
Unique victim Autonomous Systems 752 755 874
Attack Events 112,457 102,204 110,025
Total attack packets 51,119,549 78,655,631 62,394,290

Table 2: Summary of backscatter database.
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Kind Trace-1 Trace-2 Trace-3
Attacks Packets (k) Attacks Packets (k) Attacks Packets (k)

TCP (RST ACK) 2,027 (49) 12,656 (25) 1,837 (47) 15,265 (20) 2,118 (45) 11,244 (18)
ICMP (Host Unreachable) 699 (17) 2,892 (5.7) 560 (14) 27,776 (36) 776 (16) 19,719 (32)
ICMP (TTL Exceeded) 453 (11) 31,468 (62) 495 (13) 32,001 (41) 626 (13) 22,150 (36)
ICMP (Other) 486 (12) 580 (1.1) 441 (11) 640 (0.82) 520 (11) 472 (0.76)
TCP (SYN ACK) 378 (9.1) 919 (1.8) 276 (7.1) 1,580 (2.0) 346 (7.3) 937 (1.5)
TCP (RST) 128 (3.1) 2,309 (4.5) 269 (6.9) 974 (1.2) 367 (7.7) 7,712 (12)
TCP (Other) 2 (0.05) 3 (0.01) 0 (0.00) 0 (0.00) 1 (0.02) 0 (0.00)

Table 3: Breakdown of response protocols.

6.1 Time series

Figure 3 shows a time series graph of the estimated
number of actively attacked victims throughout the three
traces, as sampled in one hour periods. There are two
gaps in this graph corresponding to the gaps between
traces. In contrast to other workloads, such as HTTP,
the number of active attacks does not appear to follow
any diurnal pattern (at least as observed from a single lo-
cation). The outliers on the week of February 20th, with
more than 150 victim IP addresses per hour, represent
broad attacks against many machines in a common net-
work. While most of the backscatter data averages one
victim IP address per network prefix per hour, the ratio
climbs to above five for many outliers.

6.2 Attack classification

In this section we characterize attacks according to the
protocols used in response packets sent by victims, the
protocols used in the original attack packets, and the rate
and durations of attacks.

6.2.1 Response protocols

In Table 3 we decompose our backscatter data according
to the protocols of responses returned by the victim or an
intermediate host. For each trace we list both the num-
ber of attacks and the number backscatter packets for the
given protocol. The numbers in parentheses show the
relative percentage represented by each count. For ex-
ample, 1,837 attacks in Trace 2 (47% of the total), were
derived from TCP backscatter with the RST and ACK
flags set.

We observe that over 50% of the attacks and 20% of
the backscatter packets are TCP packets with the RST
flag set. Referring back to Table 1 we see that RST is
sent in response to either a SYN flood directed against a
closed port or some other unexpected TCP packet. The
next largest protocol category is ICMP host unreachable,
comprising roughly 15% of the attacks. Almost all of
these ICMP messages contain the TCP header from a
packet directed at the victim, suggesting a TCP flood of

some sort. Unfortunately, the TCP flags field cannot be
recovered, because the ICMP response only includes the
first 28 bytes of the original IP packet. ICMP host un-
reachable is generally returned by a router when a packet
cannot be forwarded to its destination. Probing some of
these victims we confirmed that a number of them could
not be reached, but most were accessible, suggesting in-
termittent connectivity. This discontinuous reachability
is probably caused by explicit “black holing’ on the part
of an ISP.

We also see a number of SYN/ACK backscatter pack-
ets (likely sent directly in response to a SYN flood on an
open port) and an equivalent number of assorted ICMP
messages, including ICMP echo reply (resulting from
ICMP echo request floods), ICMP protocol unreachable
(sent in response to attacks using illegal combinations of
TCP flags), ICMP fragmentation needed (caused by at-
tacks with the “Dont Fragment” bit set) and ICMP ad-
ministratively filtered (likely the result of some attack
countermeasure). However, a more surprising finding
is the large number of ICMP TTL exceeded messages
– comprising between 36% and 62% of all backscatter
packets observed, yet less than 15% of the total attacks.
In fact, the vast majority of these packets occur in just
a few attacks, including three attacks on @Home cus-
tomers, two on China Telecom (one with almost 9 mil-
lion backscatter packets), and others directed at Roma-
nia, Belgium, Switzerland and New Zealand. The at-
tack on the latter was at an extremely high rate, suggest-
ing an attack of more than 150,000 packets per second.
We are unable to completely explain the mechanism for
the generation of these time-exceeded messages. Upon
examination of the encapsulated header that is returned,
we note that several of them share identical “signatures”
(ICMP Echo with identical sequence number, identifica-
tion fields, and checksum) suggesting that a single attack
tool was in use.

6.2.2 Attack protocols

We refine this data in Table 4 to show the distribution
of attack protocols. That is, the protocol which must



Kind Trace-1 Trace-2 Trace-3
Attacks Packets (k) Attacks Packets (k) Attacks Packets (k)

TCP 3,902 (94) 28,705 (56) 3,472 (90) 53,999 (69) 4,378 (92) 43,555 (70)
UDP 99 (2.4) 66 (0.13) 194 (5.0) 316 (0.40) 131 (2.8) 91 (0.15)
ICMP 88 (2.1) 22,020 (43) 102 (2.6) 23,875 (31) 107 (2.3) 18,487 (30)
Proto 0 65 (1.6) 25 (0.05) 108 (2.8) 43 (0.06) 104 (2.2) 49 (0.08)
Other 19 (0.46) 12 (0.02) 2 (0.05) 1 (0.00) 34 (0.72) 52 (0.08)

Table 4: Breakdown of protocols used in attacks.
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have been used by the attacker to produce the backscat-
ter monitored at our network. We see that more than 90%
of the attacks use TCP as their protocol of choice, but a
smaller number of ICMP-based attacks produce a dispro-
portionate number of the backscatter packets seen. Other
protocols represent a minor number of both attacks and
backscatter packets. This pattern is consistent across all
three traces.

In Table 5 we further break down our dataset based
on the service (as revealed in the victim’s port number)
being attacked. Most of the attacks focus on multiple
ports, rather than a single one and most of these are well
spread throughout the address range. Many attack pro-
grams select random ports above 1024; this may explain
why less than 25% of attacks show a completely uniform
random port distribution according to the A2 test. Of the
remaining attacks, the most popular static categories are
port 6667 (IRC), port 80 (HTTP), port 23 (Telnet), port
113 (Authd). The large number of packets directed at
port 0 is an artifact of our ICMP categorization – there
are fewer than ten TCP attacks directed at port 0, com-
prising a total of less than 9,000 packets.

6.2.3 Attack rate

Figure 4 shows two cumulative distributions of attack
event rates in packets per second. The lower curve shows
the cumulative distribution of event rates for all attacks,

and the upper curve shows the cumulative distribution
of event rates for uniform random attacks, i.e., those at-
tacks whose source IP addresses satisfied the A2 uni-
form distribution test described in Section 3.2. As de-
scribed earlier, we calculate the attack event rate by mul-
tiplying the average arrival rate of backscatter packets by
256 (assuming that an attack represents a random sam-
pling across the entire address space, of which we mon-
itor

�

����� ). Almost all attacks have no dominant mode in
the address distribution, but sometimes small deviations
from uniformity prevent the A2 test from being satisfied.
For this reason we believe that there is likely some va-
lidity in the extrapolation applied to the complete attack
dataset. Note that the attack rate (x-axis) is shown using
a logarithmic scale.

Comparing the distributions, we see that the uniform
random attacks have a lower rate than the distribution of
all attacks, but track closely. Half of the uniform random
attack events have a packet rate greater than 250, whereas
half of all attack events have a packet rate greater than
350. The fastest uniform random event is over 517,000
packets per second, whereas the fastest overall event is
over 679,000 packets per second.

How threatening are the attacks that we see? Recent
experiments with SYN attacks on commercial platforms
show that an attack rate of only 500 SYN packets per
second is enough to overwhelm a server [10]. In our
trace, 38% of uniform random attack events and 46% of
all attack events had an estimated rate of 500 packets per
second or higher. The same experiments show that even
with a specialized firewall designed to resist SYN floods,
a server can be disabled by a flood of 14,000 packets
per second. In our data, 0.3% of the uniform random
attacks and 2.4% of all attack events would still compro-
mise these attack-resistant firewalls. We conclude that
the majority of the attacks that we have monitored are
fast enough to overwhelm commodity solutions, and a
small fraction are fast enough to overwhelm even opti-
mized countermeasures.

Of course, one significant factor in the question of
threat posed by an attack is the connectivity of the vic-
tim. An attack rate that overwhelms a cable modem vic-
tim may be trivial a well-connected major server installa-
tion. Victim connectivity is a difficult to ascertain with-



Kind Trace-1 Trace-2 Trace-3
Attacks Packets (k) Attacks Packets (k) Attacks Packets (k)

Multiple Ports 2,740 (66) 24,996 (49) 2,546 (66) 45,660 (58) 2,803 (59) 26,202 (42)
Uniformly Random 655 (16) 1,584 (3.1) 721 (19) 5,586 (7.1) 1,076 (23) 15,004 (24)
Other 267 (6.4) 994 (2.0) 204 (5.3) 1,080 (1.4) 266 (5.6) 410 (0.66)
Port Unknown 91 (2.2) 44 (0.09) 114 (2.9) 47 (0.06) 155 (3.3) 150 (0.24)
HTTP (80) 94 (2.3) 334 (0.66) 79 (2.0) 857 (1.1) 175 (3.7) 478 (0.77)
0 78 (1.9) 22,007 (43) 90 (2.3) 23,765 (30) 99 (2.1) 18,227 (29)
IRC (6667) 114 (2.7) 526 (1.0) 39 (1.0) 211 (0.27) 57 (1.2) 1,016 (1.6)
Authd (113) 34 (0.81) 49 (0.10) 52 (1.3) 161 (0.21) 53 (1.1) 533 (0.86)
Telnet (23) 67 (1.6) 252 (0.50) 18 (0.46) 467 (0.60) 27 (0.57) 160 (0.26)
DNS (53) 30 (0.72) 39 (0.08) 3 (0.08) 3 (0.00) 25 (0.53) 38 (0.06)
SSH (22) 3 (0.07) 2 (0.00) 12 (0.31) 397 (0.51) 18 (0.38) 15 (0.02)

Table 5: Breakdown of attacks by victim port number.
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Figure 5: Cumulative distribution of attack durations.

out flooding the victim’s link. Consequently, we leave
correlation between attack rates and victim connectivity
as an open problem.

6.2.4 Attack duration

While attack event rates characterize the intensity of at-
tacks, they do not give insight on how long attacks are
sustained. For this metric, we characterize the duration
of attacks in Figures 5 and 6 across all three weeks of
trace data. In these graphs, we use the flow-based classi-
fication described in Section 4 because flows better char-
acterize attack durations while remaining insensitive to
intensity. We also combine all three weeks of attacks
for clarity; the distributions are nearly dentical for each
week, and individual weekly curves overlap and obscure
each other.

Figure 5 shows the cumulative distribution of attack
durations in units of time; note that both the axes are log-
arithmic scale. In this graph we see that most attacks are
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Figure 6: Probability density of attack durations.

relatively short: 50% of attacks are less than 10 minutes
in duration, 80% are less than 30 minutes, and 90% last
less than an hour. However, the tail of the distribution
is long: 2% of attacks are greater than 5 hours, 1% are
greater than 10 hours, and dozens spanned multiple days.

Figure 6 shows the probability density of attack du-
rations as defined using a histogram of 150 buckets in
the log time domain. The x-axis is in logarithmic units
of time, and the y-axis is the percentage of attacks that
lasted a given amount of time. For example, when the
curve crosses the y-axis, it indicates that approximately
0.5% of attacks had a duration of 1 minute. As we saw
in the CDF, the bulk of the attacks are relatively short,
lasting from 3–20 minutes. From this graph, though, we
see that there are peaks at rounded time durations in this
interval at durations of 5, 10, and 20 minutes. Immedi-
ately before this interval there is a peak at 3 minutes, and
immediately after a peak at 30 minutes. For attacks with
longer durations, we see a local peak at 2 hours in the
long tail.



6.3 Victim classification

In this section we characterize victims according to DNS
name, top-level domain, Autonomous System, and de-
gree of repeated attacks.

6.3.1 Victim Name

Table 6 shows the distribution of attacks according to
the DNS name associated with the victim’s IP address.
We classify these using a hand-tuned set of regular ex-
pression matches (i.e. DNS names with “dialup” repre-
sent modems, “dsl” or “home.com” represent broadband,
etc). The majority of attacks are not classified by this
scheme, either because they are not matched by our cri-
teria (shown by “other”), or more likely, because there
was no valid reverse DNS mapping (shown by “In-Addr
Arpa”).

Of the remaining attacks there are several interest-
ing observations. First, there is a significant frac-
tion of attacks directed against home machines – ei-
ther dialup or broadband. Some of these attacks, par-
ticularly those directed towards cable modem users,
constitute relatively large, severe attacks with rates in
the thousands of packets per second. This suggests
that minor denial-of-service attacks are frequently be-
ing used to settle personal vendettas. In the same vein
we anecdotally observe a significant number of attacks
against victims running “Internet Relay Chat” (IRC),
victims supporting multi-player game use (e.g. bat-
tle.net), and victims with DNS names that are sex-
ually suggestive or incorporate themes of drug use.
We further note that many reverse DNS mappings
have been clearly been compromised by attackers (e.g.,
DNS translations such as “is.on.the.net.illegal.ly” and
“the.feds.cant.secure.their.shellz.ca”).

Second, there is a small but significant fraction of
attacks directed against network infrastructure. Be-
tween 2–3% of attacks target name servers (e.g.,
ns4.reliablehosting.com), while 1–3% target routers
(e.g., core2-corel-oc48.paol.above.net). Again, some of
these attacks, particularly a few destined towards routers,
are comprised of a disproportionately large number of
packets. This point is particularly disturbing, since over-
whelming a router could deny service to all end hosts
that rely upon that router for connectivity.

Finally, we are surprised at the diversity of different
commercial attack targets. While we certainly find at-
tacks on bellwether Internet sites including aol.com, aka-
mai.com, amazon.com and hotmail.com, we also see at-
tacks against a large range of smaller and medium sized
businesses.
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Figure 7: Distribution of attacks to the 10 top-level domains
(TLDs) that received the most number of attacks.

6.3.2 Top-level domains

Figure 7 shows the distribution of attacks to the 10 most
frequently targeted top-level domains (TLDs). For each
TLD displayed on the x-axis, we show one value for each
of the three weeks of our study in progressive shades of
grey. Note that the TLDs are sorted by overall attacks
across all three weeks.

Comparing the number of attacks to each TLD from
week to week, we see that there is little variation. Each
TLD is targeted by roughly the same percentage of at-
tacks each week. The domain unknown represents
those attacks in which a reverse DNS lookup failed on
the victim IP address (just under 30% of all attacks). In
terms of the “three-letter” domains, both com and net
were each targeted by roughly 15% of the attacks, but
edu and org were only targeted by 2–4% of the at-
tacks. This is not surprising, as sites in the com and net
present more attractive and newsworthy targets. Interest-
ingly, although one might have expected attacks to sites
in mil, mil did not show up in any of our reverse DNS
lookups. We do not yet know what to conclude from this
result; for example, it could be that mil targets fall into
our unknown category.

In terms of the country-code TLDs, we see that there
is a disproportionate concentration of attacks to a small
group of countries. Surprisingly, Romania (ro), a coun-
try with a relatively poor networking infrastructure, was
targeted nearly as frequently as net and com, and Brazil
(br) was targeted almost more than edu and org com-
bined. Canada, Germany, and the United Kingdom were
all were targeted by 1–2% of attacks.

6.3.3 Autonomous Systems

As another aggregation of attack targets, we exam-
ined the distribution of attacks to Autonomous Systems
(ASes). To determine the origin AS number associated



Kind Trace-1 Trace-2 Trace-3
Attacks Packets (k) Attacks Packets (k) Attacks Packets (k)

Other 1,917 (46) 19,118 (38) 1,985 (51) 25,305 (32) 2,308 (49) 17,192 (28)
In-Addr Arpa 1,230 (29) 16,716 (33) 1,105 (28) 24,645 (32) 1,307 (27) 26,880 (43)
Broadband 394 (9.4) 9,869 (19) 275 (7.1) 13,054 (17) 375 (7.9) 8,513 (14)
Dial-Up 239 (5.7) 956 (1.9) 163 (4.2) 343 (0.44) 276 (5.8) 1,018 (1.6)
IRC Server 110 (2.6) 461 (0.91) 88 (2.3) 2,289 (2.9) 111 (2.3) 6,476 (10)
Nameserver 124 (3.0) 453 (0.89) 84 (2.2) 2,796 (3.6) 90 (1.9) 451 (0.72)
Router 58 (1.4) 2,698 (5.3) 76 (2.0) 4,055 (5.2) 125 (2.6) 682 (1.1)
Web Server 54 (1.3) 393 (0.77) 64 (1.7) 5,674 (7.3) 134 (2.8) 730 (1.2)
Mail Server 38 (0.91) 156 (0.31) 35 (0.90) 71 (0.09) 26 (0.55) 292 (0.47)
Firewall 9 (0.22) 7 (0.01) 3 (0.08) 3 (0.00) 2 (0.04) 1 (0.00)

Table 6: Breakdown of victim hostnames.
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Figure 8: Distribution of attacks to Autonomous Systems
(ASes) that were targeted by at least 1% of all attacks.

with the victim of an attack, we performed longest pre-
fix matching against a BGP routing table using the vic-
tim’s IP address. To construct this table, we took a snap-
shot from a border router with global routes on February
7, 2001. We then mapped AS numbers to identifying
names using the NetGeo [17] service to do lookups in
registry whois servers. We labeled addresses which had
no matching prefix as ”NOROUTE”.

Figure 8 shows the distribution of attacks to the 17
ASes that were targeted by at least 1% of all attacks. As
with top-level domains, each AS named on the x-axis is
associated with three values, one for each of the three
weeks of our study in progressive shades of grey. Note
that the ASes are sorted by overall attacks across all three
weeks.

From Figure 8, we see that no single AS or small set
of ASes is the target of an overwhelming fraction of at-
tacks: STARNETS was attacked the most, but only re-
ceived 4-5% of attacks. However, the distribution of
ASes attacked does have a long tail. The ASes shown
in Figure 8 accounted for 35% of all attacks, yet these
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Figure 9: Histogram counting the number of victims of re-
peated attacks across all traces.

ASes correspond to only 3% of all ASes attacked. About
4% of attacks each week had no route according to our
offline snapshot of global routes.

Compared with TLDs, ASes experienced more varia-
tion in the number of attacks targeted at them for each
week. In other words, there is more stability in the type
or country of victims than the ASes in which they re-
side. For example, EMBRATEL’s percentage of attacks
varies by more than a factor of 2, and AS 15662, an un-
named AS in Yugoslavia, did not show up in week 1 of
the traces.

6.3.4 Victims of repeated attacks

Figure 9 shows a histogram of victims of repeated at-
tacks for all traces combined. The values on the x-axis
correspond to the number of attacks to the same victim in
the trace period, and the values on the y-axis show what
percentage of victims were attacked a given number of
times in logarithmic scale. For example, the majority of
victims (65%) were attacked only once, and many of the
remaining victims (18%) were attacked twice. Overall,



most victims (95%) were attacked five or fewer times.
For the remaining victims, most were attacked less than
a dozen times, although a handful of hosts were attacked
quite often. In the trace period, one host was attacked 48
times for durations between 72 seconds and 5 hours (at
times simultaneously). The graph is also truncated: there
are 5 outlier victims attacked 60–70 times, and one un-
fortunate victim attacked 102 times in a one week span.

6.4 Validation

The backscatter hypothesis states that unsolicited packets
represent responses to spoofed attack traffic. This theory,
which is at the core of our approach, is difficult to vali-
date beyond all doubt. However, we can increase our
confidence significantly through careful examination of
the data and via related experiments.

First, an important observation from Table 3 is that
roughly 80% of attacks and 98% of packets are attributed
to backscatter that does not itself provoke a response (e.g.
TCP RST, ICMP Host Unreachable). Consequently,
these packets could not have been used for probing our
monitored network; therefore network probing is not a
good alternative explanation for this traffic.

Next, we were able to duplicate a portion of our anal-
ysis using data provided by Vern Paxson taken from sev-
eral University-related networks in Northern California.
This new dataset covers the same period, but only detects
TCP backscatter with the SYN and ACK flags set. The
address space monitored was also much smaller, consist-
ing of three /16 networks (

�
����� � � ’s of the total IP address

space). For 98% of the victim IP addresses recorded in
this smaller dataset, we find a corresponding record at
the same time in our larger dataset. We can think of no
other mechanism other than backscatter that can explain
such a close level of correspondence.

Finally, Asta Networks provided us with data describ-
ing denial-of-service attacks directly detected at mon-
itors covering a large backbone network. While their
approach and ours capture different sets of attacks (in
part due ingress filtering as discussed in Section 3 and
in part due to limited peering in the monitored network),
their data qualitatively confirms our own; in particular
we were able to match several attacks they directly ob-
served with contemporaneous records in our backscatter
database.

7 Related work

While denial-of-service has long been recognized as a
problem [14, 18], there has been limited research on
the topic. Most of the existing work can be roughly
categorized as being focused on tolerance, diagnosis
and localization. The first category is composed of

both approaches for mitigating the impact of specific at-
tacks [4, 16] and general system mechanisms [25, 1] for
controlling resource usage on the victim machine. Usu-
ally such solutions involve a quick triage on data packets
so minimal work is spent on the attacker’s requests and
the victim can tolerate more potent attacks before failing.
These solutions, as embodied in operating systems, fire-
walls, switches and routers, represent the dominant cur-
rent industrial solution for addressing denial-of-service
attacks.

The second area of research, akin to traditional intru-
sion detection, is about techniques and algorithms for
automatically detecting attacks as they occur [22, 13].
These techniques generally involve monitoring links in-
cident to the victim and analyzing patterns in the arriv-
ing and departing traffic to determine if an attack has oc-
curred.

The final category of work, focuses on identifying the
source(s) of DoS attacks in the presence of IP spoofing.
The best known and most widely deployed of these pro-
posals is so-called ingress and egress filtering [12, 5].
These techniques, which differ mainly in whether they
are manually or automatically configured, cause routers
to drop packets with source addresses that are not used by
the customer connected to the receiving interface. Given
the practical difficulty of ensuring that all networks are
filtered, other work has focused on developing tools and
mechanisms for tracing flows of packets through the net-
work independent of their ostensibly claimed source ad-
dress [3, 26, 23, 2, 24, 11].

There is a dearth of research concerned with quantify-
ing attacks within the Internet – denial-of-service or oth-
erwise. Probably the best known prior work is Howard’s
PhD thesis – a longitudinal study of incident reports
received by the Computer Emergency Response Team
(CERT) from 1989 to 1995 [15]. Since then, CERT has
started a new project, called AIR-CERT, to automate the
collection of intrusion detection data from a number of
different organizations, but unfortunately their results are
not yet available [7]. To our knowledge ours is the only
quantitative and empirical study of wide-area denial-of-
service attacks to date.

8 Conclusions

In this paper we have presented a new technique,
“backscatter analysis,” for estimating denial-of-service
attack activity in the Internet. Using this technique, we
have observed widespread DoS attacks in the Internet,
distributed among many different domains and ISPs. The
size and length of the attacks we observe are heavy-
tailed, with a small number of long attacks constituting a
significant fraction of the overall attack volume. More-
over, we see a surprising number of attacks directed at



a few foreign countries, at home machines, and towards
particular Internet services.
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