
T
he computing facilities of large-
scale enterprises are evolving into
a utility, much like power and
telecommunications. In the
vision of an information utility,
each knowledge worker has a
desktop appliance that connects
to the utility. The desktop appli-

ance is a computer or computer-like device, such as a
terminal, personal computer, workstation, word
processor, or stock trader’s station. The utility itself is
an enterprise-wide network of information services,
including applications and databases, on the local-
area and wide-area networks.

Servers on the local-area network (LAN) typically
support files and file-based applications, such as elec-
tronic mail, bulletin boards, document preparation,
and printing. Local-area servers also support a direc-
tory service, to help a desktop user find other users
and find and connect to services of interest. Servers
on the wide-area network (WAN) typically support
access to databases, such as corporate directories and
electronic libraries, or transaction processing appli-
cations, such as purchasing, billing, and inventory

control. Some servers are gateways to services offered
outside the enterprise, such as travel or information
retrieval services, news feeds (e.g., weather, stock
prices), and electronic document interchange with
business partners. In response to such connectivity,
some businesses are redefining their business
processes to use the utility to bridge formerly isolated
component activities. In the long term, the utility
should provide the information that people need
when, where, and how they need it.

Today’s enterprise computing facilities are only an
approximation of the vision of an information utility.
Most organizations have a wide variety of heteroge-
neous hardware systems, including personal comput-
ers, workstations, minicomputers, and mainframes.
These systems run different operating systems (OSs)
and rely on different network architectures. As a
result, integration is difficult and its achievement
uneven. For example, local-area servers are often
isolated from the WAN. An appliance can access files
and printers on its local server, but often not those on
the servers of other LANs. Sometimes an application
available on one local area server is not available on
other servers, because other departments use servers

86 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

Middle

V a r i o u s t y p e s o f m i d d l e w a r e a r e c l a s s i f i e d ,

t h e i r p r o p e r t i e s d e s c r i b e d , a n d t h e i r e v o -

l u t i o n e x p l a i n e d , p r o v i d i n g a c o n c e p t u a l

m o d e l f o r u n d e r s t a n d i n g t o d a y ’ s a n d

t o m o r r o w ’ s d i s t r i b u t e d s y s t e m s o f t w a r e .

Philip A. Bernstein

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 87

Middleware

eware:
A Model for Distributed

System Services

on which the application cannot run. So some appli-
ances cannot access the application. Wide-area
servers often can support only dumb terminals, which
a desktop appliance must emulate to access a server.
Sometimes a desktop appliance can gain access to a
wide-area server only if a local-area server was explic-
itly programmed for access to the wide-area server. A
user may have to log into each server separately with
independently maintained passwords and through
different user interfaces, each with a different look
and feel. Even if the desktop appliance can access a
remote application, its spreadsheet or word processor
often cannot access data provided by that application
without special programming. These are only some
of the limitations of such systems.

In response to their frustrations in implementing
enterprise-wide information systems, large enterpris-
es are pressuring their vendors to help them solve
heterogeneity and distribution problems. One way is
by supporting standard programming interfaces.
Standard programming interfaces make it easier to
port applications to a variety of server types, giving
the customer some independence from the vendors.
In the past, supporting a standard programming lan-
guage, such as Cobol or C, was enough, but not any-
more. Today’s typical application may use database,
communication, presentation, and other services,
whose interfaces are not part of the language defini-
tion. To port an application, these interfaces must be
supported on the target platform. So users want inter-
faces that are widely supported, that is, standard.

Increasingly, standard interfaces are important to
server vendors themselves. Customers buy applica-
tions, not servers. Customers will choose any server
that can run the applications they want. By support-
ing many standard interfaces, a vendor increases the
number of applications that run on their servers,
making their servers more attractive to customers.

A
nother way vendors solve het-
erogeneity problems is by sup-
porting standard protocols.
Standard protocols enable pro-
grams to interoperate. By inter-
operate, we mean that a program
on one system can access pro-
grams and data on another sys-

tem. Interoperation is possible only if the two systems
use the same protocol, that is, the same message for-
mats and sequences. Also, the applications running
on the systems must have similar semantics, so the
messages map to operations that the applications
understand. The systems supporting the protocol
may use different machine architectures and OSs, yet
they can still interoperate.

For example, the Open Software Foundation’s Dis-
tributed Computing Environment (OSF DCE) fully
specifies its remote procedure call (RPC) protocol.
An implementation of DCE RPC includes a compiler
that translates an interface definition into a client
stub, which marshals a procedure call and its para-

meters into a packet, and a server stub, which unmar-
shals the packet into a local server call (see Figure 1).
The client stub can marshal parameters from a lan-
guage and machine representation different from
the server stub’s, thereby enabling interoperation. An
RPC implementation also includes a run-time library,
which implements the protocol for message
exchanges on a variety of network transports,
enabling interoperation at that level. At least one ven-
dor (Microsoft) has implemented the protocol inde-
pendently (without using the OSF implementation)
yet can interoperate with other implementations.

As another example, many vendors have imple-
mented IBM’s 3270 protocol to interoperate with
IBM mainframe applications. These vendors often
support a programming interface different from what
IBM offers on its systems. But since they support the
same protocol, the systems can interoperate.

To help solve customers’ heterogeneity and distri-
bution problems, and thereby enable the implemen-
tation of an information utility, vendors are offering
distributed system services that have standard pro-
gramming interfaces and protocols. These services
are called middleware services, because they sit “in the
middle,’’ in a layer above the OS and networking soft-
ware and below industry-specific applications.

Like large enterprises, application developers also
have heterogeneity and distribution problems they
want vendors to solve. Developers want their applica-
tions to depend only on standard programming inter-
faces, so the applications will run on most popular
systems. This increases their potential market and helps
their large-enterprise customers who must run applica-
tions on different types of systems. Developers need
higher-level interfaces, which mask the complexity of
networks and protocols and thereby allow developers to
focus on application-specific issues, where they are
most qualified to add value. Since customers focus on
buying applications, not the underlying computer sys-
tems, vendors are anxious to meet these requirements
so they can attract popular applications to their systems.
As with large enterprises, vendors respond to applica-
tion developers by offering middleware.

For many new applications, middleware compo-
nents are becoming more important than the underly-
ing OS and networking services on which the
applications formerly depended. For example, new
applications often depend on a relational database sys-
tem rather than on the OS’s record-oriented file system
and on an RPC mechanism rather than on transport-
level messaging (e.g., send-message, receive-message).
In general, middleware is replacing the nondistributed
functions of OSs with distributed functions that use the
network (e.g., distributed database, remote file access,
RPC). For many applications, the programming inter-
face provided by middleware defines the application’s
computing environment. For example, many applica-
tions regard fourth-generation languages (4GLs),
transaction processing (TP) monitors (e.g., IBM’s
CICS, Digital’s ACMSxp), and office frameworks (e.g.,
Lotus Notes, Digital’s LinkWorks) in this way.

88 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

Legacy applications, built before portable middle-
ware became popular, can also benefit from middle-
ware services. One can encapsulate the legacy
application as a set of functions and use communica-
tions middleware services to provide remote access to
those functions. For example, one can use an imple-
mentation of the Object Management Group’s
(OMG’s) Common Object Request Broker Architec-
ture (CORBA) for this purpose. This includes an
object-oriented aplication programming interface
(API) for binding to remote applications (objects)
and for invoking them, through either a static inter-
face (like RPC stubs) or a dynamic interface (of the
form Call(application-name, parameter1, parame-
ter2, ...)). One can also provide an advanced user
interface to a legacy application through high-level
presentation middleware services, for example, by
intercepting character terminal I/O and translating
it into operations on a graphical user interface
(GUI). Or one can replace some internal compo-
nents of the legacy application with middleware ser-
vices. For example, one can replace
application-specific database
functions with middleware
database services. This saves
maintenance by relying more
on the middleware vendor,
which often improves func-
tionality, since the middleware
vendor has greater resources
to expend on these distributed
system functions than the
application developer does.

This article classifies differ-
ent kinds of middleware,

describes their proper-
ties, and explains their
evolution. The goal is to
provide a conceptual
model for understanding
today’s and tomorrow’s
distributed system soft-
ware. Regrettably, there
is no standard terminolo-
gy for many of the con-
cepts discussed here. We
have attempted to follow common industry usage of
terms and to add some precision to the definitions.
However, vendors and consortia use these terms in
conflicting ways. We therefore warn the reader to be
careful in interpreting these terms outside the con-
text of this article.

Middleware Services
We describe properties of middleware and the prob-
lems they do and don’t solve. See also [4].

A middleware service is a general-purpose service that
sits between platforms and
applications (see Figure 2). By
platform, we mean a set of low-
level services and processing
elements defined by a proces-
sor architecture and an OS’s
API, such as Intel x86 and Win-
32, Sun SPARCstation and Sun
OS, IBM RS/6000 and AIX,
Alpha AXP and OpenVMS, and
Alpha AXP and Windows NT.

A middleware service is
defined by the APIs and pro-

February 1996/Vol. 39, No. 2 89

Middleware

Figure 2.
Middleware

Figure 1. Remote
Procedure Call
architecture

Application server
procedure

Development
Environment

IDL

IDL
source

IDL compiler

Interface
header

Language-specific
call interface
Client stubs

RPC API

RPC run-time
service library

RPC run-time
service library

Server stubs

Application client
procedure

Language-specific
call interface

RPC API

{

RPC protocols

DCE directory
services

DCE security
services

Middleware
(distributed system services)

. . .

. . .

APIs

Platform interface Platform interface

Platform
 • OS
 • Hardware

Platform
 • OS
 • Hardware

Application Application

tocols it supports. It may have multiple implementa-
tions that conform to its interface and protocol spec-
ifications, such as the different implementations of
DCE RPC and IBM 3270 protocol mentioned earlier.

Like many high-level system concepts, middleware
is hard to define in a technically precise way. However,
middleware components have several properties that,
taken together, usually make clear that the component
is not an application or platform-specific service: They
are generic across applications and industries, they run
on multiple platforms, they are distributed, and they
support standard interfaces and protocols. We
describe each of these properties in turn.

A middleware service meets the needs of a wide
variety of applications across many industries. For
example, a message switch, which translates messages
between different formats, is considered middleware
if it makes it easy to add new formats and is usable by
many applications. If it deals with formats only for a
single industry (e.g., trading securities) and is embed-
ded in a single application (e.g., a back-office broker-
age system), then it is not middleware.

A middleware service must have implementations
that run on multiple platforms. Otherwise, it is a plat-
form service. For example, relational database man-
agement systems (DBMSs) are middleware. Many
relational database products run on multiple plat-
forms. By contrast, byte-stream file systems are plat-
form services. Each OS has its own implementation,
usually with an OS-specific interface. By running on
multiple platforms, a middleware service enhances
the platform coverage of applications that depend on
it. If the service is distributed, this also enhances
interoperability, since applications on different plat-
forms can use the service to communicate and/or
exchange data. To have good platform coverage,
middleware services are usually programmed to be
portable, meaning that they can be ported to another
platform with modest and predictable effort.

A middleware service is distributed. That is, it
either can be accessed remotely (e.g., a database or
presentation service) or enables other services and
applications to be accessed remotely (e.g., a commu-
nications service). A remotely accessible middleware
service usually includes a client part, which supports
the service’s API running in the application’s address
space, and a server part, which supports the service’s
main functions and may run in a different address
space (i.e., on a different system). There may be mul-
tiple implementations of each part.

Ideally, a middleware service supports a standard
protocol (e.g., TCP/IP or the ISO OSI protocol
suite), or at least a published one (e.g., IBM’s SNA
LU6.2). That way, multiple implementations of the
service can be developed and those implementations

will interoperate. However, if a middleware service
really does run on all popular platforms, it may be
regarded as standard even though its protocols are
not published. For example, most database system
products have this property. If platform coverage is
good enough, customers may not push vendors to
conform to a standard protocol when it is developed.
For example, the SQL Access Group’s client-server
protocol has not gained much acceptance, although
its API (ODBC) is quite successful, since it is support-
ed by Microsoft on its Windows operating systems.

A middleware service should support a standard
API. A middleware service is transparent with respect
to an API if it can be accessed via that API without
modifying that API. Nontransparent middleware
requires a new API. Middleware that is transparent
with respect to a standard API is more easily accept-
ed by the market, because applications that use the
existing API can use the new service without modifi-
cation. For example, several different distributed
file-sharing protocols have been implemented under
the standard file access API, as in Digital’s PATH-
WORKS product, which includes file services for per-
sonal computers.

If a vendor has broad platform coverage and sub-
stantial market share, then its API and protocol may
be regarded as de facto standards, even if they are not
supported by other vendors. For example, the rela-
tional database systems ORACLE and SYBASE sup-
port their own dialects of the SQL language yet are
regarded as standard enough by most customers.
Similarly, IBM’s CICS TP monitor uses a proprietary
API and protocol (LU6.2) yet is a de facto standard.

Whether a given service is classified as middle-
ware may change over time. A facility that is cur-
rently regarded as part of a platform may, in the
future, become middleware, to simplify the OS
implementation and make the service generally
available for all platforms. For example, we used to
regard a record-oriented file system as a standard
part of OSs, as indeed they were in all commercial
OSs developed before 1980. However, today we
often think of this as middleware, such as imple-
mentations that conform to the X/Open C-ISAM
API. Conversely, middleware can migrate into the
platform, to improve the middleware’s performance
and to increase the commercial value of the plat-
form. For example, interfaces to transport-level pro-
tocols were often regarded as “communications
access method’’ products, separate from the OS.
Now they are usually bundled with the OS.

Due to the importance of standard interfaces for
application portability and standard protocols for
interoperability, middleware has been the subject of
many standardization efforts, some through formal

90 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

A middleware service meets the needs of a wide variety of applications
across many industries.

standards bodies such as ISO and ANSI, some
through industry consortia such as X/Open, OSF,
and OMG, and some through the sponsorship of a
company with a major market share, such as
Microsoft’s Windows Open Services Architecture
(WOSA). (The existence of these industry-wide orga-
nizations and their growing impact on products is
itself a testimonial to the importance of middleware.)
Sometimes an individual service gathers a major mar-
ket share and thereby becomes a de facto standard,
such as Adobe’s PostScript, IBM’s CICS TP monitor,
and Sun’s Network File Service (NFS).

Standardization efforts are, in turn, leading to cor-
porate procurement standards. That is, companies
and governments are selecting some standards as ven-
dor requirements, to ensure that similar products
obtained from different vendors will support the
same applications and will interoperate. Some exam-
ples of customer-oriented procurement standards are
the U.S. government’s Government Open System
Interconnect Profile (GOSIP) and Nippon Tele-
graph and Telephone’s Multivendor Integration
Architecture (MIA), which has led to the broader
SPIRIT Consortium, covering telecommunications
and perhaps other industries.

Vendors often respond to standards by adding
advanced nonstandard features, in an attempt to pro-
duce more desirable products and lock in customers
to features that are not available from competing
standard products. For example, relational database
vendors have been adding features to SQL for many
years, with the standards processes struggling to keep
up by defining vendor-independent standard defini-
tions for those features.

The following components are or could be mid-
dleware services:

• Presentation management: Forms manager, graphics
manager, hypermedia linker, and printing manager.

• Computation: Sorting, math services, international-
ization services (for character and string manipula-
tion), data converters, and time services.

• Information management: Directory server, log man-
ager, file manager, record manager, relational
database system, object-oriented database system,
repository manager.

• Communications: Peer-to-peer messaging, remote
procedure call, message queuing, electronic mail,
electronic data interchange.

• Control: Thread manager, transaction manager,
resource broker, fine-grained request scheduler,
coarse-grained job scheduler.

• System management: Event notification service,
accounting service, configuration manager, soft-
ware installation manager, fault detector, recovery
coordinator, authentication service, auditing ser-
vice, encryption service, access controller.

Not all of these services are currently distributed,
portable, and standard. But a sufficiently large num-
ber of them are or will be to make the middleware

abstraction worthwhile.
The categories listed here are arbitrary. They are

just a convenient way of grouping the services, mak-
ing them easier to remember and discuss.

The main purpose of middleware services is to
help solve many of the problems discussed earlier in
this article. They provide platform-independent APIs,
so applications will run on multiple platforms. And
they include high-level services that mask much of
the complexity of networks and distributed systems.
They also factor out commonly used functions into
independent components, so they can be shared
across platforms and software environments.

However, middleware services are not a panacea.
First, there is a gap between principles and practice.
Many popular middleware services use proprietary APIs
(usually making applications dependent on a single
vendor’s product) and proprietary and unpublished
protocols (making it difficult for different vendors to
build interoperable implementations). For example, as
mentioned earlier, many relational DBMSs support
proprietary SQL dialects and proprietary protocols.
Some are not available on many popular platforms
(limiting the customer’s ability to connect or port to
heterogeneous systems), such as Oracle’s (formerly
Digital’s) Rdb and IBM’s DB2 relational DBMSs. Even
when a middleware service is state-of-the-art, an appli-
cation developer that depends on it has a new risk to
manage, the risk that the service will not keep pace with
technology. For example, many applications that used
a network (e.g., CODASYL) DBMS had to be rewritten
to benefit from relational DBMSs that have replaced
them as the de facto standard.

S
econd, the sheer number of middle-
ware services is a barrier to using them.
Even a small number of middleware
services can lead to much program-
ming complexity, when one considers
each service’s full API, including not
only service calls but also language
bindings, system management inter-

faces, and data definition facilities. To keep their com-
puting environment manageably simple, developers
have to select a small number of services that meet
their needs for functionality and platform coverage.

Third, while middleware services raise the level of
abstraction of programming distributed applications,
they still leave the application developer with hard
design choices. For example, the developer must still
decide what functionality to put on the client and
server sides of a distributed application. It is usually
beneficial to put presentation services on the client
side, close to the display, and data services on the
server side, close to the database. But this isn’t always
ideal, and in any case leaves open the question of
where to put other application functions.

Frameworks
A framework is a software environment that is designed
to simplify application development and system man-

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 91

Middleware

agement for a specialized application domain (see Fig-
ure 3). A framework is defined by an API, a user inter-
face, and a set of tools. It may also have
framework-private middleware services, in addition to
ones that it imports from other products. Some popu-
lar types of frameworks include office system environ-
ments (e.g., Lotus Notes, Microsoft Office, Digital’s
LinkWorks), TP monitors (e.g., IBM’s CICS, Digital’s
ACMSxp, Novell’s Tuxedo, Transarc’s Encina), 4GLs
(e.g., Uniface, Cognos, and Focus), computer-aided
design frameworks (e.g., Mentor Graphics’ Falcon,
Digital’s Powerframe), computer-aided software engi-
neering workbenches (e.g., HP’s SoftBench, Texas
Instruments’ Composer by IEF, Andersen Consulting’s
Foundation, Digital’s COHESIONworX), and system
management workbenches (e.g., HP’s OpenView,
Tivoli’s Management Environment, IBM’s NetView).

Frameworks are a kind of middleware. For clarity,
we therefore use the term “middleware services’’ for
underlying distributed system services and “middle-
ware’’ for middleware services and/or frameworks.

A framework’s API may be a profile of APIs for a set
of middleware services, or it may be a new API that

simplifies the APIs of
underlying middleware ser-
vices that it abstracts. For
example, a computer-aided
design (CAD) or computer-

aided software engineering (CASE) framework’s API
may include a presentation service, an invocation
service (to call tools from the user interface), and a
repository service (to store persistent data shared
between tools); it could be simply the union of those
services’ APIs, or it could be abstracted by a new API
that maps to those services. If a framework’s API is
different from that of the underlying services, it may
be only a veneer that covers the underlying services

with a common syntax. More often, it adds value by
specializing the user interface, simplifying the API by
maintaining shared context, or adding framework-
private middleware services. For example, all TP
monitors we know of add value in this way.

Sometimes services grow up into frameworks. For
example, most relational DBMSs have evolved to
include rich toolsets accessible through a special user
interface, retaining SQL as the API. Sometimes a set of
services is sufficiently integrated to resemble a frame-
work. For example, OSF’s DCE integrates RPC, a nam-
ing service, an authentication service, a time service, a
unique universal identifier service, and a file service.
Although it has no special user interface (UI), and its
API is just those of its component services, it does main-
tain context across calls (authenticated user id) and
transparently invokes services to simplify certain opera-
tions, such as transparently invoking the name service
to find a server that can process an RPC call.

Since a framework layers on middleware services,
a framework provider is a customer of middleware
services. By the same token, an application that lay-
ers on a framework is the framework’s customer,

and only indirectly the middleware service’s
customer. Given the wide variety and com-
plexity of middleware services, a substantial
and growing fraction of applications
depend on frameworks to simplify their
underlying middleware environment rather
than directly accessing middleware services.
This is analogous to the past trend of appli-
cations to move away from direct use of plat-
form services and rely more heavily on more
abstract middleware services.

A framework may have its own UI, which is a
specialization of the GUIs of the underlying
platforms it runs on and which has a special
look and feel. For example, an office system
framework may specialize the GUI to provide
the appearance of a desktop, with icons and lay-
out suitable for office users and applications. If
a framework supports multiple GUIs (such as
Motif, Microsoft Windows, and Macintosh),
then this GUI specialization makes it easier for
users to move between GUIs (e.g., between
their Windows laptop and Unix workstation).

One way a framework can simplify its API is
by maintaining context across calls to different ser-
vices. For example, in most frameworks, service calls
require a user identifier (for access control) and a
device identifier (for communications binding) as
parameters. However, the framework can maintain
these identifiers as context for the application and
not require them as parameters, thereby simplifying
the API. For example, the CASE framework COHE-
SIONworX maintains a context containing an
authenticated user name, a display name, and a work
area consisting of file directories and pointers to
objects. Maintaining context is not a unique property
of frameworks; a service can maintain context too,
though that context is usually local to the one service.

92 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

Application

Middleware
(distributed system services)

. . .

. . .

APIs

Platform interface Platform interface

Platform
 • OS
 • Hardware

Platform
 • OS
 • Hardware

Mapping to
Middleware Services

Framework
Private Service

API veneer

Application Tool

Framework

User
interface

Figure 3. Frame-
work architecture

For example, DCE RPC maintains an authenticated
user id across multiple RPC calls.

A framework can also simplify its API by exploiting
a work model that does not require all of the features
of the middleware services it uses. For example, a
CASE environment may offer a simplified interface
for software configuration management that does not
expose all of the features of the underlying reposito-
ry manager. This improves ease of use and increases
the number of services that are transparent with
respect to the APIs.

Often, a framework offers a middleware service
that is private to the framework, usually because the
framework requires the service but no standard mid-
dleware service is available. For example, many TP
monitors use a private implementation of RPC. How-
ever, with the availability of the OSF DCE, which
includes an RPC, some of these TP monitors are
replacing their proprietary RPC implementations
with the standard DCE RPC middleware, such as
IBM’s CICS/6000, Transarc’s Encina, and Digital’s
ACMSxp. As another example, CASE and CAD
frameworks often offer framework-specific services
for versioning and configuration management.
These services may be replaced in the future by stan-
dard middleware if a repository technology emerges
as such a standard.

Frameworks usually include tools, which are gener-
ic applications that make the framework easier to use.
Tools may be designed for end users, programmers,
or system managers. They may be provided by the
framework’s vendor or other parties. They may be
designed to be used with a particular framework or
with a variety of frameworks. Examples of tools
include editors, help facilities, forms managers, com-
pilers, script interpreters, debuggers, performance
monitors, and software installation managers.
Although in principle a framework does not need to
have tools, in practice they all do, to make them suf-
ficiently attractive to human users.

A tool is part of a framework if it is integrated
through data, control, and/or presentation. In data
integration, a tool shares (usually persistent) data
with other tools that are part of its framework. This
requires that the tools agree on the object model (the
abstract model in which data formats are defined)
and on the format of the shared data. Sometimes the
format is defined by one tool that owns and exports
the data; other tools can reference that data provided
they can cope with the owning tool’s format, such as
a relational database catalog. Other times the data is
equally shared by two or more tools, which is easiest
to arrange if all tools are supported by one vendor.
For example, CASE frameworks often contain a
repository that is shared by tools for analysis and
design and for program generation, such as Ander-
sen Consulting’s Foundation and Texas Instruments’
Composer by IEF. Similarly, a 4GL typically has a data
dictionary that is shared by its forms manager, query
language, and application programming language.

Whether the data is owned by one tool or equally

shared by many tools, tools may share online access to
the fine-grained data (as in the previous examples of
database catalog, CASE framework repository, and
4GL dictionary), or they may transfer the data in bulk
from tool to tool (for example, using the CASE Data
Interchange Format between CASE tools or the
Express exchange format between CAD tools). If the
data is accessed online, then the tools may have to
agree on protocol, that is, on the set of operations
allowed on the data and the allowed sequences of
those operations.

In control integration, a user or tool operating
within a framework can invoke another tool, and the
called tool can exchange data and control signals
appropriately with its caller. This involves making the
tool’s interface known to the framework, invoking
the tool (or creating an instance of the tool, if neces-
sary), and exchanging messages with the tool. For
example, in Digital’s COHESIONworX, HP’s Soft-
Bench, and Sun’s SPARCworks, each tool in the
CASE framework can send messages, which are for-
warded to all other tools that have declared an inter-
est in messages of that type. Sometimes it’s useful if
the tool executes on a different system from the one
that the framework is executing, in which case con-
trol integration requires a remote invocation service.
For example, Digital’s COHESIONworX uses a
CORBA implementation (Digital’s Object Broker) to
invoke tools on remote systems.

I
n presentation integration, a tool shares
the display with other tools executing in
the framework. Preferably, it has the same
look and feel as those other tools, usually
achieved by using the same GUI and
adopting standard usage conventions,
such as offering semantics similar to those
of abstract operations (e.g., cut, paste,

drag, drop). The look and feel may be guided by a
metaphor, such as a virtual desktop, which leads to
usage conventions for screen space, control panel lay-
out, etc. Sometimes presentation integration drives
the requirements for data and control integration.
For example, if a spreadsheet is invoked from a com-
pound document editor, both data integration (of
the spreadsheet’s contents) and control integration
(for launching the spreadsheet application) are
needed, but it was the presentation integration that
even allowed the user to express the concept.

Pragmatically, presentation and control integra-
tion are usually more urgently needed than data inte-
gration, because most users need multiple tools and
do not want to deal with tool-specific look and feel
and invocation techniques. While there are often
great benefits to data integration, tools are still useful
and easy to use without this integration.

Presentation and control integration are often easi-
er to implement than data integration. For control
integration, each tool can be independently integrated
by defining its interfaces and providing access to those
interfaces through a middleware communications ser-

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 93

Middleware

vice. This work is localized at the tool’s interface and
requires no modification of the body of the tool. The
same is true for presentation integration, by intercept-
ing display I/O operations and translating them into
operations on a common GUI. By contrast, data inte-
gration requires that all tool vendors agree on a com-
mon format for the data they share. Since data accesses
are scattered throughout the tool’s implementation,
changing data formats is often tedious and expensive.
One can localize the tool changes by creating a data-
base view of shared data that allows the tool to access
shared data in its native format. However, the shared
data is often stored in a data manager that doesn’t sup-
port views or supports views that are not updatable,
making the views approach nonviable.

The distinctions among data, presentation, and
control integration are blurred somewhat by taking an
object-oriented view of the interfaces a tool calls. In all
cases, the tool is invoking methods on objects, so the
distinctions among calling a presentation interface,
invoking a tool, and accessing data disappear. Howev-
er, the different effects of the three types of integration
on user capabilities remain, as does the critical techni-
cal problem of data integration. That is, the tools that
share data must agree on the format of each data type
they share, which is equally difficult whether it is man-
ifested in a method name or in method parameters.

TP Monitors—An Example
To illustrate middleware concepts, we will look at one
type of framework: TP monitors [1]. The main function
of a TP monitor is to coordinate the flow of requests
between terminals or other devices and application pro-
grams that can process these requests. A request is a mes-
sage that asks the system to execute a transaction. The
application that executes the transaction usually access-
es resource managers, such as database and communi-
cations systems. A typical TP monitor includes functions
for transaction management, transactional interpro-
gram communications, queuing, and forms and menu
management (see Figure 4).

Transaction management involves support for
operations that start, commit, and abort a transac-

tion. It also has interfaces
to resource managers
(e.g., database systems)
that are accessed by a
transaction, so a resource

manager can tell the transaction manager when it is
accessed by a transaction and the transaction manag-
er can tell resource managers when the transaction
has committed or aborted. A transaction manager
implements the two-phase commit protocol, to
ensure that all or none of the resource managers
accessed by a transaction commit (see [2], chap. 7).

Transactional interprogram communications sup-
port the propagation of a transaction’s context when
one program calls another. This allows the called pro-
gram to access resources on behalf of the same trans-
action as the caller. The communications paradigm
may be peer-to-peer (i.e., send-message, receive-mes-
sage) or RPC (i.e., send-request, receive-reply).

A queue manager is a resource manager that sup-
ports (usually) persistent storage of data to move
between transactions. Its basic operations are
enqueue and dequeue. A distributed queue manager
can be invoked remotely and may provide system
management operations to forward elements from
one queue to another.

A forms manager supports operations to send and
receive forms to and from display devices. It has a
development system for defining forms and translating
them into an internal format and a run-time system for
interpreting the content of a form in an application.

Early TP monitors implemented all of these func-
tions as framework-specific services, relying only on
platform services. Today, many of these framework-
specific services are available as off-the-shelf middle-
ware. TP monitors being built today make use of such
off-the-shelf services, such as record managers, trans-
action managers, and queue managers. These ser-
vices may also be used directly by applications or by
other middleware services (e.g., a DBMS) or frame-
works (e.g., an office system framework).

All of the preceding services are the subject of
efforts to standardize their APIs and protocols. For
example, X/Open is working on standard APIs for
transaction management and transactional commu-
nication, and ISO is working on a protocol standard
for queuing.

Most TP monitors were highly dependent on the
platform for which they were built. Today’s monitors,
layered on middleware services, are more portable.
They are designed to be dependent mostly on the
middleware they use, not on the platform that sits
below the middleware. They have selected middle-

94 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

TP Monitor API

Context =
 {user-id, transaction-id
 device id, last msg}

Transactions Forms and
menus RPC

QueuingIndexed filesSQL DB

Mapping TP Monitor API to Middleware APIs
TP Monitor
Framework

Middleware
Services

Figure 4. TP moni-
tor architecture

ware services that are themselves portable and have
been ported to many platforms, such as OSF DCE.
Therefore, such TP monitors can be ported to a vari-
ety of platforms. For example, IBM has built a new
implementation of its CICS TP monitor layered on
transaction middleware from Transarc Corp. and has
announced that the implementation will be ported to
non-IBM Unix systems.

A TP monitor integrates the services so they are
accessible via a simplified and uniform API. One way
it simplifies the API is by maintaining context to avoid
passing certain parameters. For example, a TP moni-
tor typically maintains context about the current
request, transaction, and user. Most application func-
tions need not specify this information. Rather, the
TP monitor fills in the necessary parameters when
translating an application call into a call on the
underlying middleware service. For example, an
application may ask to enqueue a message, and the
TP monitor would add as parameters the current
transaction identifier (so the queue manager can tell
the transaction manager it was accessed by the trans-
action) and user identifier (so the queue manager
can check the user’s authorization).

A TP monitor may specialize the user interface. For
example, it may have a stylized interface for login, dis-
play of errors, and display and interaction with menus.

A TP monitor generally incorporates tools for appli-
cation programming. For example, it may include a
data dictionary for sharing record definitions between
the forms manager, application programs, and data-
base system. Digital used its Common Data Dictio-
nary/Repository to integrate its TP Monitor (ACMS),
relational DBMS (Rdb), forms manager (DECforms),
and compilers in this way. This is an example of data
integration. It also may include a CASE framework for
simplifying the invocation and use of tools for compila-
tion, software configuration management, and testing,
as in Digital’s DECadmire and TP Workcenter. This is

an example of control and
presentation integration.

A TP monitor also
incorporates tools for sys-
tem management. These
tools allow one to display
the state of a transaction or request, to determine
what components are currently unavailable, and to
monitor performance and tune performance para-
meters. System management may be implemented in
its own framework, which ties together the system
management facilities of the TP monitor with the
platform’s and database system’s system management
functions, so all resources can be managed in the
same way from the same device.

Most customers buy a complete TP system from
one system vendor, including the TP monitor, data-
base system, and platform. The system vendor may or
may not be the author of the TP monitor software.
Still, the system vendor is responsible for ensuring
that the complete software complement has suitable
performance, reliability, usability, etc.

Lotus Notes
Another popular framework product that illustrates
our points is Lotus Notes. It supports the development
and execution of applications that create, access,
track, share, and organize information represented as
documents. We describe some of the key features of
Lotus Notes in terms of our middleware model.

Applications are stored in databases on servers
across networks of occasionally connected comput-
ers. Each database contains documents, forms (which
define the design of multimedia documents), and
views (which provide, for example, different subsets
and orders of documents in databases). The majority
of application development can be done by nonpro-
grammers using forms, views, and a formula language
similar to those in spreadsheets. The databases are

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 95

Middleware

Figure 5.
Architecture of
Lotus Notes R3.0

Desk
Editor

View
Install

Spell
Replicator

Mailer

Import/Export

Server Chronos Design Report
Server

Application

EventCatalog Router
User

interface

Lotus Notes API

Middleware
Services

Platform
Isolation
Services

Document
Management

Object Store
Management

Security Indexing Messaging Events

AdministrationInstallationAdd-inNamingLoggingNetwork

Memory Management File Management Process Management

Primitive Data TypesEnvironment Statistics

managed with little centralized control. That is, each
Lotus Notes server (i.e., an installation of Lotus Notes
on one system) independently defines its databases.
Middleware services are provided to track and con-
trol these independent but related databases.

Lotus Notes R3.0 is structured in three layers: a plat-
form isolation layer, a set of middleware services
accessed through an integrated API, and a set of tools
(see Figure 5). The platform isolation layer is a set of
services for memory, file, process, and environment
management. To enable portability of higher layers,
these services have the same semantics across various
versions of many platforms, such as Microsoft Windows,
Apple Macintosh, IBM OS/2, Novell Netware, and sev-
eral variants of Unix. Data type functions are provided
to encapsulate the behavior of primitive data types.

Functions are also available to manage different
platform representations and enable binary compati-
bility of applications, databases, and network mes-
sages. Though not strictly a part of the platform
isolation layer, there is a network component that
insulates higher layers from network architectures
and differences in transport-level messaging and a
platform-independent UI that insulates higher layers
from differences in GUIs and window managers. Iso-
lating a framework or middleware service from a plat-
form using such services is common practice. For
example, most portable database systems and
portable TP monitors are built this way.

Many framework-specific, platform-independent
middleware services sit above the platform isolation
layer. These services are accessed via C functions that
define the Lotus Notes API. Middleware services
include the following:

• object management service, which supports simple
data types and bulk information storage;

• document management service, which uses the
object management service and names documents,
organizes documents, and supports the formula
language (a script language for building user
applications);

• security service, which supports encryption, digital
signatures, and discretionary access control. It uses
services in security middleware from RSA Data
Security;

• indexing, which provides indexed access to docu-
ment content (using the content-based retrieval
engine from Verity Corp.) and to summary data
(i.e., document descriptors);

• messaging, which supports mail transports and
mail addressing, including addressing to groups
of names and hierarchically organized names;

• events, which support dynamic notification via a
mail message or log entry;

• logging, for auditing events on persistent storage
• naming, which supports client-server binding and

integrates with transports and security services,
much like DCE (Lotus Notes pre-dates DCE);

• system management functions, including add-in
(for server application configuration manage-

ment), installation (of a complete “Lotus Notes
server”), and administration (which supports man-
agement control from a remote console).

Some traditional middleware functions are per-
formed by independent server processes, which one
could classify as either tools or services, such as:

• Replicator—The naming system defines connec-
tions between two servers and defines schedules for
reconciling their common databases. For each
inter-server connection, the replicator copies new
and updated entries in each database to the corre-
sponding database(s) on the other server. In the
event of a conflict (e.g., independent updates to the
same object in both servers), it arbitrates by select-
ing a “winner” entry and flagging the likely loser.

• Catalog—The catalog produces a global directory
of all databases in a Notes network. It is a discov-
ery process that updates a special catalog data-
base with information about local databases.
Replication among the catalog replicas results in
a global directory.

• Router—The router transfers mail messages
between servers.

• Design—Databases are self-describing, in that they
contain definitions of all application components as
well as the data. Some databases, called templates,
contain only definitions. The design process propa-
gates design information in templates or databases
between servers, much like the replicator.

• Chronos—This is a scheduler that executes formu-
las (in the formula language) in the background.

• Event, report—These are administration programs.
• Server—This server does job initiation and sched-

uling for the preceding servers. There are other
built-in server programs, and users can write their
own and register them with the add-in middleware
service.

A variety of other tools are supported, including
Editor for manipulating forms, View for defining and
navigating views, and Desk for organizing access to
applications. Each tool also includes private services
for specific functions, such as spell checking, sending
messages, and document format conversions. Lotus
Notes is typical of new types of framework in that it
uses framework-specific middleware services and a
framework-unique API. If other frameworks of this
type become popular, we would expect to see com-
mon middleware services between those frameworks
and a standard API.

Integrating Middleware Services
An important way to add value to a set of middleware
services is by integrating them so they work well as a
coherent system. For example, one can ensure that
they use a common naming architecture, have com-
patible performance characteristics, support the same
international character sets, and execute on the same
platforms. These integrated services are often encap-

96 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

sulated in a framework, but they need not be. For
example, the OSF DCE is an integrated set of services
that is not a framework. Making services work well
together is what distinguishes an integrated system
from a set of commodity services. The activity of cre-
ating such an integrated system out of independently
engineered piece-parts is called system engineering.

Applications, middleware, and systems can be mea-
sured in a variety of dimensions, including usability,
distributability, integration, conformance to stan-
dards, extensibility, internationalizability, manage-
ability, performance, portability, reliability,
scalability, and security. We call these pervasive attrib-
utes, since they can apply to the system as a whole, not
just to the system’s components.

Users want to see their applications rate highly on
pervasive attributes. Application programmers can
help accomplish this by layering their applications on
middleware that rates highly on these attributes. Sys-
tem engineers can improve things further by ensur-
ing a set of middleware uniformly attains certain
pervasive attributes (by using common naming, com-
patible performance characteristics, etc.). They may
do this by defining building codes for applications to
use middleware services in a common way (e.g., com-
mon naming conventions), by influencing the design
of middleware services (e.g., require that they use a
particular security service to authenticate their
callers), or by selecting services that are compatible
(e.g., trading off performance for portability of some
services to ensure the system as a whole has good per-
formance).

Today, system engineering is mostly an ad hoc
activity. For some pervasive attributes, such as perfor-
mance and reliability, there are techniques for mea-
suring, analyzing, and implementing systems to meet
specified goals. For most attributes there is little the-
ory or technique to apply, other than common sense
and an orderly engineering process. Since the trend
is to increase the use of off-the-shelf components to
build software systems, more and better techniques
for system engineering are urgently needed. Devel-
oping such techniques is a major opportunity and
challenge for computer systems researchers.

In addition to integrating middleware services into
a system, it is important to characterize the result of
that integration. For the performance attribute, it is
common practice to characterize the system by its
behavior on benchmarks. For some attributes, one
can characterize the system relative to specific func-
tional capability (e.g., the U.S. Department of Defense
“Orange Book’’ security labels: A1, B2, and so forth).
For other attributes, such characterization is more dif-
ficult, since there are no generally agreed-upon met-
rics (e.g., extensibility or ease of use). Developing
such metrics is another major research opportunity.

Trends
Although the concept of middleware will be with us
for a long time, the specific components that consti-
tute middleware will change over time. Earlier, we

explained that some OS services will migrate up to
become middleware and some middleware services
will migrate down into the OS. Another strong driver
of middleware evolution is new application areas, such
as mobile computing, groupware, and multimedia.
New applications usually have some new requirements
that are not met by existing middleware services. Ini-
tially, vendors build frameworks to meet these
requirements. Over the longer term, when a success-
ful framework-specific service generates demand out-
side the context of that framework (to be used directly
or in other frameworks), it is usually made available as
an independent piece of middleware.

There is already too much diversity of middle-
ware for many customers and application develop-
ers to cope with. Customers and standards bodies
are responding to this problem by developing pro-
files, which include a subset of middleware services
that cover a limited set of essential functions with-
out duplication (i.e., only one service is selected of
each type). The X/Open Portability Guide is one
especially well-known profile [7]. Unfortunately,
different profiles select different services, putting a
heavy burden on vendors that want to sell to cus-
tomers that require different profiles. This hurts
users, since vendors dilute their resources by
investing in different profiles. Standards groups
are becoming more sensitive to this problem and
are working harder to coordinate their efforts to
avoid a proliferation of competing standards. In
the end, the market will sort this out when certain
components and profiles become low-cost com-
modities, making it hard for offbeat components
and profiles to compete.

W
hile profiles can simplify
a set of middleware,
they can also lead to
integration problems.
Independently designed
middleware services may
be hard to use together
unless certain usage

guidelines are adopted, such as common name for-
mat and common context (e.g., user and session
identifiers). In addition, not all popular implemen-
tations of such services may be able to coexist on a
platform without some reengineering. For exam-
ple, they may generate naming conflicts or may
require different versions of underlying OS or com-
munications services. Therefore, when defining a
profile, one needs a profile-level architecture that
addresses these issues. Unfortunately, all too often,
profile definers leave this work to vendors and cus-
tomers to sort out.

Vendors too are responding to the complexity of
middleware. They have formed consortia, often joint-
ly with large users, to identify profiles that both ven-
dors and customers need. X/Open and the Object
Management Group are examples. Consortia are also
working to integrate sets of middleware services,

COMMUNICATIONS OF THE ACM February 1996/Vol. 39, No. 2 97

Middleware

which can then be used as a single component. For
example, the OSF DCE integrates RPC with directory,
time, security, and file services [6]. OSF is pursuing a
similar style effort with its Distributed Management
Environment (DME) [3]. Individual vendors are pub-
lishing their preferred sets of middleware interfaces,
to tell application developers what they can count on.
For example, Digital is doing this with its Network
Application Support (NAS) [5] and Microsoft with its
Windows Open Services Architecture (WOSA).

The complexity of current middleware is unten-
able over the long term. Therefore, when developing
a new middleware service, a vendor must immediate-
ly embark on a path to make its service a de facto stan-
dard. This seemingly works against the vendor’s best
interest by prematurely commoditizing the technolo-
gy. However, application vendors won’t rely on a mid-
dleware service unless they’re confident it will
become a de facto standard. Thus, the vendor’s only
(unappealing) alternative to early standardization is
to wait until another vendor follows this path, ren-
dering the first vendor’s technology obsolete. Some
technologies are defined by independent standards
bodies. These standards are truly open and may
therefore be implemented by multiple vendors. Since
each vendor’s implementation supports the same
standard functions, vendors can compete by better
attainment of pervasive attributes or by extending the
functionality in nonstandard, high-value ways. In the
latter case, they must now pursue the standardization
route for the extensions, or again, application ven-
dors will resist using them.

Large enterprises are already relying on middleware
to support their current approximations of an infor-
mation utility. The trends of simplifying middleware

and expanding its functionality into new application
areas are likely to increase this reliance in the future.

Acknowledgments
This article arose from several years of work with
dozens of engineers on Digital’s NAS middleware
architecture and products. I am indebted to the late
David Stone, who created management focus on
the problems addressed here and who encouraged
me to pursue them. I thank Wendy Caswell, Scott
Davis, Hans Gyllstrom, Chip Nylander, Barry Rubin-
son, John Miles Smith, Mark Storm, and especially
Leo Laverdure for many stimulating discussions
about middleware issues and for helping to develop
some of the key abstractions in this article. I am
grateful to Ken Moore of Iris Associates, who col-
laborated on the description of Lotus Notes, and to
the following people for many suggested improve-
ments to this article: Ed Balkovich, Mark Bramhall,
Michael Brodie, John Colonna-Romano, Judy Hall,
Meichun Hsu, Hans de Jong, Murray Mazer, and
Calton Pu.

References
1. Bernstein, P.A. Transaction processing monitors. Commun.

ACM 33, 11 (Nov. 1990), 75–86.
2. Bernstein, P., Hadzilacos, V., and Goodman, N. Concurrency

Control and Recovery in Database Systems. Addison-Wesley, Read-
ing, Mass., 1987.

3. Chappell, D. The OSF distributed management environment.
ConneXions 6, 10 (Oct. 1992), 10–15.

4. King, S.S. Middleware. Data Communications. (Mar. 1992),
58–67.

5. Laverdure, L., Colonna-Romano, J., Srite, P. Network Application
Support Architecture Reference Manual. Digital Press, 1993

6. Rosenberry, W., Kenney, D., and Fisher, G. Understanding DCE.
O’Reilly, Sebastapol, Calif., 1992.

7. X/Open Portability Guide. The X/Open Company, Reading,
England.

About the Author:
PHILIP A. BERNSTEIN is an architect at Microsoft Corporation.
He currently works on repository technology in support of CASE
tools. Author’s Present Address: One Microsoft Way, Redmond,
WA 98052-6399; email: philbe@microsoft.com

The following registered trademarks are referenced in this article: PostScript
of Adobe Systems, Inc.; Foundation of Andersen Consulting; Macintosh of
Apple Computers Inc.; Cognos of Cognos Corp.; ACMS, ACMSxp, Alpha
AXP, COHESIONworX, DECadmire, DECforms, LinkWorks, NAS, Open-
VMS, PATHWORKS, Powerframe, and TP Workcenter of Digital Equipment
Corp.; SoftBench of Hewlett-Packard Corp.; AIX, CICS, DB2, IBM, and
NetView of the IBM Corp.; Focus of Information Builders Inc.; Intel of Intel
Corp.; Lotus Notes of Lotus Development Corp./IBM; Falcon of Mentor
Graphics; Windows and Windows/NT of Microsoft Corp.; Netware, Unix,
and Tuxedo of Novell, Inc.; OSF of the Open Software Foundation; ORA-
CLE and Rdb of Oracle Corp.; NFS, SPARCstation, and Sun of Sun Microsys-
tems, Inc.; SYBASE of Sybase, Inc.; Composer by IEF of Texas Instruments;
Encina of Transarc Corp.; Uniface of Uniface International; and X/Open of
X/Open Company Ltd.

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific permission and/or a fee.

© ACM 0002-0782/96/0200 $3.50

C

98 February 1996/Vol. 39, No. 2 COMMUNICATIONS OF THE ACM

Glossary of Acronyms

ANSI—American National Standards Institute

API—Application Programming Interface

CAD—Computer-Aided Design

CASE—Computer-Aided Software Engineering

CORBA—Common Object Request Broker Architecture

DCE—Distributed Computing Environment

DBMS—Database Management System

GOSIP—Government Open System Interconnect Profile

GUI—Graphical User Interface

ISO—International Organization for Standardization

ODBC—Open Database Connectivity

OMG—Object Management Group

OS—Operating System

OSF—Open Software Foundation

OSI—Open System Interconnect

RPC—Remote Procedure Call

SQL—Structured Query Language

TP—Transaction Processing

WOSA—Windows Open Services Architecture

4GL—Fourth Generation Language

