
1

Lessons from Giant-Scale Services
Eric A. Brewer

UC Berkeley & Inktomi Corporation
5/20/99

We summarize our experience with many giant-scale ser-
vices such as web portals, focusing on new ways of thinking
about scale, availability, evolution and growth. We also
define a basic model that fits most such services and clarifies
the fault model and semantics delivered in practice.

1 Introduction
The past few years has seen an explosive growth in the

size of infrastructure services, particularly giant web sites
and ISPs such as Yahoo!, AOL, Excite and others. Many
new players are building these giant-scale services as well,
including Microsoft, Disney, NBC, and CNN.

In this paper, we look at the basic model followed by
these services and examine three of the very challenging
problems encountered by these sites. We focus on generaliz-
ing and abstracting the key challenges faced by giant-scale
services and summarize the approaches used in practice.
This is very much an “experience” paper: most of these
issues are not addressed in the academic literature, and most
of the conclusions are in the form of principles and
approaches rather than quantitative comparisons. Nonethe-
less, the challenges we explore will become increasingly
important as more services arise and an increasing fraction
of civilization depends on their operation on a daily basis.

Much of the detailed information of site operation is still
considered confidential, so we tend to keep specific exam-
ples anonymous and we tend to report trends and approaches
rather than specific combinations of features.

There are many reasons for the success of these services,
but there are some key technical advantages that lead to their
success. Infrastructure services have many fundamental ben-
efits:

Access anywhere, anytime: the infrastructure is
ubiquitous, including access from home, work,
airports, cafes, and cell phones.

Available via portable or low-cost devices:
infrastructure services support a wide range of devices
such as set-top boxes, network computers, PDAs and
smart phones [cite ericsson]. Because most of the
processing is in the infrastructure, these devices can
offer far more functionality for a given cost and battery
life. Since these can also be accessed via regular PCs,
we can use a real keyboard for data input (such as
managing your address book). We can also lose the
device without losing the data.

Enables groupware: Because the data for many users is
centralized, we can easily offer group-based
applications such as group calendars, chat, messaging
(such as AOL’s ICQ with 40M users), and
teleconferencing.

Much cheaper overall cost: Although hard to measure,
infrastructure services have a fundamental advantage
in cost over designs based on device functionality. End-
user devices, such as set-top boxes or smart phones,
have a very low utilization (less than 4%), while the
utilization of resources within the infrastructure is
often above 80% [*]. This is effectively a 20x
improvement in efficiency for anything moved from
the device to the infrastructure. In general, the key is
that infrastructure resources can be multiplexed well
across the active users, while end-user devices serve at
most one user (active or not). The centralization of
administrative burden also reduces overall cost, but it
is much harder to quantify.

Convergence with other infrastructure services: The IP
infrastructure is subtly growing to include the voice
network, cellular telephone systems, television
distribution, and even the global positioning system.
This “super convergence” enables many new
capabilities such as integrated cell phone, pager, web/
email access; location-based services such as maps and
driving directions; and sophisticated teleconferencing
that includes handouts and PowerPoint slides in
addition to audio and video.

Can upgrade/add services in place: Perhaps the most
powerful advantage in the long term is the ability to
upgrade services or offer new services easily.
Traditional applications and devices require physical
distribution that is expensive and awkward. With
infrastructure services, devices last longer and grow in
usefulness over time. Web TVs are a good example:
they benefit automatically from every new web
service, without any physical redistribution for updates.

1.1 Infrastructure Services Use Clusters
Given the scale requirements, all giant-scale services use

clusters. Table 1 shows some representative clusters and
their traffic. As another example, a single infrastructure host-
ing site run by Exodus Communications houses several thou-
sand nodes that support more than 40 different services [cote
exodus]; AOL’s new US$520M data center will be more
than 220,000 square feet and filled almost entirely with clus-

DRAFT

DRAFT

2

ters [AOL99]. We will thus assume the use of clusters for
giant-scale services, but it is useful to review the four driving
forces:

Absolute Scalability: A successful network service must
scale to support a substantial fraction of the world
population. It is expected that most of the developed
world, about 1.1 billion people, will have some form of
infrastructure access in the next ten years. Furthermore,
online time per user and queries/user/day are also
going up. [cite AOL]

Cost/performance: Although a traditional reason for
using clusters, cost/performance of the hardware is not
really an issue for giant-scale services: there is no
alternative solution to clusters that can match the
required scale, and hardware cost is typically dwarfed
by bandwidth and operational costs.

Independent Components: Users expect 24-hour service
from systems consisting of thousands of hardware and
software components. Transient hardware failures and
software faults due to rapid system evolution are
inevitable. Clusters simplify the problem by providing
largely independent faults. Much of this paper focuses
on how to leverage this independence into high
availability.

Incremental Scalability: the uncertainty and expense of
growing a service leads a strong desire for small
incremental scaling as needed, preserving and
augmenting existing investment. A node should last its
entire three-year depreciation lifetime, and in general
should be replaced when it no longer justifies its
(expensive) rack space compared to new nodes.

Although these advantages are a useful starting point,
they are only the start. This paper is essentially about bridg-
ing the gap between these basic attributes the real-world
scalability and availability required by giant-scale services.

Table 1: Example Clusters for Giant-Scale Services

Service Nodes Queries Notes

AOL web
cache

>200 2.5B/day
4-CPU DEC

4100s

Inktomi
Search
Engine

800 >40M/day
2-CPU Sun

Workstations

Geocities >300 >25M/day PC Based

Anonymous
web-based

e-mail
>200 25M/day FreeBSD PCs

1.2 Challenges
There are significant challenges to deploying real infra-

structure services. In this section we introduce the three chal-
lenges addressed in this work:

Load Management:

High Availability:

Evolution & Growth:

There are many important challenges that we explicitly
do not address, either because they have been covered else-
where or because their solution is very service specific.
Some of these challenges include service monitoring and
configuration [*], bandwidth and network quality of service,
burstiness, logging and log analysis, and personalization.

After defining a basic model in Section 2 that fits most of
the giant-scale services, we use it to focus discussion on our
three big challenges: load management in Section 3, high
availability in Section 4, and service evolution and growth in
Section 5. We summarize our conclusions in Section 6.

2 The Basic Internet Model
Our basic model for infrastructure services in shown in

Figure 1. The goal of the model is to enable discussion of the
issues facing these services and to capture the key elements
of giant-scale servers in practice. We describe the role of
each component and the impact they have on overall service
requirements. One very important goal is to clarify the fault
model and semantics of these services.

There are many important assumptions in this model.
First, we assume that the service provider has little or no
control over the clients or the IP Network. In some cases,
such as intranets, stronger assumptions may be possible.

In the figure, we show only one site; however we will
discuss the use of mirrors for global distribution and disaster
tolerance. To first order, they are just replicas of the “Single

IP Network

ClientClient
ClientClient

Load
Manager

Persistent Data Store

Figure 1: The Basic Internet Model

Single Site
Server

Optional
Backplane

DRAFT

3

Site Server” box, with their own connections to the IP Net-
work.

We also assume that these servers are built out of clus-
ters, as discussed above. The unit of scaling is the node,
which includes one or more CPUs and some number of inter-
nal or external disks. Due to the cost of rack space, the node
is often a small PC multiprocessor, with 2–4 CPUs and 2–4
disks.

We also assume that service is driven by queries. This is
inherent in most common protocols, including HTTP, FTP,
NNTP, POP, IMAP, and variations of RPC. For example,
the basic primitive of HTTP is the “get” command, which is
by definition a query. Sometimes a sequence of queries from
one client are grouped together: we define a session as a
group that shares state among the queries. For example,
HTTP is a “stateless” protocol and therefore does not have
sessions,1 while FTP requires an initial exchange that is
remembered throughout the rest of the session.

We often also assume that these queries are “read
mostly”, that is, that read-only queries greatly outnumber
updates (queries that affect the persistent data store). We will
point out cases in which we assume read-mostly traffic.

2.1 Components
There are six components to the basic model:

Clients: The clients initiate the queries; they could be
specific to the service, such as stand-alone e-mail
readers, or general, such as web browsers.

IP Network: The network is best effort and based on IP.
It could be the public Internet or some form of private
network such as an intranet.

Load Manager: This component has two purposes. First,
it is a level of indirection between the external name of
the service and the physical names (IP addresses) of
the nodes. This is required to preserve the availability
of the external name in the presence of node faults.
Second, the load manager balances load among the
(up) nodes. We look at this component in more detail
in Section 3.

Nodes: The nodes are the workers of the system,
combining CPU, memory, and disks into an easy-to-
replicate unit. The node is the unit of expansion and
often the field replacable unit, which means that if
anything in the node breaks (including disks), you
replace the whole node and deal with the
subcomponents off-line. Sometimes failed disks can be
replaced without taking the node down.

Persistent Data Store: This is a replicated or partitioned
“database” that is spread across the disks of the nodes.

1: “Cookies” are a way to simulate sessions in HTTP, but they still don’t
require the server to preserve state across queries. Instead the relevant state
is passed back and forth each time. This can also be done using “Fat URLs”,
in which client-specific state is embedded in the URL.

It might also include network-attached storage or
RAID subsystems. The implementation of this store is
a major variable in these systems and will be explored
in Sections 3.1 and 4.4.

Optional Backplane: Many services use a system-area-
network among the nodes, which functions like a
backplane in a multiprocessor. The network handles
inter-node traffic such as redirection to the correct
node or coherence traffic for the persistent data store.

Auxiliary Systems (not shown): Nearly all services have
several other service-specific pieces that we can largely
ignore in the basic model. Examples include user-
profile databases, ad servers, site management tools,
and support for logging and log analysis. Many of
these subsystems can be viewed as additional sets of
nodes with their own persistent data store.

2.2 Examples
Figures 3 and 4 show two illustrative systems at opposite

ends of the complexity spectrum: a simple web farm and
complex server similar to a search-engine cluster. They dif-
fer in their load management, their use of a backplane, and
their persistent data store.

The web farm is shown in Figure 2. First, note that the
load manager is not actually in the flow of the traffic. Round-
robin DNS returns different domain name to IP address map-
pings for different clients, thus roughly balancing the load at
the time of DNS lookup, but providing little support for
availability when a node fails (see Section 3.3). Second, the
persistent data store is implemented by simple replication of
all content to all nodes, which works well when the total
amount of content is small. Finally, there is no need for a
backplane, since all servers can handle all queries and there
is no coherence traffic. In practice, even simple web farms
often have a second LAN (backplane) to simplify the manual

Figure 2: A Simple Web Farm

IP Network

ClientClient
ClientClient

Round
Robin DNS

Simple Replicated Store

Single Site
Server

DRAFT

4

updating of the replicas. In this version, node failures reduce
the capacity of the system, but not the availability of its data.

A more complex example is shown in Figure 3. The load
management actually is in the path of the traffic and there-
fore has to be fault tolerant. Here we show a pair of “level 4”
switches that automatically fail over to each other. These
switches, which are available from many vendors, rewrite
TCP connections from the external IP addresses to one of the
internal node names. They can balance load based on out-
standing connections and can respond quickly to failed
nodes by avoiding them for new connections.

The persistent store is partitioned across the nodes, possi-
bly without any replication. This means that node failures
reduce the effective size of the store as well as its overall
capacity. It also means that the nodes are no longer identical
and some queries may need to go to specific nodes.

The backplane enables queries to get to the right node or
nodes. Sometimes the load manager can pick the right node
directly, but this requires service-specific and query-specific
knowledge in the load manager. If the service uses caching
of data from other nodes, the backplane is used for the cache
coherence traffic.

In the case of an Inktomi search engine cluster (there are
currently five worldwide), the backplane is Myrinet (1.6 Gb/
s) and it connects 100 nodes, each with 2 CPUs and multiple
disks. The store is fully partitioned with some replication for
key data; different nodes get different amounts of data
according to their relative capabilities (nodes differ in age
and therefore capability). The backplane is used for subque-
ries that are merged by the primary node, but there is no
caching of remote data other than answers to whole queries.

There are many more examples: nearly every web-based
services fits the basic model. The key variations are the load
manager, the persistent store, and the auxiliary systems.

Figure 3: A More Complex Server

IP Network

ClientClient
ClientClient

Load
Manager

Partitioned Data Store

Single Site
Server

Myrinet
Backplane

2.3 Fault Model and End-to-End Semantics
One of the most important reasons to have a basic model

is to look at its fault model and the end-to-end semantics it
provides. We also define common extensions to the basic
model where appropriate.

There are three basic tenets:

1) Focus on locally measured availability

The first issue is the best-effort nature of the IP Network,
which means that a client may be partitioned from the server.
To the client, the service is down and it is largely out of the
control of the service provider. A trivial example is a broken
modem connection at the client, which partitions it from all
services.2 Because of this effect, we distinguish between the
end-to-end availability and the service availability. End-to-
end availability is the “correct” measure, at it includes fail-
ures in the IP Network that affect end users. Service avail-
ability is measured at the service itself (or perhaps just
outside it) and is a more useful internal metric tied to the
uptime of the service. Service providers thus have direct
control over service availability and only limited indirect
control over end-to-end availability. End-to-end availability
is strictly less than service availability, since it merely adds
faults in the clients and IP Network. In practice, providers
aim for high service availability and use a large number of
independent network connections to decrease the probability
of being partitioned from a large number of clients. In the
rest of this paper, we will thus focus on service availability.

Extension: client failover to an equivalent server

A partitioned client may be able to reach equivalent serv-
ers, such as mirror sites. There is currently no general way
for a browser to understand groups of equivalent servers,
which is a prerequisite for failover (and wide-area load bal-
ancing). Work on “smart clients” [YDE+97] shows how to do
this for applets and client-side plug-ins, in which case the
service can control some of the code on the client. For HTTP
services, a standardized header could solve this, such as
“Alternate-hosts: mirror1.com mirror2.com”, in which the
client can learn about mirror groups when it is not parti-
tioned. Since none of these mechanisms are ubiquitous, we
leave this as an extension to the basic model.

2) Reload Semantics: node failures drop the queries in
progress at that node

The second tenet of the basic model is that it is OK to
lose active connections when a node fails, as long as the
probability of success on retry (reload) is high. Thus, the
basic model is not fault tolerant, but merely highly available.
End-to-end fault tolerance depends on the user retrying the

2: This distributed responsibility has several complex side effects. For
example, browser manufactures get technical support calls when sites go
down, and sites get calls when the user’s ISP is down, their browser is bro-
ken, or their PC is out of virtual memory.

DRAFT

5

query, and that query going to a different node that is up
(which is the job of the load manager).

Extension: Preserve queries in progress

This extension essentially requires a transaction process-
ing monitor (TP Monitor), which is a transactional RPC
mechanism that is responsible for retrying RPCs that fail on
a different node [GR97]. An IP-based implementation would
be to mirror TCP state information so that a failed connec-
tion can be replayed to a new node, but this is extraordinarily
difficult in practice and we know of no real systems that do
this [note to referees: Sun’s full-moon clustering project may
do this, but we have not been able to verify this yet]. TP mon-
itors are themselves non-trivial, since their components can
also fail. It is much simpler to fall back to reload semantics,
and leave this as an extension.

3) Basic Model updates are “at least once” semantics

This means that queries in the basic model have “at least
once” semantics, which can be quite bad in the worst case.
For example, if your connection dies in the middle of a credit
card transaction, should you hit reload or not? If the transac-
tion already committed (but you weren’t told), you will buy
the same item again.

Extension: Use transaction ids to detect already
completed updates.

A useful extension to the basic model is to include trans-
action ids to detect repeat transactions. This is certainly pos-
sible today but rarely done in practice, so we leave it as an
extension to the basic model. This extension requires that the
commit is durable in the persistent store, so a transaction is
the right mechanism. This can also solve the problem of
users going to bookmarked pages that cause a transaction,
but the transaction id needs be part of the URL.

To summarize the semantics of the basic model: the ser-
vice provider focuses on locally high availability with inde-
pendence for retried queries and at-least-once semantics.
The extensions show how to improve the semantics, but they
are typically expensive or difficult and therefore generally
avoided in practice. The real value of the basic model is that
allows us to understand what we mean by “availability”,
“fault tolerance”, and “online evolution”, and in general pro-
vides insight into to how to think about faults. A formal
specification of the Basic Model is beyond the scope of this
paper, but would be very useful as it would further drive the
analysis of the tradeoffs.

Given this model, we revisit the key challenges of giant-
scale services.

3 Load Management
We first look at the load management problem; it is the

simplest and there are relatively recent products that provide

robust solutions. The load manager has three responsibili-
ties:

Provide the External Name: the external name can be a
domain name or a set of IP addresses depending on the
approach. The challenge is to make the external name
highly available despite failure of some of the nodes
and the corresponding loss of their internal names.

Load Balance the Traffic: This can be done with or
without feedback from the nodes. The goals are higher
overall utilization and better average response time.

Isolate Faults From Clients: This is the hard part, as it
requires the manager to detect faults and dynamically
change the routing of traffic to avoid down nodes. The
reaction time is a key metric, as some clients lose
service until the detection and failover occurs.

Before examining load management options, we first
define two sets of metrics, one for load balancing and one for
availability. We then use these metrics to evaluate load man-
agers.

3.1 Basic Metrics
The most fundamental issue in load management is

whether or not the manager understands the distribution of
data across the nodes. There are three choices:

Symmetric: This is the constraint that all nodes are equal
in functional capability (but perhaps not query
capacity). Symmetric nodes greatly simplify load
management because any query can go to any node.

Asymmetric: In this case, nodes vary in functionality and
the load manager must correctly map each query to a
node that can handle it. The common case is a
partitioned database, in which the load manager must
understand the partitioning to route the queries
correctly.

Symmetric with Affinity: This is the symmetric case
with an optimization for locality. Due to caching
effects, it is very useful to try to partition the queries
even in the symmetric case so that a given node tends
to get the same queries repeated. Although the manager
understands the partitioning, it is not required for
correctness and any node can still handle any query.

All three styles are used in practice. There are four useful
properties by which to think about these choices:

• Database aggregation, which is the property that
adding nodes increases the database size rather than
just adding replicas for throughput. Asymmetric
systems always have this property and it is the main
reason they are used.

• Single-query throughput, which refers to whether or
not the throughput of a single query scales with the
size of the cluster. This is normally associated with
symmetric systems, since every node can serve the

DRAFT

6

target query. This is very important in practice due to
short-term extremely popular content, such as the
Starr Report, or the Star Wars movie trailer [Mov99].
In the asymmetric case, only a subset of the nodes
(often only one) can handle the query.

• Query locality, which is property that a node tends to
receive a subset of the queries and thus has a smaller
working set and better cache performance.
Asymmetric systems have this by definition, and the
Symmetric with Affinity is designed for it explicitly.
As shown by LARD [PAB+98], query locality greatly
improves overall throughput by scaling the effective
cache size with the number of nodes. In contrast, the
vanilla Symmetric case spreads the queries evenly
across the nodes, requiring each node to support the
complete working set.

• Even utilization, which measures the effectiveness of
the load balancing. Pure symmetric systems are much
easier to maintain even load, while asymmetric
systems are typically less effective since the manager
cannot balance load across nodes with differing
functionality. In general, closed-loop approaches that
have information on the current load of a node
perform well [Mit98], while open-loop approaches,
such as fixed distribution or round-robin distribution
have more variance in per-node utilization.

The simple approaches to load management are full rep-
lication and simple partitioning. Full replication provides
symmetry, even load, and single-query throughput, but no
aggregation. Locality-aware query mapping, as in LARD,
can add query locality. Partitioning provides aggregation and
query locality, but low single-query throughput and poten-
tially uneven utilization.

Coupled-cluster databases, as shown in Figure 3, are
symmetric but provide an aggregated database. Typically, all
nodes can handle all queries, but they depend on data at
other nodes to complete the query. In practice, the cluster
backplane and inter-node caching enable high single-query
throughput, even though the data is partitioned. Locality-
aware query distribution can improve query locality here as
well.

Although the coupled-cluster approach provides both
symmetry and aggregation, it is much more complicated as
nodes are no longer independent. To regain some indepen-
dence, giant-scale systems are often built as replicas of rela-
tively small coupled clusters. For example, one major ISP
uses a single rack as the unit of replication: nodes within the
rack form a coupled cluster, but the racks are independent
replicas. Thus both the rack and the overall system provide
symmetry, but aggregation is limited to the capacity of a sin-
gle rack, and single-query throughput is limited by the num-
ber of racks (since only one node in each rack can handle the
query).

Even utilization of replicas is simple, but even utilization
within a cluster is harder and often depends on the database
layout; randomized layout works well for even utilization,
but can reduce locality without some locality-aware distribu-
tion. LARD was able to achieve both even utilization and
query locality using adaptive partitioning [PAB+98].

In general, the relative requirements of database size ver-
sus throughput determine the clustering strategy. Typically
the two are independent, so the architect can pick coupled-
cluster size based on the database requirement (e.g., the data-
base fits on six nodes), and then replicate that cluster to meet
the overall throughput requirement. For example, for web
caches, the working set size determines the cluster grouping,
and the overall traffic determines the number of replicas.

Finally, if the whole database fits on one node, then the
coupled-cluster case degenerates to the fully replicated
model. Conversely, if the database is much larger than the
number of nodes required by the traffic, it degenerates to the
simple partitioning model. Both of the simple cases avoid
the need for a backplane and provide independent nodes.

3.2 Availability Metrics
We now consider the availability metrics: failover

response time, load-manager availability, and load shedding.
Failover response time is the time it takes the load manager
to detect and avoid a faulty node (or link to that node). Dur-
ing this window, some clients will get no queries through,
effectively seeing a “down” service. Reducing this reaction
time thus directly contributes to the effective uptime of the
service.

Load-manager availability refers to the uptime of the
load manager itself. A down load manager may directly
result in a down service (if all traffic goes through it), or it
may simply increase the failover response time and the vari-
ation in node utilization.

There is a fundamental tradeoff between failover
response time and tolerance to the loss of the load manager.
If load manager decisions are cacheable, then load-manager
faults can be masked if they are short relative to the expira-
tion time of the cached decisions. However, longer expira-
tion times increase the failover response time, since load
continues to a failed node until the decision expires. Invali-
dating cached entries that point to failed nodes helps, but
typically each client has to do so independently and must
wait for a relatively long timeout to discover the fault.3

A subtle issue in failover response time is determining
what constitutes a fault. For example, it is possible for a site
to be “up” but not functioning correctly. Thus the load man-
ager ideally needs to know the health of the application
rather than that of the node. There is at least one product,

3: Curiously, browsers do not seem to apply this optimization. When
they detect a down server, they should reresolve the domain name and see if
they get a different IP address. If so, they can retry the query with the new
address. Currently, reloading the page just retries the same IP address.

DRAFT

7

WebSpective’s Traffic Management [WS99], that provides
application-level feedback to load managers, and there are
several custom-built load managers that also use application-
level feedback.

The third availability metric of a load manager is whether
or not it does admission control or load shedding. When the
system is saturated, it is very important to degrade grace-
fully. In general, the excess queries should be dropped as
soon as possible, to minimize the resources they waste.
Thus, the best place to shed load is in the load manager,
before the traffic reaches the nodes. The load manager is typ-
ically in the best position to detect saturation as well. Unfor-
tunately, so far only custom load managers support load
shedding, but it is an important goal nonetheless. Done well,
load-manager based admission control allows the system to
maintain maximum throughput (albeit still insufficient) as
the offered load well exceeds the saturation level. We look at
graceful degradation further in Section 4.5.

3.3 Load Managers
There are three basic approaches to load management:

DNS-based approaches, intelligent switch/router solutions,
and the LARD front end mentioned above.

DNS approaches depend on the resolution of the domain
name to IP addresses to handle both load balancing and
availability. Load balancing decisions are thus made only at
name resolution time, which means that balancing is rough
at best. Worse, the failover requires updating the DNS map-
ping and reresolution by all clients, which make the failover
response time poor, although it can improved by reducing
the time-to-live value. This approach requires symmetry and
there is no query locality, since the mapping is not query
specific. Load manager availability is good because of pri-
mary/secondary DNS failover and DNS caching (at least
with long TTL values).

More advanced DNS servers, such as Cisco’s Distributed
Director [Cis99], try to measure the health of IP addresses
themselves using techniques such as ping messages. This
allows them to increase the accuracy of the DNS map, but it
does not reduce the failover response time, which is still tied
to the TTL value. This is a severe restriction, and several
users of this approach end up setting the TTL to zero, which
means that every query has to do DNS resolution, which can
be more expensive than the cost of the query itself.

A better solution is virtual IP address failover, which is a
technique that can be used on a LAN. The idea is to have
nodes on the same LAN watch each other; when a nodes
goes down, other nodes take over its IP address(es). This
makes the IP address persistent; the failover response time
can be less than ten seconds. This technique is used in some
cluster-based web caches [*] and in paired switches that use
hot failover.4

The second general approach to load management is to
use an inline intelligent switch (or router), generally referred
to as “level 4+” (L4) switches, after the ISO layers above

transport. The switch handles all incoming connections and
directs them to the nodes, typically by rewriting TCP flows
on the fly (“network address translation”). The switch thus
forms the external name of the service, and it handles both
load balancing and availability. Load balancing is typically
done based on the number of outstanding TCP connections
to each node. The switch may also partition the query space
(typically URL space) across the nodes by using the query as
part of the routing decision.

There are many such switches on the market and they
have remarkable performance. The Alteon switch [Alt99],
for example, can handle 200,000 simultaneous connections,
while the Arrowpoint switch claims 5 Gb/s switching capac-
ity while switching based on query content (not just TCP/IP
information) [Arr99]. Both switches use custom ASICs for
URL processing and both support hot-failover to a second
switch for load-manager availability. The failover response
times are quite low and are really only limited by the normal-
case query response time, since it takes a while to decide that
the server is down. In general, these switches are a robust
solution, providing partitioning, load balancing and high
availability. When used symmetrically, they provide single-
query throughput, but no query locality, while when used
asymmetrically, they provide query locality but poor single-
query throughput.

The final load management approach is that of LARD,
locality-aware request distribution [PAB+98]. The basic
approach is load balancing across a symmetric cluster. The
key extension is to target query locality by sending similar
queries to the same node. They showed that they could
achieve both good load balancing and good query locality
simultaneously. A variant, LARD with replication, maps
queries to a set of nodes, which allows single-query through-
put to scale with the size of the cluster, as the target set can
grow until all nodes handle the popular query. This use of
replication also avoids hot spots. When used with coupled
clusters, LARD would also allow database aggregation,
although this has not been demonstrated to our knowledge.

Tables 2 and 3 summarize the relative merits of these
three approaches. Most services use some form of L4 switch,
as it is a simple and robust solution. So far, only custom
solutions have attacked the problem of load shedding, but we
expect that future switches will provide this as well. The
DNS-based solutions are falling out of favor because of their
poor failover response time and because of their inability to
route traffic based on the query. The LARD approach works
well for load balancing, but does not address the availability
issues. We expect the LARD ideas to migrate into L4 solu-
tions in the near future, further promoting them as the right
solution.

4: In practice, each node has several IP addresses and those of the failed
node are distributed across the remaining nodes, thus spreading the extra
load more evenly. See the load redirection problem in Section 4.4.

DRAFT

8

4 High Availability
High availability is one of the major driving forces of

giant-scale system design. Other infrastructures—such as the
telephone, rail, water and electricity systems—have extreme
availability goals that should apply to IP-based infrastructure
services as well. Most of these systems plan for failure of
components and for natural disasters. However, information
systems must also deal with constant rapid evolution in fea-
ture set (often at great risk) and rapid and somewhat unpre-
dictable growth. British Telecom traditionally has used a 25-
year planning horizon for the deployment of telephone infra-
structure [?]; Internet companies (and analysts) have had
trouble with even three-year roadmaps.

In this section, we develop basic ways to think about
availability for giant-scale systems and cover some basic

Table 2: Approaches versus the Basic Metrics
Style = {Symmetric, Asymmetric, Symmetric with
Affinity}, DA = Database Aggregation, SQT = Single
Query Throughput, LB = effectiveness of load balancing.

Table 3: Summary of Availability Metrics

Approach Style DA SQT QL LB

DNS Sym N Y N rough

L4 w/ part. Asym Y N Y hot spots

LARD SA N N Y hot spots

LARD
with rep

SA N Y Y good

L4 + coupled
clusters

Sym Y Y N good

L4 w/ part. +
coupled
clusters

SA Y N Y hot spots

LARD w/
rep + cou-

pled clusters
SA Y Y Y good

Approach
Failover
Response

Time

Manager
Availability

Load
Shedding

DNS very poor good none

DNS + VIP
failover

good good none

Single
Switch

good poor none

Paired
Switches

good excellent none

obstacles to high availability. In the next section, we focus
on availability in the presence of rapid growth and change.

4.1 Some Basics
Although most of this section focuses on managing the

impact of faults, it is worth reviewing some practical issues
related to minimizing the likelihood of faults. These are
basic techniques that are broadly useful for all highly avail-
able systems, and they form a kind of prerequisite before
dealing with the management of faults.

Figure 4 gives some typical failure rates for various com-
ponents. These are the steady-state failure rates under best-
case conditions (covered later). Most of the failures actually
occur either on arrival or in early use (the classic “bathtub”
curve [cite]). Because of this most components, especially
switches and disks, must be put through burn-in testing to
detect these early failures and thus avoid them in live use.
Thus these failure rates explicitly discount the initial fail-
ures.

The presence of people is the first source of failures. A
prerequisite to low failure rates in general is the removal of
people from the machine room [cite].

Cables are a huge source of failures, especially if they are
moved at all. The main reason for using internal disks is not
rack density, but rather cable elimination. Internal disks not
only avoid the failures of cables, they also have much better
impedance matching and less noise, thus better tolerating
inconsistencies in disks and motherboards.

Temperature is also critical, especially for disks. An IBM
rule of thumb is that failure rates of disks double with every
0-degree (Celsius) rise in temperature. This holds until the
temperature is so low that the lubricants stiffen up.

Figure 4 shows a cluster designed for high availability.
By design, there are no people, very few cables, almost no
external disks, no monitors and extreme symmetry. All of
these reduce the number of failures in practice. In addition,
the cluster is actually remotely managed from offsite, and
the temperature and power variations are limited contractu-
ally.

Given these basic failure reduction techniques, none of
which are new, we move to systematic ways to manage the
impact of faults on giant-scale systems.

Table 4: Failure rates (after burn-in) of components

Component Failure Rate

Disks

Motherboards

Cables

Switches

DRAFT

9

4.2 Availability Metrics
The traditional metric for availability is uptime, which is

simply the fraction of time that the site is up. Uptime is typi-
cally measured in nines: “4 9s” implies 0.9999 uptime, or 60
seconds of downtime per week (or less). Traditional infra-
structure systems such as the phone system aim for 4 or 5
nines. Two related metrics are mean-time between failure
(MTBF) and mean-time-to-repair (MTTR). In particular, it
is useful to think of uptime as:

(1)

Equivalently, downtime = MTTR/MTBF. The consequence
of this equation is that we can improve uptime either by
reducing the frequency of failures or reducing the time to fix
them. Although the former is more pleasing aesthetically, the
latter is much easier for systems under constant evolution.
For example, to even tell if a component has a MTBF of one
week requires well more than a week of testing under
(heavy) realistic load; and if it fails, you have to start over,
possibly repeating the process many times. Conversely, mea-
suring the MTTR takes minutes or less and achieving a 10%
improvement takes orders of magnitude less total time due to
the very fast debugging cycle. Thus it is very useful for
giant-scale systems to focus hard on MTTR and simply
apply best effort to MTBF. We will see this fundamental
tradeoff repeated in many forms.

We define yield as the fraction of queries that are com-
pleted:

(2)

This is typically very close to uptime numerically (and also
unitless), but it is more useful in practice because it directly

Figure 4: 100-Node 200-CPU Cluster
Key points: no people, no monitors, no visible cables,
extreme symmetry, internal disks.

uptime
MTBF MTTR–

MTBF
---------------------------------------=

yield
queries completed

queries offered
---=

maps to user experience and because it correctly reflects that
not all seconds are of equal value. Being down for a second
that had no queries has no impact on users or yield, but
reduces uptime. Similarly, being down for one second at
peak and off-peak times have the same uptime, but vastly
different yields, since there is often more than a 4:1 ratio of
peak to minimum traffic. Thus we will focus on yield rather
than uptime.

Because these systems are typically based on queries, we
can also measure the completeness of the queries, that is,
how much of the database is reflected in the answer. We
define this fraction as the harvest of the query

(3)

A perfect system would have 100% yield and 100% harvest:
every query would complete and would reflect the entire
database.

The key insight is that we can affect whether faults
impact yield or harvest (or both). For example, replicated
systems tend to map faults to reduction in capacity (and thus
yield at high utilizations), while partitioned systems tend to
map faults to reduction in harvest, as parts of the database
temporarily disappear, but the capacity in queries/sec
remains the same.

4.3 The DQ Principle
The DQ Principle is simple:

Data per query * Queries/sec ~ constant

This is a principle rather than a literal truth, but it is a
remarkably useful tool for thinking about giant-scale sys-
tems. The intuition behind this principle is that the overall
capacity of the system tends to have a particular physical
bottleneck, such as total I/O bandwidth or total seeks per
second, that is tied to the movement of data. The DQ value is
the total amount of data that has to be moved per second on
average and it is thus bounded by the underlying physical
limitation; at the high utilization typical of giant-scale sys-
tems, it approaches this limitation.

The DQ value is also measurable and tunable. Adding
nodes or implementing software optimizations are useful
exactly because they increase the DQ value, while faults
reduce the DQ value. The absolute value of DQ is not that
important typically, but the relative value under various
changes provides a useful guide:

• The best possible result under multiple faults is a
linear reduction in DQ.

• DQ often scales linearly with the number of nodes,
which means that early tests on single nodes tend to
have predictive power for overall cluster performance.

• All proposed hardware/software changes can be
evaluated by their DQ impact.

harvest
data available
complete data
---------------------------------------=

DRAFT

10

• We can translate future traffic and feature predictions
into future DQ requirements and thus into hardware
and software targets.

There are two useful corollaries:

harvest * capacity ~ constant
harvest * yield ~ constant (at high utilization)

These follow from the DQ principle because the harvest
is usually proportional to the average data per query, and
capacity is just the total queries per second. When utilization
is high, decreases in capacity cause decreases in yield, giving
them a linear relationship.

For availability, the value of these principles comes in
the analysis of the impact of faults. As stated above, the best
we can do is a degradation in DQ that is linear with the num-
ber of (node) faults. The goal of a design for high availabil-
ity is thus to control how DQ reductions affect our three
availability metrics. (This assumes that we’ve already taken
all of the basic steps above to minimize faults.)

4.4 Replication vs. Partitioning Revisited
Thus we return to the variations of replication and parti-

tioning from the perspective of DQ and our availability met-
rics.

We start by considering a two-node cluster., which can
be either two replicas or a partitioned database with two par-
titions. Traditionally, the replicated version is viewed as
“better” because under a fault it maintains 100% harvest,
while the partitioned version drops to 50% harvest. But the
dual analysis is that the replicated version drops to 50%
yield,5 while the partitioned version remains at 100% yield.
Even more effective is to realize that both versions have the
same initial DQ value and lose 50% of it under one fault:
replicas keep D the same and reduce Q (and thus yield),
while partitions keep Q constant and reduce D (and thus har-
vest).

The traditional view of replication silently assumes that
there is enough excess capacity to prevent faults from affect-
ing yield. We refer to this as the load redirection problem:
under faults the remaining replicas have to handle the que-
ries formerly handled by the failed nodes. Under high utili-
zation, this is unrealistic.

We can generalize this analysis to replica groups with n
nodes:

5: This is technically 50% capacity. Here we assume high utilization so
that 50% capacity approximates 50% yield.

Failures
Lost

Capacity
Redirected

Load
Overload

Factor

1

k

1
n
--- 1

n 1–
------------ n

n 1–

k
n

k
n k–

n
n k–

Table 5: Impact of k losses in n-node replica groups

For example, a loss of 2 of 5 nodes in a replica group implies
a redirected load of 2/3 extra load (two loads spread over
three remaining nodes), and an overload factor for those
nodes of 5/3 or 166% of normal load.

The key insight is that replication on disk is cheap but
accessing that data requires DQ points; for true replication
you need not only another copy of the data, but twice the DQ
value. Conversely, there is no real savings to partitioning
over replication. Although you need more copies of the data
with replication, the real cost is in the DQ bottleneck not the
storage space, and the DQ constant is independent of
whether the database is replicated or partitioned. A conse-
quence of this view is that above some throughput, you
should always use replicas. In theory, you can spread the
database more thinly as the capacity requirement increases
and thus avoid the extra copies of replicas. But there is no
DQ difference, so once the partitions are a convenient size, it
makes more sense to replicate the data and enjoy more con-
trol over harvest and support for disaster recovery. It is also
easier to grow systems via replication than by repartitioning
onto more nodes; this idea is explored further in Section 5.1.

We can also vary the degree of replication based on the
importance of the data, or more interestingly affect which
data is lost in the presence of a fault. For example, for some
extra disk space we can replicate key data in a partitioned
system. Under normal use, one node handles the key data
while the rest provide additional partitions. If that node fails,
we can make one of the other nodes serve the key data. We
still lose 1/n of the data, but it always one of the less impor-
tant partitions. This intermediate version preserves the key
data as in the normal replication case, but also allows us to
use our “replicated” DQ capacity to serve other content dur-
ing normal use.

Finally, we can exploit randomization to make our lost
harvest a random subset of the data (and avoid hot spots in
partitions). For example, many of the load balancing
switches simply use a pseudo-random hash function to parti-
tion the data. In the presence of data of varying value,
spreading the key data randomly makes our average- and
worst-case losses the same: the value of the lost data is close
to the average value of the data.

4.5 Graceful Degradation
It would be nice to believe that we could avoid saturation

at a reasonable cost simply by good design. There are three
major reasons that this is unrealistic:

• The peak to average ratio for giant-scale systems
seems to be in the range of 1.6:1 to 6:1, which can
make it expensive to build out capacity well above the
peak.

• Single-event bursts, such as online tickets sales for
Star Wars Phantom Menace, can be more than 10x

DRAFT

11

above the average. In fact, one such site,
moviefone.com, actually added 10x capacity and still
got overloaded. The event overloaded both their IP
and telephone infrastructure, even overloading local
phone circuits in some cities [Mov99].

• Some faults are not independent, such as key router
failures or natural disasters. In these cases, DQ drops
substantially and the remaining nodes become
saturated.

Thus a critical part of delivering high availability is the
design of mechanisms for graceful degradation under excess
load. The DQ principle is again helpful: in the presence of
excess capacity, we can either do admission control (ideally
in the load manager as discussed above) to limit Q and thus
maintain D, or we can reduce D and increase Q. The latter
strategy has just started to be used in practice, but it makes a
lot of sense: if we can reduce D dynamically then we can
increase Q (capacity) and thus maintain yield at the expense
of harvest. For example, we would expect cutting the effec-
tive database size in half to roughly double our capacity.
This gives us new options for graceful degradation: we can
focus on harvest with admission control or we can focus on
yield with dynamic database reduction, or we can use a com-
bination depending on the type of query. The larger insight is
that graceful degradation is simply the explicit management
how saturation reduces our availability metrics.

Here are some more sophisticated examples:

• If we have an estimate of query cost (measured in
DQ!), which we do for search engines, then we can do
more aggressive admission control based on cost. This
reduces the average data required per query, D, and
thus increases Q. Note that our admission control
policy is affecting both D and Q: denying one
expensive query may enable several inexpensive
queries, giving us a net gain in harvest and yield.
Admission control should be done probabilistically so
that reloading hard queries eventually works.

• Under saturation of a financial site, we can make
stock quote queries cacheable, which will make them
stale but nonetheless reduces the offered load and thus
increases yield at the expense of harvest (the cached
queries don’t reflect the current database).

To summarize, we can use the DQ principle as a tool for
designing how saturation affects our availability metrics.
First we decide which metrics to preserve (or at least focus
on), and then we use sophisticated admission control to
affect Q and the possibly reduce the average D, and we use
aggressive caching and database reduction to reduce D and
thus increase Q. In the next section, we see how this helps
with disaster tolerance.

4.6 Disaster Tolerance
In the two previous sections, we saw how to think about

replica groups and how to think about graceful degradation.
Disaster tolerance is mostly a combination of these two.

We define a disaster as the complete loss of one or more
replicas. For natural disasters, we expect to lose all the repli-
cas at one physical location, while other disasters, such as
fires or A/C failures may affect only one replica at a loca-
tion. Under this model, the basic question is how many sites
to have and how many replicas per site.

Given n replicas, we can use Table 5 to understand the
load redirection problem when we lose k of these replicas.
For example, with two replicas at each of three locations, we
would expect to lose 2/6 replicas during a natural disaster,
which implies that the remaining replicas must handle 50%
more traffic. This will almost certainly saturate the site,
which then have to recover from using our techniques for
graceful degradation. For example, one plan would be to
dynamically reduce D by 2/3 (to get 3/2 Q) on the remaining
replicas. Another plan would be to reduce D to a specific
50% for any disaster, which is simpler but not as aggressive.

A harder problem for disaster recovery is surviving the
loss of the load manager. If it is an inline approach, such as
the L4 switches or LARD, the external name becomes
unavailable and you have resort to DNS changes to redirect
traffic to the other replicas, which as discussed above has a
very slow failover response time (hours). With a smart client
approach, one of our extensions to the basic mode, the cli-
ents can perform the higher-level redirection automatically
and immediately [YCE+97].

4.7 Conclusions
In this section, we defined several useful availability

metrics and the DQ principle. We then used these ideas to
analyze high availability, graceful degradation and disaster
tolerance. In all cases, the new tools lead to insights and
powerful ways of thinking about the issues. In the next sec-
tion, we apply these ideas to online evolution and growth.

5 Online Evolution & Growth
High availability is always a difficult challenge, and one

of the traditional tenets of highly available systems is to aim
for minimal change. This is in direct conflict with both the
growth rates of these services and “Internet time” — the
practice of extremely fast service release cycles. For giant-
scale services, we have to plan for continuous growth and
frequent updates in functionality. Worse still, the frequent
updates mean that in practice the software is never perfect
and that hard-to-resolve issues such as slow memory leaks
and non-deterministic bugs tend to remain unfixed.

Thus the task at hand is to maintain high availability in
the presence of expansion and frequent software changes.
The philosophy is to make the overall system tolerant of
individual node failures, but to try to avoid cascading fail-

DRAFT

12

ures. Thus “acceptable” quality software comes down to a
target MTBF and the absence of cascading failures.

We first look at growth rates and how to think about
capacity planning and then we examine online evolution,
looking at several ways to upgrade a service with minimal
impact on availability.

5.1 Growth and Capacity Planning
The remarkable growth of existing giant-scale services is

shown in Figure 5. This is conservative in that it only mea-
sures the growth in unique visitors, and ignores increases in
visits/user, work per query, and bandwidth per query, all of
which have gone up over the past several years. Smaller
sites, such as Snap! and Goto.com (not shown), have even
higher growth rates. The growths are somewhat uneven,
which complicates capacity planning, as you must plan for
higher growth than you will probably achieve; for example,
several of the quarters shown have 30-50% growth rates.

Graph interpolation works well for predicting the number
of future queries, but it does not help with the impact of fea-
ture changes. For that we can use relative DQ values. For
example, if a new feature requires 20% more DQ capacity
per query, which can be measured on a small cluster using
log playback, then we need an 20% expansion in addition to
the organic growth in queries. Capacity planning can thus be
viewed as the product of two factors: query count growth
and DQ growth.

Once you have a target DQ value, it is a straightforward
but complex task to achieve it. The hard part is understand-
ing the lead times for all aspects of expansion, and then
maintaining enough excess capacity to cover the lead times
ahead of the growth curve. Excess capacity targets (“head-
room”) seem to range from 15-30%, which translates to
about 45-90 days.

Table 6 shows some typical lead times. The key long-
lead item is to make sure that you have enough data-center
quality rack space. AOL is currently spending $520M for a

Figure 5: Growth in unique visitors for major giant-scale
services. Based on company and Media Metrix data
[MM99]. third data center to build out rack space ahead of service

growth [AOL99]. Once rack space is lined up, the second
challenge is to manage hardware lead times and inventory.
Most giant-scale services have to keep some inventory of all
components, and they may keep large inventories of long-
lead or variable-lead items. In some cases, because their size,
they can get vendors to maintain the inventory for them,
which is an advantage financially.

Given that rack space is the critical aspect of growth, it
makes sense to expand clusters in larger chunks, at least
whole racks if not whole rooms. This also amortizes many of
the administrative tasks over a larger number of nodes.

The second challenge with small incremental steps is that
they often require repartitioning the database, which may be
expensive. Growing in fewer, larger steps, reduces the repar-
titioning overhead.

Because of the rack space and repartitioning issues, one
major service now adds whole 100-node clusters rather than
adding nodes to existing clusters. The new cluster is a replica
of existing large clusters. This approach has the advantage of
simplicity: each new cluster is a “cookie cutter” operation,
thus reducing the logistics issues and avoiding repartitioning
altogether.

The lesson from all this is that the long-lead times make
capacity build-out a critical and complex task. Incremental
scalability in practice is thus quite challenging, and giant-
scale services tend to focus on big steps at a reduced fre-
quency.

5.2 Online Evolution
As with other high availability systems, we can think of

maintenance and upgrades as a form of controlled failure. In
particular, we view online evolution as a temporary con-
trolled reduction in DQ value, and then minimize the impact
of reduced DQ on our availability metrics. In general, online
evolution requires a fixed amount of time per node, u, so that
the total DQ loss for n nodes is:

(4)

Table 6: Typical leads times for new capacity

Item Lead Time

New cluster from scratch (including
location)

120-150 days

New rack space — existing location,
but added power, A/C, bandwidth

90 days

New rack space only 60 days

New SMPs (ordered) 30-60 days

New PCs (ordered) 2 days

New nodes, in stock, on existing rack
space

10 nodes/day/
person

∆DQ n u DQ/node⋅ ⋅ DQ u⋅= =

DRAFT

13

That is, the lost DQ (measured in DQ units * seconds)
amount is simply the total DQ value times the upgrade time
per node.

Assuming working space exists on the nodes for both
versions, the upgrade time should match the MTTR, since
everything can be in place before the downtime starts. With-
out sufficient workspace, the downtime is much greater,
since the new version must be moved onto the node while it
is down.

We next cover three approaches to online evolution that
differ in their handling of this DQ loss and in how they deal
with working space and backward compatibility.

Fast Reboot: The is the simplest version: simply quickly
reboot all nodes into the new version. The guarantees
some downtime, but is very simple. Because this is a
controlled downtime, it is better to measure lost yield
rather than downtime: by upgrading during off-peak
hours we can reduce the yield impact for the same
amount of downtime.

Rolling Upgrade: In this approach, we upgrades nodes
one at a time in a “wave” that rolls through the cluster.
This has the advantage that only one node is down at a
time, thus minimizing the overall impact. In a
partitioned system, we will have harvest reduction
during the n upgrade windows, but in a replicated
system (in off hours) we expect 100% yield and 100%
harvest, since we can update one replica at a time and
we probably have enough capacity in off hours to
prevent lost yield. One disadvantage with this approach
is that it requires the new version be backward
compatible, since the two versions will coexist. The
other two approaches do not have this restriction,
because they only run one version at a time.

The Big Flip: The final approach is more complicated.
The basic idea is to update the cluster one half at a
time. In particular, we take down half the nodes and
upgrade them. Then, during the “flip”, we switch all of
the traffic to the upgraded half, which can be done
atomically with an inline load manager. We then
upgrade the second half and then bring those nodes
back into the live cluster. As with fast reboot, only one
version runs at time. The big flip is quite powerful and
can be used for all kinds of upgrades: hardware, OS,
database schema, networking and even physical
relocation. When used for physical relocation of a
cluster, the big flip must typically use DNS changes to
do the flip, and the upgrade time includes physically
moving the nodes, which means the window of 1/2 DQ
performance lasts for at least several hours. However,
this is manageable over a weekend and has been done
at least twice. Note that the 50% DQ loss can be
translated into either 50% capacity for replicas (which
might be 100% yield on weekends) or 50% harvest.for
partitions.

Because all three approaches have the same DQ loss (for
a given upgrade), we can plot their effective DQ level versus
time, which is shown in Figure 6. The area of the three
curves is the same, the difference is in how the DQ loss is
spread over time.

All three approaches are used in practice, with rolling
upgrades probably the most popular. The heavyweight big
flip is reserved for more complex changes and is used only
rarely. All three benefit from the DQ analysis and from
explicit management of the upgrade’s impact on the avail-
ability metrics.

6 Conclusions
In this paper we have defined several tools for the design

and analysis of giant-scale clusters. Starting with the basic
model, we developed the fault model and semantics of these
services used in practice and suggest several possible exten-
sions.

Load management is a complex task with many goals:
load balancing, manager availability, fast failover response
time for nodes, single-query throughput, database aggrega-
tion, and load shedding. We covered three general
approaches and compared them via our performance and
availability metrics.

We also developed novel ways to think about high avail-
ability, including the DQ principle and the use of harvest and
yield, in addition to uptime, to more precisely capture the
impact of faults. We covered several sophisticated ways to
control the impact of faults through combinations of replica-
tion and partitioning. Finally, we used these tools to analyze
graceful degradation and disaster tolerance.

In the final part, we applied these ideas to online evolu-
tion and growth, looking at both capacity planning and
approaches to service upgrades that minimize the impact of
the upgrade on availability.

We have found these techniques to be very useful in
practice. They seem to get to the core issues that matter in
practice and provides ways to think about availability and

Ideal DQ value

DQ

Time

Fast Reboot

Rolling Upgrade

Big Flip

Figure 6: The shaded regions show how the three
approaches map their DQ loss (down from the ideal
value) over time. The area of the three regions is the
same.

DRAFT

14

fault tolerance that are predictable, analyzable, and measur-
able in practice.

References
Note: some references remove for author anonymity

[Alt99] Alteon Corporation. ACEdirector Data Sheet. http://
www.alteon.com/products/acedirector-2.html.

[AOL99] America Online. “Governor Gilmore and America
Online Announce Selection Of Prince William County As
Site For $520 Million Tech Center.” Press Release, March
10, 1999.

[Arr99] Arrowpoint Communications. CS-100 and CS-800 Data
Sheets. http://www.arrowpoint.com/products/data_sheets.html

[Cis99] Cisco Systems. Distributed Director Overview. http://
www.cisco.com/warp/public/cc/cisco/mkt/scale/dist/prodlit/
dd_ds.html.

[GR97] J. Gray and A. Reuter. Transaction Processing. Morgan-
Kaufman, 1997.

[Mit98] M. Mitzenmacher. How Useful is Old Information?
Digital SRC Technical Note 1998-002. February 8, 1998

[MM99] Media Metrix. http://www.mediametrix.com

[Mov99] MovieFone Corporation. “MovieFone Announces
Preliminary Results From First Day of Star Wars Advance
Ticket Sales.” Company Press Release, May 12, 1999. http://
biz.yahoo.com/bw/990512/ny_moviefo_1.html

[PAB+98] V. S. Pai, M. Aron, G. Banga, M, Svendsen, P.
Druschel, W. Zwaenepoel, and E. Nahum. “Locality-Aware
Request Distribution in Cluster-based Network Servers.”
Proceedings of ASPLOS ’98. San Jose, CA, Oct. 1998.

[WS99] WebSpective. Traffic Management, WebSpective Data
Sheet. http://www.webspective.com.

[YDE+97] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T.
Anderson, and D. Culler. Using Smart Clients to Build
Scalable Services. Proceedings of the USENIX 1997 Annual
Technical Conference, January 1997.

