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CHAOS
T

he P2P revolution promises freedom from boundaries, censorship,
and centralized control. P2P proponents claim the vast untapped
resource of personal computers owned by ordinary people can be
combined together to build something greater and more reliable

than the sum of its parts. 
Each participating computer or node in a P2P system is called a “peer,”

meaning that participants interact as equals. Peers play a variety of roles.
When accessing information, they are clients. When serving information to
other clients, they are servers. When forwarding information for others, they
are routers. 

According to the P2P
vision, thousands, millions, or
even billions of peers may
interact in a seething, tran-
sient pattern of communica-
tion. Architects of these
systems claim this chaos can lead to
properties such as “durability,”
“anonymity,” “scalability,” and “secu-
rity”—the list goes on. Can we really
achieve guarantees in the chaotic
P2P environment?

The attainment of guarantees is a
central concern of the OceanStore
[7] project at Berkeley. As the chief
architect of OceanStore, I present
some principles that can be used to
achieve guarantees in P2P systems.
Although I use distributed file service

to frame my ideas, the con-
cepts are generally applicable.

Distributed File Service
Distributed file service is a
“typical” P2P application. The

idea is straightforward: replace the
local hard disk of a computer with
pools of storage spread throughout
the Internet; the computer interacts
with a vast web of peers to read or
write information. Figure 1 illustrates
this idea. Examples include FreeNet
[6], Gnutella [6], FreeHaven [6],
Publius [6], Intermemory [1], and
OceanStore [7], to name a few. 

Let us start by highlighting some
properties we might want to guaran-
tee for our distributed file service: 

Guarantees from
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• Availability. Information can be accessed 24 hours a
day, seven days a week. 

• Durability. Information entered into the system will
last virtually forever. OceanStore contemplates
1,000-year durability [9]. 

• Access control. Information is protected. Access con-
trol includes privacy (unauthorized entities cannot
read information) and write-integrity (unauthorized
entities cannot change informa-
tion).

• Authenticity. Adversaries cannot
substitute a forged document
for a requested document.

• Denial-of-service (DOS)
resilience. It is difficult for an
adversary to compromise avail-
ability.

Additionally, although recent
gains in CPU speed, storage capac-
ity, and network bandwidth have
allowed designers to sacrifice effi-
ciency for greater functionality, systems must still pro-
vide sufficient performance to be usable.

Several interesting new goals have arisen in the P2P
domain [6]. Some are difficult to achieve in traditional
environments:

• Massive scalability. The system works well with thou-
sands, millions, or even billions of clients.

• Anonymity. It is impossible or very difficult for an
outside observer to ascertain who has produced a
document and who has examined it. 

• Deniability. Users can deny knowledge of data stored
on their machines.

• Resistance to censorship. No one can censor informa-
tion once it is written to the system.

It is an open question whether all of these properties
can coexist. 

The Challenge: Untrusted Components
Let us contrast P2P file service with centralized network
file service. Centralized file service has been around
since the advent of NFS in the early 1980s. In a cen-
tralized system, files are stored remotely, but on profes-
sionally managed servers in locked machine rooms.
Professional staff can quickly remedy failures and secu-
rity breaches. Performance problems can be addressed
by upgrading centralized resources. In short, centralized
systems have components trusted to behave well.

In contrast, P2P systems must deal with an unreliable
and untrusted infrastructure. By “unreliable” we mean
systems not professionally managed that may crash or

fail at any time. Since failure rate grows linearly with sys-
tem size, large P2P systems are almost guaranteed to
have malfunctioning components. By “untrusted,” we
mean participants could be adversarial, attempting to
exploit vulnerabilities, compromise privacy, or damage
the system. For example, peers might substitute their
own information in place of legitimate data. Or, mali-
cious routers might prevent functioning components

from cooperating. 
Since individual compo-

nents are not trustworthy,
P2P designers must invoke
new design principles to
achieve guarantees. Only the
aggregate behavior of many
peers can be trusted. In the
following sections we inten-
tionally blur the distinctions
between unreliable and
untrusted. Techniques effec-
tive for untrusted infrastruc-
tures invariably solve issues
with unreliable ones (although
the converse is not true).

Taming the Chaos
Here we develop a set of
mechanisms that can be

combined to provide guarantees in an untrusted infra-
structure. We start with replication, data location, and
cryptography. We finish with a computer system’s ver-
sion of thermodynamics.

Fault tolerance through replication
Redundancy—the use of multiple resources when a sin-
gle one would suffice—is a powerful mechanism.
Redundancy can help both unreliable and untrusted
infrastructures by providing online replacements for
faulty resources. Naturally, systems exploiting redun-
dancy must provide ways to filter bad resources from
good ones. We touch upon cryptographic validation
later.

Excessive replication can incur high storage and
bandwidth overhead. Thus, several P2P systems, such as
Intermemory, OceanStore and FreeHaven, have utilized
an efficient form of redundancy called erasure coding in
which each chunk of data is transformed into many
fragments. The essential property of this transformation
is that only a fraction of the fragments must be recov-
ered to reconstruct the data [3]. 

Figure 2 illustrates the power of this technique. The
graph shows the probability that a block of data can be
recovered, measured in Fraction of Blocks Lost Per Year
(FBLPY). Each curve represents the same storage over-

Figure 1. Distributed File 
Service: Millions of peers
around the world manipulate
“pools” of data, which 
provide data storage for
workstations, PDAs, and 
cell phones.



head with different levels of fragmentation. This graph
incorporates the assumption that server failures occur
independently and assumes fragments are regenerated at
regular intervals [12]. 

The important point of this figure is the vast differ-
ence in durability between the top and bottom curves.
The top curve represents standard replication—four
complete copies of data—while
the bottom curve represents frag-
mentation into 64 fragments, any
16 of which are sufficient to
reconstruct. For a repair interval of
six months, the first encoding
technique loses 0.03 (3%) of
blocks per year while the second
loses 10

–35
of blocks per year.

Location-independent routing
Many P2P systems allow objects to
be stored anywhere, amidst thousands or millions of
peers. If each unique document or endpoint in a P2P  sys-
tem is assigned a globally unique identifier (GUID), then
the process of locating data can be viewed as a routing
problem: clients construct messages addressed with
GUIDs and let the infrastructure pass these messages
from peer to peer until the target is located. Since this type
of routing involves cooperative decision making, we clas-
sify it as decentralized object location and routing
(DOLR), as shown in Figure 3. Note that GUIDs are
“pure names” that encode nothing about the location of
the objects to which they refer.

The DOLR abstraction is pow-
erful and represents a fundamen-
tally new paradigm, namely the
ability to route messages directly to
objects without knowing their
location. Above the DOLR inter-
face, clients can transparently repli-
cate, destroy, and migrate data to
meet application-level goals.
Below the interface, the system can
utilize multiple simultaneous paths
to gain reliability and perfor-
mance. It can tolerate broken rout-
ing links, bad servers, and
inconsistent paths by retrying or replicating requests. In
fact, DOLR networking is a natural way in which third-
party routers in the infrastructure can improve the
behavior of P2P applications.

For the remainder of this article, we will assume the
routing process is deterministic—able to find at least
one object with a given GUID when it exists. If more
than one object posseses the same GUID (for replicas),
then the network will locate one of them. DOLRs such

as CAN [1], Chord [11], Pastry [10], and Tapestry [4]
provide this property, while the DOLRs associated with
most of the original P2P systems do not.

In addition, message routing should provide local-
ity—the use of local resources over global ones whenever
possible. Locality rewards good placement decisions
with short network traversals between clients and

objects. A DOLR with local-
ity will route to the closest of
a set of replicas of data. Tapes-
try and Pastry provide locality
directly, while CAN and
Chord can be adapted to pro-
vide locality.

Efficient use of communi-
cation is essential to achieving
P2P guarantees. Locality
improves performance and
increases availability, since the
probability of transmission
failure increases with dis-
tance. Further, the ability of a
P2P system to survive a
denial-of-service attack can be
viewed as its ability to effi-
ciently dissipate traffic from
attackers. 

Three of the more interesting P2P goals, namely
anonymity, resistance to censorship, and deniability
derive from the underlying DOLR. The best techniques
for anonymity employ tortuous routing paths through

many nodes to obscure asso-
ciations between requestors
and destinations. Resistance
to censorship is a form of
anonymity that prevents
adversaries from discovering
(or interfering with) servers
that export particular infor-
mation. Deniability is simi-
lar, except that it often
involves hiding the existence
of information from servers
themselves—leading to
information leakage. Note

that techniques to provide
some or all of these properties
may interfere with efficient
routing.

Cryptography
In an untrusted infrastruc-
ture, adversaries may improp-
erly acquire information and
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Figure 2. Fraction of Blocks
Lost Per Year (FBLPY) as a
function of repair interval.
Each curve represents a 
factor of four overhead with
different fragmentation. In 
all cases, one-fourth of 
fragments are required to 
reconstruct.
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Figure 3. Decentralized
Object Location and 
Routing (DOLR) abstraction:
Messages are addressed to
objects rather than to IP
addresses. DOLR infrastruc-
tures provide deterministic
routing finding objects if
they exist.  They also 
provide locality utilizing
local resources and finding
local objects whenever 
possible.



violate the privacy of users. Further, adversaries may
substitute bad data for good data or subtly corrupt exist-
ing data. Thus, the authenticity (source) and integrity
(correctness) of information is often in question. 

Cryptography can address these issues. Privacy is pro-
tected through encryption, the scrambling of informa-
tion such that only those with the proper key can
unscramble it. Authenticity and integrity can be
addressed through a combination of secure one-way
hash functions and signatures. A secure hash function
takes an arbitrary-size block of data and produce a fixed-
size summary (for example, SHA-1 produces a 160-bit
summary). The result is secure since it is computation-
ally infeasible to find another block of data producing
the same summary. Further, the result is unique, since
the probability of “stumbling” on two blocks of data
with the same hash value is extremely unlikely. 

Consequently, summary values can be used as
unforgeable names for data. If the GUIDs used by the
DOLR network are secure summaries, then clients can
verify the integrity of data returned to them by regener-
ating hashes and comparing them with the requested
GUIDs. Clients can also construct recursive, self-verify-
ing objects as trees in which interior blocks contain
GUIDs corresponding to other blocks. These objects
are named by the GUIDs of their top blocks. The
integrity of such objects is ensured, since a substitution
within a tree will alter the GUID of the top block.

Signatures utilize public-key cryptography to
demonstrate that a particular user generated some piece
of information. To sign data, a user maintains two dif-
ferent cryptographic keys, a public key and private key.
Although these keys are related mathematically, it is
computationally infeasible to generate the private key
from the public one. When generating a new docu-
ment, the user produces a signature over its GUID with
his or her private key. This signature is a fixed-sized
block of bits that can be verified with the public key.
Users keep their private keys private and distribute their
public keys to the world. 

Byzantine Agreement
When immutable (read-only) data is replicated and
explicitly tagged via cryptographic means, it is easy for
peers to discard bad information and repair or replicate
good information. The decision to use or discard infor-
mation is passive and local. 

In contrast, some decisions are active. For instance,
the decision to allow users to change, replace, or delete
information can affect the integrity of the system as a
whole. This decision involves checking client credentials
against an access control list. Given the untrusted nature
of the infrastructure, we cannot allow these decisions to
be performed by any single, possibly corrupted node. 

To address active decision making, several recent sys-
tems, such as OceanStore and Farsite [2], have
employed Byzantine Agreement [5]. Byzantine Agree-
ment allows a set of peers to come to a unified decision
about something, even if some of them (less than one-
third) are actively attempting to compromise the
process. Should the correct number of nodes agree, the
result can even be signed in aggregate with threshold
signatures [9] to permit others to verify the decision at
a later date.

Many P2P storage systems are advertised as reposito-
ries of read-only information. The biggest barrier to
providing a writable system is consistency—establishing
the identity of the latest copy of data, or conversely, that
a particular copy is out of date. Such consistency man-
agement usually requires a centralized resource to serial-
ize updates.  Byzantine Agreement is an ideal
distributed serialization technology. 

Correlated Failure Analysis
One assumption that permeates large-scale systems is
the belief that components fail independently. When
this assumption is violated, many purported  guarantees
are lost. For instance, replica placement schemes do not
protect data when servers holding replicas fail together
(are correlated). The extremely low FBLPY values in
Figure 2 are only possible when failures occur indepen-
dently. As another example, Byzantine Agreement algo-
rithms do not function when many servers are
corrupted simultaneously. 

Unfortunately, correlations exist in all real systems.
Peers may share the same subnet, owner, software
release, operating system, or geographic location. Most
P2P systems rely on random component placement and
increased redundancy to combat correlated failures.
While effective, these heuristics are not the best way to
avoid correlations. More intelligent analyses, such as
clustering based on pair-wise correlation, can be used to
evaluate independence and adjust resource usage. This
is an active research topic.

Exploiting Differences
Existing P2P systems treat the majority of their compo-
nents as equivalent. This purist philosophy is useful
from an academic standpoint, since it simplifies algo-
rithmic analysis. In reality, however, some peers are
“more equal” than others:

• Computers have different CPUs, memory, storage
capacity, network connectivity, and so forth;

• Some computers are professionally managed and
highly available while others are not; and 

• Physically, some computers reside at network hubs,
while others are at the edges. Some are locked in
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machine rooms, while others are public.

Treating all peers as equal forces us to cater to the
lowest common denominator. 

By exploiting differences, we can better tune perfor-
mance, availability, reliability, security, and attack vul-
nerability. Specific examples include:

• Exploitation of “supernodes” with higher connectiv-
ity. Supernodes are common in routing infrastructure
such as the Internet and can greatly reduce the num-
ber of hops a message takes (see [1, 6]).

• Use of actively managed nodes for a Byzantine Agree-
ment, ensuring that no more than one-third of the
nodes are compromised.

• Placing archival data on servers deep in mountains to
survive a variety of natural disasters. 

When P2P techniques move into the mainstream, suc-
cessful systems will inevitably exploit such differences.

Thermodynamic Systems Design
Finally, large P2P systems must depart from conven-
tional wisdom to achieve guarantees. One promising
technique is something we might call “Stability
through Statistics”—a form of thermodynamics (or,
more precisely, statistical mechanics) for computer sys-
tems. Thermodynamics describes the behavior of
aggregates (temperature) rather than individual ele-
ments (molecules): the temperature of a room is stable
even though the kinetic energies of the individual mol-
ecules vary widely. Thermodynamics provides impor-
tant understanding about stability, phase-transitions,
and the latent properties of aggregates. Hence, by anal-
ogy, we suggest that properly designed systems can
exhibit stable behavior by exploiting multiple compo-
nents and that these systems have thermodynamic
descriptions.

Pursuing this analogy for a moment, we note that
interacting P2P elements (peers and documents, to
name two) are like molecules. The bonds between them
(links between peers, relationship between fragments)
transmit forces and store energy. Locality in the DOLR
provides interaction over short distances. Cryptography
enforces the identity of individual elements, thereby
simplifying the interaction between them (making their
interaction more like a gas rather than a liquid). 

Functioning P2P systems contain a wide variety of
order—often buried beneath the surface. We will call
this the “latent order.” For instance, the web of inter-
connections between DOLR peers combined with
directory information on those peers is a very sophisti-
cated form of order that permits objects to be located
efficiently. As another example, erasure-coded fragments

in Figure 2 are related via a mathematical process, even
though they are distributed to random servers. 

The latent order can provide stable properties even
when individual components vary in their behavior. For
instance, when requesting a document, we gain faster
average response time with reduced standard-deviation
by requesting copies from different servers and utilizing
the first returned result. The Tapestry DOLR sends
multiple messages along different paths to help amelio-
rate packet loss and variability in routing performance.
Furthermore, systems such as SETI@home ask multiple
peers to perform identical computations and exclude
bad results through voting. These techniques can be
viewed as exploiting thermodynamic stabilization.

The behavior of peers must be peaked around some
desirable norm in order to yield stable aggregate behav-
ior. For instance, we might require no more than 10%
of the nodes to be malfunctioning. Or, perhaps we
require routers to provide a response time that is nar-
rowly peeked about some value. Long-tailed distribu-
tions can be countered with a sufficiently redundancy. 

Over time, distributions become skewed and the
latent order is destroyed by accumulated failures. The
number of copies of data, routing pointers, or peers per-
forming computations eventually falls below threshold.
This result reflects the second law of thermodynamics:
the entropy of closed systems increases. Thus, the passive
process of thermodynamic stabilization must be coupled
with active entropy reduction, for instance, the addition
of energy (through servers) to repair the latent order. 

Fortunately, self-organizing behavior tends to reduce
entropy. Latent order increases when corrupted elements
are removed and ordered elements are added. For
instance, to achieve 1,000-year data durability, servers
must continuously collect, regenerate, and redistribute
fragments (important since the life expectency of indi-
vidual disks is five years). They may adjust routing links
in the DOLR to correct for network changes. They may
periodically reevaluate correlations for better resource
usage. The challenge is to recognize faults and disordered
elements without excessive global communication.

Active entropy reduction falls under the general
heading of introspection—an architectural paradigm
that mimics the continuous, online feedback that is the
hallmark of living organisms. Introspection devotes
spare computational resources to observing system
behavior, applying analyses (such as clustering, Baysean
analysis, and Markov modeling), then adapting the sys-
tem accordingly. We can view introspection as adding
information to the system in order to improve future
behavior. Note that companies such as IBM have made
adaptive systems (or autonomic computing [see
www.research.ibm.com/autonomic]) a highly-visible
focus of research.
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Thermodynamic systems design thus involves three
key elements: 

• Redundancy. More resources must be utilized than
the “bare minimum” required for operation.

• Replacement. Some technique must be present to rec-
ognize failure and switch from faulty resources to
functioning ones.

• Restoration. Some process must act to restore latent
order (reduce entropy).

It is likely the use of randomness is important as well.
Randomness can shield against a variety of systematic
biases and attack methodologies.

The thermodynamic point of view can direct our
design efforts. For instance, we can ask to what extent
our DOLR system can absorb a denial-of-service attack.
The answer could involve the DOLR equivalent of heat
capacity: to what extent does the web of interconnec-
tions between nodes absorb attacks without changing
the “temperature” of the DOLR (without shifting or
skewing its response distribution). This point of view
provides a promising framework for comparing DOLR
organizations at a level beyond simple benchmarks.

Reprise—Can We Guarantee Anything?
We return to our original question: can we guarantee
anything about P2P systems? The biggest challenge here
is the unreliable and untrusted nature of P2P compo-
nents. Guarantees require a combination of redun-
dancy, cryptography, and thermodynamic stabilization
with active repair. Thermodynamic principles suggest
that P2P systems can become more stable with increas-
ing component count. Let us briefly recap our goals. 

First, scalability requires avoidance of bottlenecks
and automatic integration of new peers and removal of
old ones. DOLRs with locality permit scalable, flexible,
and efficient use of communication.

Availability requires redundancy and continuous
repair of both data and routing. Introspective tech-
niques can be utilized to move data close to where it is
needed, thereby increasing the chance it can be accessed.
Denial-of-service resilience is an extreme form of avail-
ability, combined with introspection to recognize and
suppress attacks. Similarly, resistance to censorship is a
question of availability—making it impossible for any-
one to hunt and destroy every copy of a document.

Durability is a function of redundancy and continu-
ous repair with verification. Guaranteed long-term
durability is more of a sociological issue than anything
else; some entities must be responsible for performing
continuous repair. This observation would argue for
“service providers” that are paid to repair information.

Cryptography comes to the rescue for several guar-

antees. For instance, authenticity can be verified by
checking cryptographic signatures; privacy can be guar-
anteed through encryption. 

Unfortunately, access control in terms of write-
integrity cannot be guaranteed without active, well-
behaving components. Byzantine Agreement provides a
mechanism for cooperative decision making in the face
of malicious elements.

Finally, anonymity and deniability are challenging.
Both require obscuring the path of requests to read or
publish information, as well as obscuring where infor-
mation is placed. These properties can be provided in a
P2P framework. However, it remains to be seen how
well they can be incorporated with other requirements.

Not withstanding, the answer to our original ques-
tion would appear to be: Yes, we can guarantee interest-
ing properties—even with faulty or malicious
components. The “guarantees” in this article are proba-
bilistic. Those uncomfortable with probabilistic argu-
ments should consider that traditional systems fail
under many circumstances. Thermodynamic, self-orga-
nized systems can provide strong guarantees. The
behavior of such systems closely resembles life itself—
something greater than the sum of its parts.  
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