An Advanced 4.4BSD Inteprocess Communication Uitorial

Samuel JLeffler

Robert S. kbry

William N. Dby
Phil Lapsley

Computer Systems Research Group
Department of Electrical Engineering and Computer Science
University of California, Berkley
Berkeley, California 94720

Steve Miller
Chris Torek

Heterogeneous Systems Laboratory
Department of Computer Science
University of Maryland, Collge Rark
College Rark, Maryland 20742

ABSTRAT

This document prades an introduction to the interprocess communicataiif
ties included in the 4.4BSD release of the UNIX* system.

It discusses theverall model for interprocess communication and introduces the
interprocess communication primigs which have been added to the systerfihe major
ity of the document considers the use of these pviesiin devdoping applications.The

reader is ¥pected to bedmiliar with the C programming language as atiraples are
written in C.

* UNIX is a trademark of UNIX System Laboratories, lirtthe US and some other countries.

PSD:21-2 Adanced 4.4BSD IPCuforial

1. INTRODUCTION

One of the most important additions to UNIX in 4.2BSBsvinterprocess communicatiomhese &cilities
were the result of more thandwears of discussion and researdtne facilities pravided in 4.2BSD incer
porated may of the ideas from current research, while trying to maintain the UNIX philgsafgimplic-

ity and concisenessThe 4.3BSD release of Bealey UNIX improved upon some of the IPCaé€ilities
while providing an upvard-compatible intedice. 4.4BSadds support for ISO protocols and IP multicast-
ing. TheBSD interprocess communicatioacilities hae become a deifcto standard for UNIX.

UNIX has preiously been gry weak in the area of interprocess communicatfmor to the 4BSD
facilities, the only standard mechanism whichabd two processes to communicate were pipes (the mpx
files which were part of &sion 7 were@erimental). Unfortunatelyipes are ery restrictve in that the
two communicating processes must be related through a common anéestber the semantics of pipes
makes them almost impossible to maintain in a digted emironment.

Earlier attempts ataending the IPCdcilities of UNIX hare met with mixed reaction.The majority
of the problems he keen related to theaé€t that theseatilities hae keen tied to the UNIX file system,
either through naming or implementatio@onsequentlythe IPC &cilities proided in 4.2BSD were
designed as a totally independent subsystéhe BSD IPC allars processes to rendems in mag ways.
Processes may rendems through a UNIX file system-kkname space (a space where all names are path
names) as well as through a netlvname spaceln fact, nev name spaces may be added at a future time
with only minor changes visible to userBurther the communicationakilities hae been gtended to
include more than the simple byte streamvjated by a pipe.These gtensions hee resulted in a com-
pletely nev part of the system which users will need timeamiliarize themselks with. It is likely that as
more use is made of theseilities thg will be refined; only time will tell.

This document prades a high-leel description of the IPCafilities in 4.4BSD and their usédt is
designed to complement the manual pages for the IPC pemily examples of their useThe remainder
of this document is genized in four sectionsSection 2 introduces the IPC-related system calls and the
basic model of communicatiorSection 3 describes some of the supporting library routines users may find
useful in constructing distrited applicationsSection 4 is concerned with the client/sgrmodel used in
developing applications and includegamples of the te major types of semers. Sectiorb delves into
adwanced topics which sophisticated users ardyliko encounter when using the IP4eifities.

Advanced 4.4BSD |IPCukorial PSD:21-3

2. BASICS

The basic bilding block for communication is theodke. A soclet is an endpoint of communication
to which a name may d®und Each sockt in use has gypeand one or more associated procesSexk-
ets &ist within communication domainsA communication domain is an abstraction introducedutudle
common properties of processes communicating througtesockonesuch property is the scheme used to
name sockts. Fr example, in the UNIX communication domain setk are named with UNIX path
names; e.g. a soekmay be nameddev/foo”. Sockets normally rchange data only with soets in the
same domain (it may be possible to cross domain boundauitesnly if some translation process is per
formed). The4.4BSD IPC écilities support four separate communication domains: the UNIX domain, for
on-system communication; the Internet domain, which is used by processes which communicate using the
Internet standard communication protocols; the NS domain, which is used by processes which communi-
cate using the Xerox standard communication protocols*; and the ISO OSI protocols, which are not docu-
mented in this tutorial The underlying communicatiomdilities pravided by these domainsVea ggnifi-
cant influence on the internal system implementation as well as thadetéof soclt facilities aailable to
a et An example of the latter is that a s@tKoperating’ i n the UNIX domain sees a subset of the error
conditions which are possible when operating in the Internet (or NS) domain.

2.1. Soclet types

Soclets are typed according to the communication properties visible to.aRieeesses are pre-
sumed to communicate only between sslof the same type, although there is nothing thaempiecom-
munication between soets of diferent types should the underlying communication protocols support this.

Four types of soolts currently arevailable to a userA streamsoclet provides for the bidirectional,
reliable, sequenced, and unduplicated fitd data without record boundariedside from the bidirectional-
ity of data flav, a @ir of connected stream s@tk praides an intedice nearly identical to that of pipest.

A datagram soclet supports bidirectional flo of data which is not promised to be sequenced, reli-
able, or unduplicatedThat is, a process ree@ig messages on a datagram sbvakay find messages
duplicated, and, possiblin an order diferent from the order in which itag sent.An important character
istic of a datagram soekis that record boundaries in data are preskrnbDatagransoclets closely model
the facilities found in may contemporary paek switched netarks such as the Ethernet.

A raw soclet provides users access to the underlying communication protocols which suppett sock
abstractions. Thessoclets are normally datagram oriented, though theacecharacteristics are depen-
dent on the intedce preided by the protocolRaw sockets are not intended for the general uses; taee
been preided mainly for those interested inv@®ping nev communication protocols, or foragning
access to some of the more esotealities of an risting protocol. The use of na sockets is considered
in section 5.

A sequenced pé&et soclet is similar to a stream sastk with the gception that record boundaries are
presered. Thisinterface is proided only as part of the NS s@tkabstraction, and isewy important in
most serious NS applicationSequenced-paek soclets allav the user to manipulate the SPP or IDP head-
ers on a pacek or a group of paéts either by writing a prototype header along with wieatdata is to be
sent, or by specifying a dailt header to be used with all outgoing data, andvaltbe user to rece2 the
headers on incoming pasts. Theuse of these options is considered in section 5.

Another potential so@k type which has interesting properties is tel@ably deliveed messge
soclet. Thereliably delvered message soekhas similar properties to a datagram sgdiut with reliable
delivery. There is currently no support for this type of seickut a reliably delrered message protocol
similar to Xerox$ Packet Exchange Protocol (PEX) may be simulated at the usgr Iglore information

* Seelnternet Tansport Potocols Xerox System Inggration Standard (XSIS)028112 for more informatidrhis docu-
ment is almost a necessity for one trying to write NS applications.

T In the UNIX domain, indct, the semantics are identical and, as one migietog, pipes hee been implemented internal-
ly as simply a pair of connected stream sask

PSD:21-4 Adanced 4.4BSD IPCuforial

on this topic can be found in section 5.

2.2. Soclet creation
To aeate a soekt thesodket system call is used:

s = 9cket(domain, type, protocol);

This call requests that the system create aetdnkthe specifiedomainand of the specifietype A par

ticular protocol may also be requestdiélthe protocol is left unspecified (aale of 0), the system will

select an appropriate protocol from those protocols which comprise the communication domain and which
may be used to support the requested efotglpe. The user is returned a descriptor (a smallgaetenum-

ber) which may be used in later system calls which operate ortsockhedomain is specified as one of

the manifest constants defined in the fiysisoket.h>. For the UNIX domain the constant is AF_UNIX*;

for the Internet domain AF_INET®Bnd for the NS domain, AF_NSThe sockt types are also defined in

this file and one of SOCK_STREAM, SOCK_DGRAM, SOCK WAor SOCK_SEQRCKET must be
specified. © create a stream soekin the Internet domain the folling call might be used:

s = ocket(AF_INET, SOCK_STREAM, 0);

This call would result in a stream saetkbeing created with the TCP protocol ypding the underlying
communication supporiTo ceate a datagram satlkfor on-machine use the call might be:

s = ocket(AF_UNIX, SOCK_DGRAM, 0);

The deéult protocol (used when thprotocol argument to thesodket call is 0) should be correct for
most &ery situation. However, it is possible to specify a protocol other than thead#f this will be cw-
ered in section 5.

There are seral reasons a soekcall may &il. Asidefrom the rare occurrence of lack of memory
(ENOBUFS), a socét request mayafl due to a request for an unkmo protocol (EPRTONOSUPPOR),
or a request for a type of s@tlfor which there is no supporting protocol (EFPFOTYPE).

2.3. Bindinglocal names

A socket is created without a namentil a name is bound to a s@tkprocesses t1ia o way to ref-
erence it and, consequenthp messages may be reead on it. Communicatingrocesses are bound by an
association In the Internet and NS domains, an association is composed of local and foreign addresses,
and local and foreign ports, while in the UNIX domain, an association is composed of local and foreign
path names (the phraséoreign pathnamé’'means a pathname created by a foreign process, not a path-
name on a foreign systemhn most domains, associations must be uniduethe Internet domain there
may neer be duplicate <protocol, local address, local port, foreign address, foreign port> tiigx.
domain sockts need not alays be bound to a nameaytbwhen bound there mayvee be duplicate <proto-
col, local pathname, foreign pathname> tupl€he pathnames may not refer to files alreadgtig on
the system in 4.3; the situation may change in future releases.

Thebind system call allas a process to specify half of an association, <local address, local port> (or
<local pathname>), while tteonnectandacceptprimitives ae used to complete a s@tls association.

In the Internet domain, binding names to siskcan bedirly comple. Fortunatelyit is usually not
necessary to specifically bind an address and port number toet, dmtause theonnectand sendcalls
will automatically bind an appropriate address ifytlaee used with an unbound satk Theprocess of
binding names to NS soets is similar in most ays to that of binding names to Internet sisk

Thebind system call is used as folls:
bind(s, name, namelen);

The bound name is aaxiable length byte string which is interpreted by the supporting protocdigs).
interpretation may ary from communication domain to communication domain (this is one of the

* The manifest constants are named AF_wileatas they indicate the'address formatto use in interpreting names.

Advanced 4.4BSD |IPCukorial PSD:21-5

properties which comprise thedmain”). As mentioned, in the Internet domain names contain an Internet
address and port numbedS domain names contain an NS address and port nuriibéire UNIX domain,
names contain a path name andamify, which is alvays AF_UNIX. If one wanted to bind the name

“ /tmp/foo” to a UNIX domain sockt, the follaving code would be used*:

#include <sys/un.h>
struct sockaddr_un addr;

strcpy(addrsun_path, "/tmp/foo™);

addrsun_amily = AF_UNIX;

bind(s, (struct sockaddr *) &addstrlen(addrsun_path) +
sizeof (addsun_len) + sizeof (addun_amily));

Note that in determining the size of a UNIX domain address null bytes are not counted, whiglstidemh

is used.In the current implementation of UNIX domain IPC, the file name referredaddnsun_paths
created as a soekin the system file spac&he caller must, therefore, yewrite permission in the direc-

tory whereaddrsun_pathis to reside, and this file should be deleted by the caller when it is no longer
needed. Futureersions of 4BSD may not create this file.

In binding an Internet address things become more complic@iteslactual call is similar

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in sin;

bind(s, (struct sockaddr *) &sin, sizeof (sin));

but the selection of what to place in the addr@issequires some discussiofiVe will come back to the
problem of formulating Internet addresses in section 3 when the library routines used in name resolution
are discussed.

Binding an NS address to a setlks een more dificult, especially since the Internet library routines
do not work with NS hostnamesThe actual call is a&in similar:

#include <sys/types.h>
#include <netns/ns.h>

struct sockaddr_ns sns;

bind(s, (struct sockaddr *) &sns, sizeof (sns));

Again, discussion of what to place in'stfuct sockaddr_nswill be deferred to section 3.

2.4. Connectionestablishment

Connection establishment is usually asymmetric, with one procesdiemt” and the other a
“ sener”. The sener, when willing to ofer its adwertised services, binds a setlo a well-knen address
associated with the service and then palsi‘listens” on its soclet. Itis then possible for an unrelated
process to rendeaus with the seer. The client requests services from the sefsy initiating a‘tonnec-
tion” to the serer’s ocket. Onthe client side theonnectcall is used to initiate a connectioksing the
UNIX domain, this might appear as,

* Note that, although the tendgnicere is to call the'addr” structure ‘sun”, doing so would cause problems if the code
were &er ported to a Sun arkstation.

PSD:21-6 Adanced 4.4BSD IPCuforial

struct sockaddr_un saw,

connect(s, (struct sockaddr *)&seryvstrlen(serer.sun_path) +
sizeof (serersun_amily));

while in the Internet domain,

struct sockaddr_in seav;,

connect(s, (struct sockaddr *)&servszeof (serer));
and in the NS domain,

struct sockaddr_ns seamn

connect(s, (struct sockaddr *)&servszeof (serer));

whereserverin the example abwe would contain either the UNIX pathname, Internet address and port
number or NS address and port number of the srto which the client process wishes to spdékhe

client process cket is unbound at the time of the connect call, the system will automatically select and
bind a name to the soekif necessary; c.f. section 5.%Zhis is the usual ay that local addresses are bound

to a sockt.

An error is returned if the connectioragvunsuccessful (gmame automatically bound by the sys-
tem, havever, remains). Otherwisdghe sockt is associated with the servand data transfer maydie.
Some of the more common errors returned when a connection atéispté:

ETIMEDOUT
After failing to establish a connection for a period of time, the system decided terevpoint in
retrying the connection attemptyamore. Thisusually occurs because the destination hostusdo
or because problems in the netwresulted in transmissions being lost.

ECONNREFUSED
The host refused service for some reasbiis is usually due to a sewprocess not being present at
the requested name.

ENETDOWN or EHOSTDQVN
These operational errors are returned based on status informatignedeto the client host by the
underlying communication services.

ENETUNREACH or EHOSTUNREARH
These operational errors can occur either because therketwhost is unknen (no route to the
network or host is present), or because of status information returned by intermeddaiy/ s or
switching nodes.Marny times the status returned is notfmiént to distinguish a netwk being
down from a host being da, in which case the system indicates the entirear&tis unreachable.

For the serer to recaie a dient’'s mnnection it must perform weeps after binding its soek The
first is to indicate a willingness to listen for incoming connection requests:

listen(s, 5);

The second parameter to tligten call specifies the maximum number of outstanding connections which
may be queuedwvaiting acceptance by the servprocess; this number may be limited by the system.
Should a connection be requested while the queue is full, the connection will not be rafusaitheb the
individual messages which comprise the request will be igndfaik gives a harried serer time to mak

room in its pending connection queue while the client retries the connection relgadsthe connection

been returned with the ECONNREFUSED ertbe client vould be unable to tell if the sewwas up or

not. Asitis naw it is dill possible to get the ETIMEDOUT error back, though this is @ik The back-

log figure supplied with the listen call is currently limited by the system to a maximum of 5 pending con-
nections on anone queue.This avoids the problem of processes hogging system resources by setting an
infinite backlog, then ignoring all connection requests.

Advanced 4.4BSD |IPCukorial PSD:21-7

With a sockt marled as listening, a se&swmayaccepta connection:

struct sockaddr_in from;

fromlen = sizeof (from);
newsock = accept(s, (struct sockaddr *)&from, &fromlen);

(For the UNIX domainfrom would be declared as struct sokaddr_un and for the NS domainfrom
would be declared assiruct so&addr_ns but nothing diferent would need to be done aar fasfromlenis
concerned. Irthe xamples which folla, only Internet routines will be discussedd) new descriptor is
returned on receipt of a connection (along witha secket). If the serer wishes to find out who its client
is, it may supply auifer for the client soakt’s nrame. Thevalue-result parametdromlenis initialized by
the serer to indicate hew much space is associated witbm, then modified on return to reflect the true
size of the namelf the clients rame is not of interest, the second parameter may be a null pointer

Acceptnormally blocks. That is,acceptwill not return until a connection isvalable or the system
call is interrupted by a signal to the proceBsirther there is no &y for a process to indicate it will accept
connections from only a specific in@iual, or indviduals. Itis up to the user process to consider who the
connection is from and closewlo the connection if it does not wish to speak to the prodésise serer
process wnts to accept connections on more than oneesookwants to &oid blocking on the accept call,
there are alternatés; they will be considered in section 5.

2.5. Datatransfer

With a connection established, data magitéo flov. To send and recee data there are a number
of possible calls.With the peer entity at each end of a connection anchored, a user can send/®mrecei
message without specifying the pegis ane might &pect, in this case, then the normedd andwrite sys-
tem calls are usable,

write(s, lf, sizeof (lif));
read(s, bf, sizeof (lf));

In addition toread andwrite, the nev calls sendandrecv may be used:

send(s, bf, sizeof (luf), flags);
recv(s, loif, sizeof (lf), flags);

While sendandrecv are virtually identical taead andwrite, the etra flags agument is importantThe
flags, defined irksys/so&et.h>, may be specified as a non-zemue if one or more of the folkdng is
required:

MSG_0O0OB send/reced aut of band data
MSG_PEEK lookat data without reading
MSG_DONTROUTE sendiata without routing paeis

Out of band data is a notion specific to stream eiscland one which we will not immediately consider
The option to hae data sent without routing applied to the outgoing pésks currently used only by the
routing table management process, and is alyliko be of interest to the casual us€he ability to pre-
view data is, haever, of interest. WherMSG_PEEK is specified with eecv call, ary data present is
returned to the usebut treated as stilfunread’. That s, the n&t read or recv call applied to the soek
will return the data preously previewed.

2.6. Discardingsockets
Once a soadt is no longer of interest, it may be discarded by applytigseto the descriptor
close(s);

If data is associated with a setkvhich promises reliable dedty (e.g. a stream soek) when a close tak
place, the system will continue to attempt to transfer the détavever, after a firly long period of time, if
the data is still undelered, it will be discardedShould a user va ro use for ay pending data, it may

PSD:21-8 Adanced 4.4BSD IPCuforial

perform ashutdowron the socét prior to closing it.This call is of the form:
shutdavn(s, hav);

wherehowis 0 if the user is no longer interested in reading data, 1 if no more data will be sent, or 2 if no
data is to be sent or reced.

2.7. Connectionlessockets

To this point we hee been concerned mostly with s@tk which follav a mnnection oriented model.
However, there is also support for connectionless interactions typical of the datageditie$ found in
contemporary pa&k switched netarks. A datagram soak provides a symmetric intemte to data
exchange. Whileprocesses are still ity to be client and seey there is no requirement for connection
establishment. Insteadach message includes the destination address.

Datagram soais are created as befori.a particular local address is needed, ired operation
must precede the first data transmissi@therwise, the system will set the local address and/or port when
data is first sentTo nd data, theendtoprimitive is used,

sendto(s, bf, buflen, flags, (struct sockaddr *)&to, tolen);

Thes, buf, buflen and flags parameters are used as befof@eto andtolenvaues are used to indicate the
address of the intended recipient of the messaljben using an unreliable datagram irded, it is
unlikely that ag errors will be reported to the sendéiVhen information is present locally to recognize a
message that can not be deled (for instance when a neivk is unreachable), the call will return -1 and
the global alueerrnowill contain an error number

To receve messages on an unconnected datagramesadtierecvfrom primitive is provided:
recvfrom(s, boif, buflen, flags, (struct sockaddr *)&from, &fromlen);

Once agin, thefromlenparameter is handled in alue-result &shion, initially containing the size of the
from buffer, and modified on return to indicate the actual size of the address from which the datagram w
receved.

In addition to the tw calls mentioned ah@, datagram soakts may also use tlednnectcall to asso-
ciate a soolt with a specific destination addredn.this case, andata sent on the soekwill automati-
cally be addressed to the connected et only data receed from that peer will be deléered to the user
Only one connected address is permitted for eactesatlone time; a second connect will change the des-
tination address, and a connect to a null addressil{f AF_UNSPEC) will disconnectConnect requests
on datagram soeks return immediatelyas this simply results in the system recording the geaftiress
(as compared to a stream sekwvhere a connect request initiates establishment of an end to end connec-
tion). Acceptandlistenare not used with datagram setk

While a datagram soek soclet is connected, errors from receeindcalls may be returned asyn-
chronously These errors may be reported on subsequent operations on teé sock special soek
option used witlgetisodkopt, SO_ERFOR, may be used to interratg the error statusA selectfor reading
or writing will return true when an error indication has been vedei Thenext operation will return the
error, and the error status is cleare@ther of the less important details of datagram etsckre described
in section 5.

2.8. Input/Output multiplexing

One last &cility often used in desloping applications is the ability to multide/o requests among
multiple soclets and/or filesThis is done using theelectcall:

Advanced 4.4BSD |IPCukorial PSD:21-9

#include <sys/time.h>
#include <sys/types.h>

fd_set readmask, writemaslkoeptmask;
struct timeval timeout;

select(nfds, &readmask, &writemask, Xe=ptmask, &timeout);

Selectakes as gguments pointers to three sets, one for the set of file descriptors for which the caller wishes
to be able to read data on, one for those descriptors to which data is to be written, and one forcerich e
tional conditions are pending; out-of-band data is the ardgm@ional condition currently implemented by

the sockt If the user is not interested in certain conditions (i.e., read, writgcept®ons), the correspond-

ing agument to theselectshould be a null pointer

Each set is actually a structure containing an array of longeintst masks; the size of the array is
set by the definition FD_SETSIZE he array is be long enough to hold one bit for each of FD_SETSIZE
file descriptors.

The macros FD_SETq, &mash and FD_CLR{d, &mash have been preided for adding and
removing file descriptorfd in the setmask The set should be zeroed before use, and the macro
FD_ZERO(&masK has been pndded to clear the sehask The parametenfdsin theselectcall specifies
the range of file descriptor§.e. one plus thealue of the lagest descriptor) to bexamined in a set.

A timeout \alue may be specified if the selection is not to last more than a predetermined period of
time. If the fields intimeoutare set to 0, the selection &skthe form of goll, returning immediately If
the last parameter is a null pointdre selection will block indefinitely* Selectnormally returns the num-
ber of file descriptors selected; if tkelectcall returns due to the timeouxpering, then the &lue 0 is
returned. Iftheselectterminates because of an error or interruption, a -1 is returned with the error number
in errno, and with the file descriptor masks unchanged.

Assuming a successful return, the three sets will indicate which file descriptors are ready to be read
from, written to, or hee exeptional conditions pendinglhe status of a file descriptor in a select mask
may be tested with theD_ISSET(fd, &maskinacro, which returns a non-zeralwe iffd is a member of
the semask and O if it is not.

To determine if there are connectionaiting on a sooét to be used with asmcceptcall, selectcan be
used, follaved by aFD_ISSET(fd, &masknacro to check for read readiness on the appropriatetsokék
FD_ISSETreturns a non-zeroalue, indicating permission to read, then a connection is pending on the
soclet.

As an &le, to read data from dwsockets,s1ands2as it is &ailable from each and with a one-
second timeout, the folldng code might be used:

* To be more specific, a return tak place only when a descriptor is selectable, or when a signal ieedeloethe caller
interrupting the system call.

PSD:21-10 Adanced 4.4BSD IPCukorial

#include <sys/time.h>
#include <sys/types.h>

fd_set read_template;
struct timeval wait;

for (;;) {
wait.tv_sec = 1; /* one second */
wait.tv_usec = 0;

FD_ZERO(&read_template);

FD_SET(s1, &read_template);
FD_SET(s2, &read_template);

nb = select(FD_SETSIZE, &read_template, (fd_set *) 0, (fd_set *) Giw
if (nb <=0) {

An ermor occurred during theselect or

theselecttimed out.

}

if (FD_ISSET(s1, &read_template)) {
Soke #1 is ready to beead fom.

}

if (FD_ISSET(s2, &read_template)) {
Soke #2 is ready to beead fom.

}
}

In 4.2, the aguments teselectwere pointers to ingers instead of pointers fd_ses. Thistype of
call will still work as long as the number of file descriptors bekagrened is less than the number of bits
in an intger; havever, the methods illustrated ab® $ould be used in all current programs.

Selectprovides a synchronous multipieg scheme.Asynchronous notification of output comple-
tion, input &ailability, and exceptional conditions is possible through use of the SIGIO and SIGURG sig-
nals described in section 5.

Advanced 4.4BSD |IPCukorial PSD:21-11

3. NETWORK LIBRAR Y ROUTINES

The discussion in section 2 indicated the possible need to locate and constrock aefivesses
when using the interprocess communicatiadilities in a distribted enironment. D ad in this task a
number of routines va been added to the standard C run-time librdnythis section we will consider the
new routines preided to manipulate netwk addressesWhile the 4.4BSD netarking facilities support
the Internet protocols and the Xerox NS protocols, most of the routines presented in this section do not
apply to the NS domainUnless otherwise stated, it should be assumed that the routines presented in this
section do not apply to the NS domain.

Locating a service on a remote host requiresyniavds of mapping before client and servmay
communicate. Aservice is assigned a name which is intended for human consumptiorithe.¢pgin
serveron host monet’ This name, and the name of the peer host, must then be translated inboknetw
addresseswvhich are not necessarily suitable for human consumptamally, the address must then used
in locating a pisicallocationandrouteto the service.The specifics of these three mappings amyliko
vary between netark architectures.For instance, it is desirable for a neik to not require hosts to be
named in such aay that their pisical location is knan by the client hostinstead, underlying services
in the netverk may discuer the actual location of the host at the time a client host wishes to communicate.
This ability to hae hosts named in a location independent manner may indeebead in connection
establishment, as a dis@ny process must takpace, lut allovs a host to be pisically mobile without
requiring it to notify its clientele of its current location.

Standard routines are pided for: mapping host names to netlvaddresses, nebrk names to net-
work numbers, protocol hames to protocol numbers, and service names to port numbers and the appropriate
protocol to use in communicating with the sarprocess.The file snetdbh> must be included when using
ary of these routines.

3.1. Hostnames
An Internet host name to address mapping is represented bystemtstructure:

struct hostenf

char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type (e.g., AF_INET) */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses, null terminated */
¥
#define h_addrh_addr_list[0] [*first address, netwk byte order */

The routinegethostbynam@N) takes an Internet host name and returt®stentstructure, while the rou-
tine gethostbyaddf3N) maps Internet host addresses intmstentstructure.

The oficial name of the host and its public aliases are returned by these routines, along with the
address type &mily) and a null terminated list ofxiable length addres&his list of addresses is required
because it is possible for a host todnaary addresses, all weng the same namelhe h_addrdefinition
is provided for backward compatibility and is defined to be the first address in the list of addresses in the
hostentstructure.

The database for these calls isvyided either by the filéetc/hostghostq5)), or by use of a name-
sener, named8). Becausef the diferences in these databases and their access protocols, the information
returned may diér. When using the host tableension of gethostbynamgonly one address will be
returned, bt all listed aliases will be included’he nameseer version may return alternate addresses, b
will not provide ary aliases other than onevgn as agument.

Unlike Internet names, NS names amgagks mapped into host addresses by the use of a standard NS
Clearinghouse servigea dstributed name and authentication sgrvThe algorithms for mapping NS

PSD:21-12 Adanced 4.4BSD IPCukorial

names to addresses via a Clearinghouse are rather complicated, and the routines are not part of the standard
libraries. Theusercontributed Courier (Xerox remote procedure call protocol) compiler contains routines

to accomplish this mapping; see the documentation xert@es proeided therein for more informatiorit

is expected that almost all sofare that has to communicate using NS will need to useatfid@iés of the

Courier compiler

An NS host address is represented by theviatig:

union ns_host {
u_char c_host[6];
u_short s_host[3];
h

union ns_net {
u_char c_net[4];
u_short s_net[2];

h

struct ns_addr {
union ns_net x_net;
union ns_host x_host;
u_short X_port;

h

The following code fragment inserts a kmo NS address intorss_addr

Advanced 4.4BSD |IPCukorial PSD:21-13

#include <sys/types.h>
#include <sys/soak.h>
#include <netns/ns.h>

u_long netnum;
struct sockaddr_ns dst;

bzero((char *)&dst, sizeof(dst));

/*

* There is no corenient way to assign a long

* integer to a‘union ns_net'at present; in

* the future, something will hopefully be pided,
* but this is the portable ay to go for na.

* The netvork number belw is the one for the NS net
* that the desired host (gyre) is on.

*/

netnum = htonl(2266);

dst.sns_addt_net = *(union ns_net *) &netnum;
dst.sns_dmily = AF_NS;

/*

*host 2.7.1.0.2a.18 == "gyre:Computer Science:UofMaryland"”
*

dst.sns_addt_host.c_host[0] = 0x02;
dst.sns_addt_host.c_host[1] = 0x07;
dst.sns_addt_host.c_host[2] = 0x01;
dst.sns_addt_host.c_host[3] = 0x00;
dst.sns_addt_host.c_host[4] = 0x2a;
dst.sns_addt_host.c_host[5] = 0x18;

dst.sns_addt_port = htons(75);

3.2. Network names
As for host names, routines for mapping rertanames to numbers, and back, arevided. These
routines return aetentstructure:
/*
* Assumption here is that a netk number
*fits in 32 bits -- probably a poor one.

*/
struct netenf

char *n_name; /* official name of net */

char **n_aliases; /* alias list */

int n_addrtype; /* net address type */

int n_net; /* network numberhost byte order */
%

The routineggetnetbynaméN), getnetbynumbdBN), andgetnetenf3N) are the netark counterparts to
the host routines described &bo The routines éract their information fronfetc/networks

NS network numbers are determined either by asking your local Xeroxdvletddministrator (and
hardcoding the information into your code), or by querying the Clearinghouse for addidssesternet-
work router is the only process that needs to manipulateonetmumbers on a gelar basis; if a process
wishes to communicate with a machine, it should ask the Clearinghouse for that rseackiress (which
will include the net number).

PSD:21-14 Adanced 4.4BSD IPCukorial

3.3. Pmotocol names

For protocols, which are defined iletc/piotocols the protoentstructure defines the protocol-name
mapping used with the routingstprotobynamé3N), getprotobynumbgBN), andgetprotoen{3N):

struct protoen{

char *p_name; [* official protocol name */
char **p_aliases; /* alias list */
int p_proto; [* protocol number */

h

In the NS domain, protocols are indicated by the "client type" field of a IDP heldegmrotocol
database»asts; see section 5 for more information.

3.4. Sevice names

Information rgarding services is a bit more complicatelservice is &pected to reside at a specific
“ port” and emply a particular communication protocollhis view is cnsistent with the Internet domain,
but inconsistent with other nebsk architecturesFurther a rvice may reside on multiple port#. this
occurs, the higher Vel library routines will hge © be bypassed orxended. Serviceawailable are con-
tained in the fildetc/services A service mapping is described by serventstructure,

struct serent {

char *s _name; [* official service name */

char **s aliases; /* alias list */

int S_port; /* port numbey network byte order */
char *s_proto; [* protocol to use */

¥
The routinegetservbynam@N) maps service names to a sgnvstructure by specifying a service name
and, optionallya qualifying protocol. Thus the call

sp = getservbyname("telnet", (char *) 0);

returns the service specification for a telneteeunsing ay protocol, while the call

sp = getservbyname("telnet", "tcp");

returns only that telnet seswwhich uses the TCP protocorhe routineggetservbypor3N) andgetser
ven(3N) are also pnided. Thegeservbyportroutine has an inteate similar to that prxaded by ge-
servbynamgean optional protocol name may be specified to qualify lookups.

In the NS domain, services are handled by a central dispatclhvéqar@s part of the Courier remote
procedure calldcilities. Agnin, the reader is referred to the Courier compiler documentation and to the
Xerox standard* for further details.

3.5. Miscellaneous

With the support routines described a@n Internet application program should rarelyé@ deal
directly with addressesThis allons services to be geloped as much as possible in a rataindependent
fashion. ltis clear howeve, that puging all netvork dependencies iew difficult. Solong as the user is
required to supply netwk addresses when naming services andetsdkere will avays some netark
dependengcin aprogram. Br example, the normal code included in client programs, such as the remote
login program, is of the form sha in Figure 1.(This example will be considered in more detail in section
4)

If we wanted to mal the remote login program independent of the Internet protocols and addressing
scheme we wuld be forced to add a layer of routines which mdsthe netwrk dependent aspects from
the mainstream login codd=or the current dcilities aailable in the system this does not appear to be

* Courier: The Remote Bcedue Call Protocol XSIS 038112.

Advanced 4.4BSD |IPCukorial PSD:21-15

worthwhile.

Aside from the address-related data base routines, therevaral sgher routines\ailable in the
run-time library which are of interest to userBhese are intended mostly to simplify manipulation of
names and addresseBable 1 summarizes the routines for manipulatiagiable length byte strings and
handling byte sapping of netwrk addresses andlues.

Call Synopsis

bcmp(sl, s2, n)| compare byte-strings; 0 if same, not O otherwise
bcopy(sl, s2, n)| copy n bytes from sl to s2

bzero(base, n) | zero-fill n bytes starting at base

htonl(val) corvert 32-bit quantity from host to netwk byte ordern
htons(\al) corvert 16-bit quantity from host to netwk byte ordern
ntohl(val) corvert 32-bit quantity from netark to host byte order
ntohs(\al) corvert 16-bit quantity from netark to host byte order

Table 1. C run-time routines.

The byte swapping routines are praed because the operating systeqpeets addresses to be sup-
plied in netvork order (aka'big-endian’ order). On“ little-endian’ architectures, such as Intel x86 and
VAX, host byte ordering is ddrent than netark byte ordering.Consequentlyprograms are sometimes
required to byte sap quantities.The library routines which return netvk addresses pvae them in net-
work order so that themay simply be copied into the structuresyided to the systemThis implies users
should encounter the byte apping problem only wheinterpretingnetwork addresseskor example, if an
Internet port is to be printed out the falimg code vould be required:

printf("port number %d\n", ntohs(sp->s_port));

On machines where unneeded these routines are defined as null macros.

PSD:21-16 Adanced 4.4BSD IPCukorial

#include <sys/types.h>
#include <sys/soak.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdln>

main(agc, agv)
int agc;
char *agv[];

struct sockaddr_in seav;,
struct serent *sp;

struct hostent *hp;

ints;

sp = getservbyname("login", "tcp");
if (sp == NULL) {
fprintf(stders "rlogin: tcp/login: unknan service\n");
exit(1);
}
hp = gethostbyname@r[1]);
if (hp == NULL) {
fprintf(stdert "rlogin: %s: unknwn host\n", agv[1]);
exit(2);
}
bzero((char *)&serer, szeof (serer));
bcopy(hp->h_addr(char *)&sener.sin_addrhp->h_length);
sener.sin_family = hp->h_addrtype;
sener.sin_port = sp->s_port;
s = 9cket(AF_INET, SOCK_STREAM, 0);
if (s<0){
perror(“rlogin: sockt");
exit(3);
}

/* Connect does the bind() for us */
if (connect(s, (char *)&seer, sizeof (serer)) < 0) {

perror(“rlogin: connect");
exit(5);

Figure 1. Remote login client code.

Advanced 4.4BSD |IPCukorial PSD:21-17

4. CLIENT/SERVER MODEL

The most commonly used paradigm in constructing digkib applications is the client/serv
model. Inthis scheme client applications request services from arsgrvcess.This implies an asymme-
try in establishing communication between the client anceseviiich has beerxamined in section 2In
this section we will look more closely at the interactions between client aref, sex consider some of
the problems in deloping client and seer applications.

The client and seer require a well knan set of comentions before service may be rendered (and
accepted). Thiset of comentions comprises a protocol which must be implemented at both ends of a con-
nection. Dependingn the situation, the protocol may be symmetric or asymmetria. symmetric proto-
col, either side may play the master owslales. Inan asymmetric protocol, one side is immutably recog-
nized as the mastewith the other as the sla An example of a symmetric protocol is the TELNET proto-
col used in the Internet for remote terminal emulatidn.example of an asymmetric protocol is the Inter
net file transfer protocol, FTANo matter whether the specific protocol used in obtaining a service is sym-
metric or asymmetric, when accessing a service there'cdiemt process’and a ‘server process’ We
will first consider the properties of senprocesses, then client processes.

A sernver process normally listens at a well Wwmaddress for service requesiEhat is, the seer
process remains dormant until a connection is requested by asotmmection to the seev's aldress. At
such a time the segv processwakes up’ and services the client, performing whasgeappropriate actions
the client requests of it.

Alternatve £hemes which use a service srmay be used to eliminate a flock of sgrprocesses
clogging the system while remaining dormant most of the tif@. Internet serers in 4.4BSD, this
scheme has been implemented ivigid, the so called'internet supessener.” Inetdlistens at a ariety of
ports, determined at start-up by reading a configurationileen a connection is requested to a port on
which inetd is listening,inetd executes the appropriate servprogram to handle the clienWith this
method, clients are unare that an intermediary suchiagtd has played anpart in the connectionlnetd
will be described in more detail in section 5.

A similar alternatve heme is used by most Xerox servicés.general, the Courier dispatch pro-
cess (if used) accepts connections from processes requesting services of some sort orTarothient
processes request a particular <program numiaesion numberprocedure number> triplelf the dis-
patcher knars of such a program, it is started to handle the request; if not, an error is reported to the client.
In this way, only one port is required to service aganariety of diferent requestsAgain, the Courier
facilities are not wailable without the use and installation of the Courier compildre information pre-
sented in this section applies only to NS clients and services that do not use Courier

4.1. Severs

In 4.4BSD most seprs are accessed at well lnmolnternet addresses or UNIX domain namesr.
example, the remote login sems main loop is of the form shwn in Figure 2.

The first step tadn by the serr is look up its service definition:
sp = getservbyname("login", "tcp");
if (sp == NULL) {
fprintf(stdert "rlogind: tcp/login: unknavn service\n");
exit(1);
}

The result of thgetservbynameall is used in later portions of the code to define the Internet port at which
it listens for service requests (indicated by a connection).

PSD:21-18 Adanced 4.4BSD IPCukorial

main(agc, agv)
int agc;
char *agv[];

int f;
struct sockaddr_in from;
struct serent *sp;

sp = getservbyname("login", "tcp");

if (sp == NULL) {
fprintf(stdert "rlogind: tcp/login: unknan service\n");
exit(1);

}

#ifndef DEBUG
/* Disassociate seer from controlling terminal */

#endif
sin.sin_port = sp->s_port* Restricted port -- see section 5 */
f: socket(AF_INET, SOCK_STREAM, 0);
i.lé.(bind(f, (struct sockaddr *) &sin, sizeof (sin)) < 0) {

}

ii;ten(f, 5);
for (;;) {

int g, len = sizeof (from);

g = accept(f, (struct sockaddr *) &from, &len);
if (9<0){
if (errno '= EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");
continue;

}

if (fork() == 0) {
close(f);
doit(g, &from);

}

close(q);

Figure 2. Remote login seer.

Advanced 4.4BSD |IPCukorial PSD:21-19

Step tw is to disassociate the sewfrom the controlling terminal of itsvoker:

for (i=0;i<3; ++i)
close(i);

open("/", O_RDONV);
dup2(0, 1);
dup2(0, 2);

i = open("/de/tty", O_RDWNR);
if (i >=0) {
ioctl(i, TIOCNOTTY, 0);
close(i);

}

This step is important as the serwvill likely not want to receie dgnals delered to the process group of
the controlling terminal.Note, havever, that once a seer has disassociated itself it can no longer send
reports of errors to a terminal, and must log errorsysa.

Once a semr has established a pristinevieonment, it creates a saakand bgins accepting service
requests. Théind call is required to insure the sendistens at its>@ected location.It should be noted
that the remote login seew listens at a restricted port numbeerd must therefore be run with a useiof
root. Thisconcept of a'festricted port numberis 4BSD specific, and is eered in section 5.

The main body of the loop igifly simple:
for (;;) {

int g, len = sizeof (from);

g = accept(f, (struct sockaddr *)&from, &len);
if (g <0){
if (errno '= EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");
continue;

}

if (fork() == 0) { /* Child */
close(f);
doit(g, &from);

}

close(q); [*Paent */

}

An acceptcall blocks the seer until a client requests servic&his call could return aaflure status if the

call is interrupted by a signal such as SIGCHLD (to be discussed in sectidhesgfore, the returnalue

from acceptis checled to insure a connection has actually been established, and an error report is logged
via sysla if an error has occurred.

With a connection in hand, the sernthen forks a child process anddkes the main body of the
remote login protocol processinglote hav the sockt used by the parent for queuing connection requests
is closed in the child, while the satkcreated as a result of theceptis closed in the pareniThe address
of the client is also handed tHeit routine because it requires it in authenticating clients.

4.2. Clients

The client side of the remote login servicasashavn earlier in Figure 1.One can see the separate,
asymmetric roles of the client and sam¢learly in the codeThe serer is a passe entity, listening for
client connections, while the client process is arvaditity, initiating a connection whenvaoked.

Let us consider more closely the stepeiaky the client remote login procedss in the sergr pro-
cess, the first step is to locate the service definition for a remote login:

PSD:21-20 Adanced 4.4BSD IPCukorial

sp = getservbyname("login", "tcp");

if (sp == NULL) {
fprintf(stdert "rlogin: tcp/login: unknwn service\n");
exit(1);

}

Next the destination host is loe# up with egethostbynameall:

hp = gethostbyname@r[1]);

if (hp == NULL) {
fprintf(stdert "rlogin: %s: unknan host\n", agv[1]);
exit(2);

}

With this accomplished, all that is required is to establish a connection to tke aetive requested host
and start up the remote login protocdhe addressuifer is cleared, then filled in with the Internet address
of the foreign host and the port number at which the login process resides on the foreign host:

bzero((char *)&serer, Szeof (serer));
bcopy(hp->h_addr(char *) &sener.sin_addrhp->h_length);
sener.sin_family = hp->h_addrtype;

sener.sin_port = sp->s_port;

A socket is created, and a connection initiat&bte thatconnectimplicitly performs abind call, sincesis
unbound.

s = cket(hp->h_addrtype, SOCK_STREAM, 0);

if (s<0){
perror(“rlogin: sockt");
exit(3);

}

if (connect(s, (struct sockaddr *) &serysizeof (serer)) < 0) {
perror(“rlogin: connect");
exit(4);

}

The details of the remote login protocol will not be considered here.

4.3. Connectionlesserwers

While connection-based services are the norm, some services are based on the use of datagram sock-
ets. Onejn particular is the ‘rwho’ service which preides users with status information for hosts con-
nected to a local area nei¢. Thisservice, while predicated on the abilitydmadcastinformation to all
hosts connected to a particular netky is of interest as axample usage of datagram setk

A user on ayp machine running the rwho semvmay find out the current status of a machine with the
ruptimg1) program.The output generated is illustrated in Figure 3.

Status information for each host is periodically broadcast by rwhergerecesses on each machine.
The same seer process also rewes the status information and uses it to update a datab#se database
is then interpreted to generate the status information for each$@rsers operate autonomoustpupled
only by the local netark and its broadcast capabilities.

Note that the use of broadcast for such a taskiily inefficient, as all hosts must process each mes-
sage, whether or not using an rwho sennless such a service is Baiently uniersal and is frequently
used, the xpense of periodic broadcasts outweighs the simplicity

Multicasting is an alternate © broadcasting. Settingp multicast soakts is described in Section
5.10.

Advanced 4.4BSD |IPCukorial PSD:21-21

arpa up 9:45, Susers, load 1.15, 1.39, 131
cad up 2+12:04, 8users, load 4.67, 5.13, 4.59
calder up 10:10, Ousers, load 0.27, 0.15, 0.14
dali up 2+06:28, Qsers, load 1.04, 1.20, 1.65
degas w 25+09:48, C(Qusers,load 1.49, 1.43, 141
ear up 5+00:05, Qusers, load 1.51, 1.54, 1.56
ernie dovn 0:24

es\ax dovn 17:04

ingres davn 0:26

kim up 3+09:16, 8users, load 2.03, 2.46, 3.11
matisse up 3+06:18, Qusers, load 0.03, 0.03, 0.05
medea up 3+09:39, sers, load 0.35, 0.37, 0.50
merlin dovn 19+15:37

miro up 1+07:20, Tusers, load 4.59, 3.28, 2.12
monet up 1+00:43, sers, load 0.22, 0.09, 0.07
0z dovn 16:09

statax up 2+15:57, dusers, load 1.52, 1.81, 1.86
uchvax up 934, 2users, load 6.08, 5.16, 3.28

Figure 3. ruptime output.

The rwho sergr, in a smplified form, is pictured in Figure 4There are tw sparate tasks per
formed by the seler. The first task is to act as a raegiof status information broadcast by other hosts on
the netvark. Thisjob is carried out in the main loop of the prograReckets recaied a the rwho port are
interrocated to insure theve keen sent by another rwho senprocess, then are time stamped with their
arrival time and used to update a file indicating the status of the Wdstn a host has not been heard from
for an etended period of time, the database interpretation routines assume the hast endandicate
such on the status reporfghis algorithm is prone to error as a griay be den while a host is actually
up, lut senes our current needs.

The second task performed by the seris to supply information gerding the status of its host.
This involves periodically acquiring system status information, packaging it up in a message and broadcast-
ing it on the local netark for other rwho seers to hear The supply function is triggered by a timer and
runs of a dgnal. Locatingthe system status information is savhat involved, kut uninteresting.Decid-
ing where to transmit the resultant patls somehat problematical, hvever.

Status information must be broadcast on the local ar&twior networks which do not support the
notion of broadcast another scheme must be used to simulate or replace broadoastipgssibility is to
enumerate the kmen neighbors (based on the status messagewvegdeom other rwho seers). This,
unfortunatelyrequires some bootstrapping information, for aeewill have ro idea what machines are its
neighbors until it recees gatus messages from theriherefore, if all machines on a net are freshly
booted, no machine will lva any known neighbors and thus vex receve, or send, ag status information.
This is the identical problema¢ed by the routing table management process in patipggouting status
information. Thestandard solution, unsatsitory as it may be, is to inform one or more ses\of knovn
neighbors and request that yreways communicate with these neighbotseach serer has at least one
neighbor supplied to it, status information may then pragathrough a neighbor to hosts which are not
(possibly) directly neighborsif the serer is able to support nebnks which preide a broadcast capabil-
ity, as well as those which do not, then netks with an arbitrary topology may share status information*.

It is important that softare operating in a disttitted erironment not hee any ste-dependent infer
mation compiled into it.This would require a separate gopf the serer at each host and nekmainte-
nance a sere headache.4.4BSD attempts to isolate host-specific information from applications by

* One must, havever, be concerned aboutléops”. Thatis, if a host is connected to multiple netks, it will receve ga-
tus information from itself.This can lead to an endlessasteful, &change of information.

PSD:21-22

main()

{

Adanced 4.4BSD IPCukorial

sp = getservbyname("who", "udp");

net = getnetbyname("localnet");

sin.sin_addr = inet_maladdr(INMDDR_ANY, net);
sin.sin_port = sp->s_port;

s = ocket(AF_INET, SOCK_DGRAM, 0);

on=1,

if (setsoclopt(s, SOL_SOCKETSO_BROADCAST, &on, sizeof(on)) < 0) {
syslog(LOG_ERR, "setsookt SO_BROADCAST: %m");
exit(1);

}

bind(s, (struct sockaddr *) &sin, sizeof (sin));

signal(SIGALRM, onalrm);
onalrm();
for (;;) {
struct whod wd;
int cc, whod, len = sizeof (from);

cc = recvfrom(s, (char *)&wd, sizeof (struct whod), O,
(struct sockaddr *)&from, &len);
if (cc <=0) {
if (cc <0 && errno !'= EINTR)
syslog(LOG_ERR, "rwhod: recv: %m");
continue;
}
if (from.sin_port = sp->s_port) {
syslog(LOG_ERR, "rwhod: %d: bad from port",
ntohs(from.sin_port));
continue;

}

i.lél(!v erify(wd.wd_hostname)) {

syslog(LOG_ERR, "rwhod: malformed host name from %x",

ntohl(from.sin_adds_addr));
continue;
}
(void) sprintf(path, "%s/whod.%s" MHODIR, wd.wd_hostname);
whod = open(path, O_WBNLY | O_CREAI | O_TRUNC, 0666);

(void) time(&wd.wd_recvtime);

(void) write(whod, (char *)&wd, cc);
(void) close(whod);

Figure 4.rwho serer.

Advanced 4.4BSD |IPCukorial PSD:21-23

providing system calls which return the necessary informatigh’mechanism ssts, in the form of an
ioctl call, for finding the collection of netwks to which a host is directly connectdelurther a local net-
work broadcasting mechanism has been implemented at thetdaaf. Combiningthese tw features
allows a process to broadcast oty directly connected local netwk which supports the notion of broad-
casting in a site independent mannéhis allovs 4.4BSD to sok the problem of deciding moto propa-
gae status information in the caserefo, or more generally in broadcasting: Such status information is
broadcast to connected netks at the soak level, where the connected naivks hae keen obtained via
the appropriatéoctl calls. Thespecifics of such broadcastings are comptewvever, and will be caered

in section 5.

* An example of such a system call is tpghostnamé?) call which returns the host*official’’ name.

PSD:21-24 Adanced 4.4BSD IPCukorial

5. ADVANCED TOPICS

A number of &cilities hae yet to be discussed-or most users of the IPC the mechanisms already
described will sufce in constructing distrilted applicationsHowever, others will find the need to utilize
some of the features which we consider in this section.

5.1. Outof band data

The stream so@ht abstraction includes the notion @ut of band’ data. Outof band data is a logi-
cally independent transmission channel associated with each pair of connected stretsn Sadif band
data is deliered to the user independently of normal d&the abstraction defines that the out of band data
facilities must support the reliable dediy of at least one out of band message at a tifilis message may
contain at least one byte of data, and at least one message may be pendingtoéhie user at gnone
time. For communications protocols which support only in-band signaling (i.e. ¢featudata is dalered
in sequence with the normal data), the system normaitgcts the data from the normal data stream and
stores it separatelyThis allovs users to choose between reirgj the ugent data in order and reeigig it
out of sequence without Wiag to luffer all the interening data. It is possible to ‘peek” (via
MSG_PEEK) at out of band dat#. the soclet has a process group, a SIGURG signal is generated when
the protocol is notified of itsxéstence. Aprocess can set the process group or process id to be informed by
the SIGURG signal via the appropridtatl call, as described belofor SIGIO. If multiple soclets may
have aut of band dataveaiting delivery, a selectcall for exceptional conditions may be used to determine
those sockts with such data pendingleither the signal nor the select indicate the actualshof the out-
of-band data, it only notification that it is pending.

In addition to the information passed, a logical mark is placed in the data stream to indicate the point
at which the out of band dateaw sent.The remote login and remote shell applications use #laiity to
propagte signals between client and sgrprocessesWhen a signal flushs gmpending output from the
remote process(es), all data up to the mark in the data stream is discarded.

To ®nd an out of band message the MSG_OOB flag is suppliedandar sendtocalls, while to
receve aut of band data MSG_OOB should be indicated when performiagvérom or recv call. To find
out if the read pointer is currently pointing at the mark in the data stream, the BUA®X ioctl is pro-
vided:

ioctl(s, SIOCAMARK, &yes);

If yesis a 1 on return, the reread will return data after the markdtherwise (assuming out of band data

has arwved), the net read will pravide data sent by the client prior to transmission of the out of band sig-
nal. Theroutine used in the remote login process to flush output on receipt of an interrupt or quit signal is
shavn in Figure 5.1t reads the normal data up to the mark (to discard it), then reads the out-of-band byte.

A process may also read or peek at the out-of-band data without first reading up to th&hisaik.
more dificult when the underlying protocol dedrs the ugent data in-band with the normal data, and only
sends notification of its presence ahead of time (e.g., the TCP protocol used to implement streams in the
Internet domain).With such protocols, the out-of-band byte may not yee laived when arecv is done
with the MSG_OOB flag.In that case, the call will return an error of EWLDBLOCK. Worse, there
may be enough in-band data in the inpuffdr that normal flav control prevents the peer from sending the
urgent data until the Wfer is cleared.The process must then read enough of the queued data that the
urgent data may be dedred.

Certain programs that use multiple bytes a@femt data and must handle multiplgemt signals (e.g.,
telnet(1C)) need to retain the position ofgent data within the streanThis treatment is\ailable as a
soclet-level option, SO_OOBINLINE; sesetsokopt(2) for usage.With this option, the position of gent
data (the ‘mark™) is retained, bt the ugent data immediately folles the mark within the normal data
stream returned without the MSG_OOB flageception of multiple @ent indications causes the mark to
move, but no out-of-band data are lost.

Advanced 4.4BSD |IPCukorial PSD:21-25

#include <sys/ioctl.h>
#include <sysl/file.h>

00b()
{

int out = FWRITE, mark;
char vaste[BJFSIZ];

/* flush local terminal output */
ioctl(1, TIOCFLUSH, (char *)&out);
for (;;) {
if (ioctl(rem, SIOCAMARK, &mark) < 0) {
perror(“ioctl");

break;
}
if (mark)
break;

(void) read(rem, aste, sizeof (aste));
}
if (recv(rem, &mark, 1, MSG_OOB) < 0) {
perror("recv");

Figure 5. Flushing terminal I/O on receipt of out of band data.

5.2. Non-BlockingSockets

It is occasionally corenient to mak use of sockts which do not block; that is, I/O requests which
cannot complete immediately andwd therefore cause the process to be suspendsgting completion
are not gecuted, and an error code is return&hce a soakt has been created via thake call, it may
be marled as non-blocking bigntl as followvs:

#include <fcntl.h>
int s
s = ocket(AF_INET, SOCK_STREAM, 0);

if (fentl(s, F_SETFL, FNDELAX) < 0)
perror(*fcntl F_SETFL, FNDELX");
exit(1);

When performing non-blocking 1/0O on satk, one must be careful to check for the errolEWD-
BLOCK (stored in the globalariableerrno), which occurs when an operatiomwd normally block, bt
the sockt it was performed on is magll as non-blockingln particular accept connect send recv, read,
and write can all return EMWULDBLOCK, and processes should be prepared to deal with such return
codes. Ifan operation such assendcannot be done in its entirethut partial writes are sensible (for
example, when using a stream sebk the data that can be sent immediately will be processed, and the
return \alue will indicate the amount actually sent.

PSD:21-26 Adanced 4.4BSD IPCukorial

5.3. Interrupt driven socket 1/O

The SIGIO signal alls a process to be notified via a signal when aetdck more generally file
descriptor) has dataaiting to be read.Use of the SIGIOdcility requires three stepszirst, the process
must set up a SIGIO signal handler by use okthealor sigveccalls. Secondt must set the process id or
process group id which is to reeeirtification of pending input to itsam process id, or the process group
id of its process group (note that thealdf process group of a satkis group zero)This is accomplished
by use of arfcntl call. Third,it must enable asynchronous notification of pending I/O requests with another
fcntl call. Samplecode to allv a gven process to receé information on pending I/O requests asythe
occur for a sodlt sis given in FHgure 6. With the addition of a handler for SIGURG, this code can also be
used to prepare for receipt of SIGURG signals.

#include <fcntl.h>

|nt io_handler();

s.i.g.gnaI(SIGIO, io_handler);

/* Set the process restig SIGIO/SIGURG signals to us */

if (fentl(s, F_SETOWN, getpid()) < 0) {
perror(“fcntl F_SEDWN");
exit(1);

}

/* Allow receipt of asynchronous I/O signals */

if (fentl(s, F_SETFL, RSYNC) < 0) {
perror(*fcntl F_SETFL, ASYNC");
exit(1);

Figure 6. Use of asynchronous notification of 1/0O requests.

5.4. Signalsand process goups

Due to the eistence of the SIGURG and SIGIO signals each eolelis an associated process num-
ber, just as is done for terminal3.his value is initialized to zero,ub may be redefined at a later time with
the F_SEOWN fcntl, such as vas done in the code almfor SIGIO. To st the sockt’s process id for sig-
nals, positie aguments should begn to thefcntl call. To st the sockt’s process group for signals, gre
ative aguments should be passedi¢atl. Note that the process number indicates either the associated pro-
cess id or the associated process group; it is impossible to specify both at the sandesimitar fcntl,
F_GETOWN, is available for determining the current process number of aetock

Another signal which is useful when constructing serprocesses is SIGCHLDThis signal is
delivered to a process whenyaohild processes lva changed stateNormally serers use the signal to
“reap’ child processes that ta exted without eplicitly awaiting their termination or periodic polling for
exit status. For example, the remote login sevloop shan in Figure 2 may be augmented asvaman
Figure 7.

If the parent seer processdils to reap its children, a & number of'’zombie” processes may be
created.

5.5. Pseudderminals

Many programs will not function properly without a terminal for standard input and ou§inte
soclets do not prade the semantics of terminals, it is often necessaryve agsocess communicating
over the netwark do so through pseudo-terminal A pseudo- terminal is actually a pair ofvdees, master

Advanced 4.4BSD |IPCukorial PSD:21-27

int reaper();

signal(SIGCHLD, reaper);
listen(f, 5);
for (;;) {

int g, len = sizeof (from);

g = accept(f, (struct sockaddr *)&from, &len,);
if (g<0){
if (errno = EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");
continue;

}

#include <vait.h>
reaper()

{

union wait status;

while (wait3(&status, WNOHANG, 0) > 0)

Figure 7. Use of the SIGCHLD signal.

and slae, which allov a process to seevas an active ggent in communication between processes and users.
Data written on the sl& sde of a pseudo-terminal is supplied as input to a process reading from the master
side, while data written on the master side are processed as terminal input foveahénsthis way, the
process manipulating the master side of the pseudo-terminal has ceattbleoinformation read and writ-

ten on the shee dde as if it were manipulating theyboard and reading the screen on a real termiFiad
purpose of this abstraction is to prege®rminal semanticsver a retwork connection— that is, the sk

side appears as a normal terminal tp jprocess reading from or writing to it.

For example, the remote login semvuses pseudo-terminals for remote login sessiéngser log-
ging in to a machine across the netkis pravided a shell with a sl@ pseudo-terminal as standard input,
output, and error The serer process then handles the communication between the progrankesdiby
the remote shell and the useldcal client processWhen a user sends a character that generates an inter
rupt on the remote machine that flushes terminal output, the pseudo-terminal generates a control message
for the serer process.The serer then sends an out of band message to the client process to signal a flush
of data at the real terminal and on the intaiag data bffered in the netark.

Under 4.4BSD, the name of theadadde of a pseudo-terminal is of the fofdev/ttyxy, wherex is a
single letter starting at ‘p’ and continuing to ‘t/ is a h&adecimal digit (i.e., a single character in the
range 0 through 9 or ‘a’ through’)f The master side of a pseudo-terminaldsv/ptyxy wherex andy
correspond to the sla 9de of the pseudo-terminal.

In general, the method of obtaining a pair of master ame gleudo-terminals is to find a pseudo-
terminal which is not currently in usdhe master half of a pseudo-terminal is a single-opegitelethus,
each master may be opened in turn until an open succ&bdsslae sde of the pseudo-terminal is then
opened, and is set to the proper terminal modes if necesHagyprocess theforks; the child closes the
master side of the pseudo-terminal, @xelcs the appropriate progranMeanwhile, the parent closes the
slave dde of the pseudo-terminal anddies reading and writing from the master siG&mple code mak-
ing use of pseudo-terminals isvgh in Fgure 8; this code assumes that a connection on &t®ekists,
connected to a peer whants a service of some kind, and that the process has disassociated itself/from an

PSD:21-28 Adanced 4.4BSD IPCukorial

previous controlling terminal.

gotpty = 0;
for (c =’p’; lgotpty && € <="'s’; c++) {
line = "/dev/ptyXX";
line[sizeof("/de/pty")-1] = c;
line[sizeof("/de/ptyp™)-1] = '0’;
if (stat(line, &statloif) < 0)
break;
for (i=0;i< 16; i++) {
line[sizeof("/de/ptyp")-1] = "0123456789abcdef"[i;
master = open(line, O_RBR);
if (master > 0) {

gotpty = 1;
break;
}
}
}
if (‘gotpty) {
syslog(LOG_ERR, "All netark ports in use");
exit(1);
}

line[sizeof("/d&/")-1] ='t’;
slave = pen(line, O_RIBVR); /* slaveis nov dlave sde */

if (slave <0 {
syslog(LOG_ERR, "Cannot open#apty %s", line);
exit(1);

}

ioctl(slave, TIOCGETR &b); /* Set slae ty modes */
b.sg_flags = CRMOD|XABS|ANYP;
ioctl(slave, TIOCSETR &b);

i = fork();

if (i<0){
syslog(LOG_ERR, "“fork: %m");
exit(1);

}else if (i) { [* Parent */
close(slae);

}else { * Child */

(void) close(s);
(void) close(master);
dup2(slae, 0);
dup2(slae, 1);
dup2(slae, 2);
if (slave > 2

(void) close(slae);

Figure 8. Creation and use of a pseudo terminal

Advanced 4.4BSD |IPCukorial PSD:21-29

5.6. Selectingspecific protocols

If the third agument to thesodket call is 0, sodket will select a dedult protocol to use with the
returned soodt of the type requested’he defult protocol is usually correct, and alternate choices are not
usually aailable. Havever, when using‘taw” sockets to communicate directly withver-level protocols
or hardvare inter&ces, the protocol gmment may be important for setting up demultiplg. For exam-
ple, rav sockets in the Internetainily may be used to implement axnprotocol abee IP, and the sockt
will receive packets only for the protocol specifiedo dbtain a particular protocol one determines the pro-
tocol number as defined within the communication domé&im. the Internet domain one may use one of
the library routines discussed in section 3, suaiegmotobyname

#include <sys/types.h>
#include <sys/soak.h>
#include <netinet/in.h>
#include <netdin>

pp = getprotobyname("mgcp");
s = cket(AF_INET, SOCK_STREAM, pp->p_proto);

This would result in a so@k s using a stream based connectiaut, With protocol type of hewtcp” i nstead
of the deéult “tcp.”

In the NS domain, thevailable soclet protocols are defined ime&tns/ns.h. To create a ra socket
for Xerox Error Protocol messages, one might use:

#include <sys/types.h>
#include <sys/soak.h>
#include <netns/ns.h>

s = ocket(AF_NS, SOCK_RW, NSPROTO_ERRORY);

5.7. Address binding

As was mentioned in section 2, binding addresses toet®ak the Internet and NS domains can be
fairly complex. As a lrief remindey these associations are composed of local and foreign addresses, and
local and foreign portsPort numbers are allocated out of separate spaces, one for each system and one for
each domain on that systerfihrough thebind system call, a process may specify half of an association,
the <local address, local port> part, while toanectandacceptprimitives ae used to complete a s@tls
association by specifying the <foreign address, foreign port> Sante the association is created i tw
steps the association uniqueness requirement indicateidysly could be violated unless care iseiak
Further it is unrealistic to &pect user programs tovedys knav proper \alues to use for the local address
and local port since a host may reside on multiple oidsvand the set of allocated port numbers is not
directly accessible to a user

To dmplify local address binding in the Internet domain the notion ofildtard” address has been
provided. Whenan address is specified asAINDR_ANY (a manifest constant defined in <netinet/in.h>),
the system interprets the address'@sy ‘valid address’ For example, to bind a specific port number to a
soclet, hut leave te local address unspecified, the foilog code might be used:

PSD:21-30 Adanced 4.4BSD IPCukorial

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in sin;

s = 9cket(AF_INET, SOCK_STREAM, 0);
sin.sin_amily = AF_INET,

sin.sin_adds_addr = htonl(IKDDR_ANY);
sin.sin_port = htons(MYPOR;

bind(s, (struct sockaddr *) &sin, sizeof (sin));

Soclets with wildcarded local addresses may rex@essages directed to the specified port nupdner

sent to ap of the possible addresses assigned to a Hastexample, if a host has addresses 128.32.0.4 and
10.0.0.78, and a soekis bound as ale, the process will be able to accept connection requests which are
addressed to 128.32.0.4 or 10.0.0.78a sener process wished to only alchosts on a gien network
connect to it, it wuld bind the address of the host on the appropriateonetw

In a similar &shion, a local port may be left unspecified (specified as zero), in which case the system
will select an appropriate port number for Tthis shortcut will verk both in the Internet and NS domains.
For example, to bind a specific local address to asbdkt to leae the local port number unspecified:

hp = gethostbyname(hostname);
if (hp == NULL) {

}

bcopy(hp->h_addr(char *) sin.sin_addihp->h_length);
sin.sin_port = htons(0);

bind(s, (struct sockaddr *) &sin, sizeof (sin));

The system selects the local port number based omrtteria. Thefirst is that on 4BSD systems, Internet
ports belaw IPPOR_RESER/ED (1024) (for the Xerox domain, 0 through 3000) are reskfer prvi-
leged users (i.e., the super user); Internet porteealBiPOR_USERRESERED (50000) are reseed for
non-prvileged serers. Thesecond is that the port number is not currently bound to some othet.sttk
order to find a free Internet port number in theifgied range theresvportliibrary routine may be used as
follows to return a stream satkin with a pwileged port number:

int Iport = IPPOR_RESERED - 1;
ints;

s = resvport(&lport);
if (s<0){
if (errno == EAGAIN)
fprintf(stdert "soclet: all ports in use\n");
else
perror(“rresvport: soak");

}

The restriction on allocating portsag done to allw processes»ecuting in a ‘secure” environment to per
form authentication based on the originating address and port nufdreexample, therlogin(1) com-
mand allevs users to log in across a netw without being astd for a passerd, if two conditions hold:
First, the name of the system the user is logging in from is in theetiéosts.equion the system he is
logging in to (or the system name and the user name are in the.dsestsfile in the uses home direc-
tory), and second, that the userogin process is coming from a yiteged port on the machine from
which he is logging.The port number and netrk address of the machine from which the user is logging
in can be determined either by themresult of theacceptcall, or from thegetpeernamesall.

Advanced 4.4BSD |IPCukorial PSD:21-31

In certain cases the algorithm used by the system in selecting port numbers is unsuitable for an appli-
cation. Thisis because associations are created incagi@p processFor example, the Internet file trans-
fer protocol, FTPspecifies that data connections mustagis originate from the same local poHowever,
duplicate associations argagded by connecting to ddrent foreign ports.In this situation the system
would disallav binding the same local address and port number to a&sdck previous data connectios’
soclet still existed. D override the dediult port selection algorithm, an option call must be performed prior
to address binding:

int on=1;

setsockpt(s, SOL_SOCKETSO_REUSEADDR, &on, sizeof(on));
bind(s, (struct sockaddr *) &sin, sizeof (sin));

With the abwe all, local addresses may be bound which are already inTisis. does not violate the
uniqueness requirement as the system still checks at connect time to beysoifeeaisockts with the
same local address and port do natehthe same foreign address and pdiithe association alreadyists,
the error EADDRINUSE is returnedA related sockt option, SO_REUSEPQRwhich allavs completely
duplicate bindings, is described in the IP multicasting section.

5.8. Soclet Options

It is possible to set and get a number of options onetecka thesetsokopt andgetsodapt system
calls. Theseoptions include such things as marking a sbdkr broadcasting, not to route, to linger on
close, etc.In addition, there are protocol-specific options for IP and, BEBescribed irip(4), tcp(4), and
in the section on multicasting belo

The general forms of the calls are:
setsockpt(s, level, optname, optai, optlen);
and

getsoclopt(s, level, optname, opti, optlen);

The parameters to the calls are as fedios is the sockt on which the option is to be appliedevel
specifies the protocol layer on which the option is to be applied; in most cases thissisclst tevel”’,
indicated by the symbolic constant SOL_SOCKH§afined in<sys/soke.h>. The actual option is speci-
fied inoptnameand is a symbolic constant also definedsays/so&et.h>. OptvalandOptlenpoint to the
value of the option (in most cases, whether the option is to be turned di), @ndfthe length of thealue
of the option, respeettly. For getisodkopt, optlenis a \alue-result parametenitially set to the size of the
storage area pointed to bptval and modified upon return to indicate the actual amount of storage used.

An example should help clarify thingdt is sometimes useful to determine the type (e.g., stream,
datagram, etc.)of an &isting soclet; programs unddnetd (described bel@) may need to perform this
task. Thiscan be accomplished as falls via the SO_TYPE soekoption and thgetsodopt call:

#include <sys/types.h>
#include <sys/soak.h>

int type, size;
size = sizeof (int);
if (getsoclopt(s, SOL_SOCKETSO_TYPE, (char *) &type, &size) < 0) {

}

After the getsodkopt call, typewill be set to the alue of the soait type, as defined sys/soke.h>. If,
for example, the soak were a datagram sak type would have the \alue corresponding to

PSD:21-32 Adanced 4.4BSD IPCukorial

SOCK_DGRAM.

5.9. Broadcasting and determining netwrk configuration

By using a datagram soel it is possible to send broadcast aslon may networks supported by
the system.The netverk itself must support broadcast; the systenvides no simulation of broadcast in
software. Broadcasthessages can place a high load on a arétwince thg force &ery host on the net-
work to service them.Consequentlythe ability to send broadcast patk has been limited to satk
which are gplicitly marked as allawing broadcastingBroadcast is typically used for one ofaweasons: it
is desired to find a resource on a local mekawwithout prior knavledge of its address, or important func-
tions such as routing require that information be sent to all accessible neighbors.

Multicasting is an alternate o broadcasting. Settingp IP multicast soeks is described in the xte
section.

To =nd a broadcast message, a datagramessbbkuld be created:
s = ocket(AF_INET, SOCK_DGRAM, 0);
or
s = ocket(AF_NS, SOCK_DGRAM, 0);
The sockt is marled as allwing broadcasting,

int on=1;

setsockpt(s, SOL_SOCKETSO_BROADCAST, &on, sizeof (on));
and at least a port number should be bound to theesock

sin.sin_amily = AF_INET,

sin.sin_adds_addr = htonl(IKDDR_ANY);
sin.sin_port = htons(MYPOR;

bind(s, (struct sockaddr *) &sin, sizeof (sin));

or, for the NS domain,

sns.sns dmily = AF_NS;

netnum = htonl(net);

sns.sns_adde_net = *(union ns_net *) &netnum; /* insert net number */
sns.sns_adde_port = htons(MYPOR);

bind(s, (struct sockaddr *) &sns, sizeof (sns));

The destination address of the message to be broadcast depends ondii€s)eiw which the message is
to be broadcastThe Internet domain supports a shorthand notation for broadcast on the locaknttes
address IMDDR_BROADCAST (defined in getinet/in.t». To determine the list of addresses for all
reachable neighbors requires Wwiedge of the netarks to which the host is connectefiince this infor
mation should be obtained in a host-independastiibn and may be impossible to der4.4BSD praides

a method of retriging this information from the system data structuréhe SIOCGIFCONHoctl call
returns the integice configuration of a host in the form of a sinfgenf structure; this structure contains a
“ data areawhich is made up of an array of ififeqstructures, one for each netsk interiace to which the
host is connectedThese structures are definedimet/if.h> as followvs:

Advanced 4.4BSD |IPCukorial PSD:21-33

struct ifconf {

h

#define
#define

#define

int ifc_len; /* size of associateduffer */
union {

caddr_t ifcu_bf;
struct ifreg*ifcu_req;

}ifc_ifcu;
ifc_lof ifc_ifcu.ifcu_kuf /* buffer address */
ifc_req ifc_ifcu.ifcu_req [*array of structures returned */

IFMMSIZ 16

struct ifreq {

h

#define
#define
#define
#define
#define

char ifr_name[IFMMSIZ]; [* if name, e.g. "en0" */
union {

struct sockaddifru_addr;
struct sockaddifru_dstaddr;
struct sockaddifru_broadaddr;
short ifru_flags;

caddr_t ifru_data;

}ifr_ifru;

ifr_addr ifr_ifru.ifru_addr /* address */

ifr_dstaddr ifr_ifru.ifru_dstaddr /*other end of p-to-p link */
ifr_broadaddr ifr_ifru.ifru_broadaddr Btoadcast address */
ifr_flags ifr_ifru.ifru_flags /*flags */

ifr_data ifr_ifru.ifru_data [*for use by intedice */

The actual call which obtains the inegé configuration is

struct ifconf ifc;
char wf[BUFSIZ];

ifc.ifc_len = sizeof (bf);
ifc.ifc_buf = buf;
if (ioctl(s, SIOCGIFCONF(char *) &ifc) < 0) {

}

After this call buf will contain oneifreq structure for each netwk to which the host is connected, and
ifc.ifc_lenwill have been modified to reflect the number of bytes used bifrtbgstructures.

For each structure therexists a set of‘interface flags'which tell whether the netwk correspond-
ing to that interdice is up or den, point to point or broadcast, etthe SIOCGIFFLASS ioctl retrieves
these flags for an intexfe specified by afreqstructure as follos:

PSD:21-34 Adanced 4.4BSD IPCukorial

struct ifreq *ifr;
ifr = ifc.ifc_req;

for (n = ifc.ifc_len / sizeof (struct ifreq); --n >= 0; ifr++) {
/*
* We rnrust be careful that we ddnise an intedce
* devaed to an addresarhily other than those intended,;
*if we were interested in NS intades, the
* AF_INET would be AF_NS.
*
if (ifr ->ifr_addrsa_amily = AF_INET)
continue;
if (ioctl(s, SIOCGIFFLAGS, (char *) ifr) < 0) {

}
/*
* Skip boring cases.
*/
if ((ifr ->ifr_flags & IFF_UP) == 0 ||
(ifr->ifr_flags & IFF_LOOPRCK) ||
(ifr->ifr_flags & (IFF_BROADCAST | IFF_POINTDPOINT)) == 0)

continue;

Once the flags va been obtained, the broadcast address must be obtdméue case of broadcast
networks this is done via the SIOCGIFBRDDR ioctl, while for point-to-point netwrks the address of
the destination host is obtained with SIOCGIFBSDR.

struct sockaddr dst;

if (ifr ->ifr_flags & IFF_POINTOPOINT) {
if (ioctl(s, SIOCGIFDSRADDR, (char *) ifr) < 0) {

}
bcopy((char *) ifr->ifr_dstaddr (char *) &dst, sizeof (ifr>ifr_dstaddr));

} else if (ifr->ifr_flags & IFF_BRODADCAST) {
if (ioctl(s, SIOCGIFBRIADDR, (char *) ifr) < 0) {

}
bcopy((char *) ifr->ifr_broadaddr(char *) &dst, sizeof (ifr>ifr_broadaddr));

}

After the appropriateoctl’s have obtained the broadcast or destination addresw {nods), the
sendtocall may be used:
sendto(s, bf, buflen, 0, (struct sockaddr *)&dst, sizeof (dst));
}

In the aboe loop onesendtooccurs for gery interface to which the host is connected that supports the
notion of broadcast or point-to-point addressitfga process only wished to send broadcast messages on a
given network, code similar to that outlined al®would be used, Wi the loop wuld need to find the cor
rect destination address.

Receved broadcast messages contain the senders address and port, as datagrsrasodound

before a message is ailed to go out.

Advanced 4.4BSD |IPCukorial PSD:21-35

5.10. IPMulticasting

IP multicasting is the transmission of an IP datagram to a "host group”, a set of zero or more hosts
identified by a single IP destination addreAsmulticast datagram is debred to all members of its desti-
nation host group with the same "bedtds" reliability as rgular unicast IP datagrams, i.e., the datagram
is not guaranteed to ard intact at all members of the destination group or in the same ordeverdbati
other datagrams.

The membership of a host group is dynamic; that is, hosts may join amddgeaps at ay time.
There is no restriction on the location or number of members in a host gkdugst may be a member of
more than one group at a timA.host need not be a member of a group to send datagrams to it.

A host group may be permanent or transighpermanent group has a well-kmo, administratiely
assigned IP addres#t is the address, not the membership of the group, that is permanent;teham
permanent group may vaay number of membersyen zero. ThosdP multicast addresses that are not
resened for permanent groups aneidable for dynamic assignment to transient groups whxist enly as
long as thg havemembers.

In general, a host cannot assume that datagrams sent lmstrgroup address will reach only the
intended hosts, or that datagrams nemkes a member of a transient host group are intended for the recipi-
ent. Misdelvery must be detected at avé above IP, wsing higheflevel identifiers or authentication
tokens. Informatiortransmitted to a host group address should be encrypted@ngd by administrate
routing controls if the sender is concerned aboutamed listeners.

IP multicasting is currently supported only on AF_INET siskof type SOCK_DGRAM and
SOCK_RAN, and only on subnetarks for which the intedce drver has been modified to support multi-
casting.

The next subsections describevado send and recee nulticast datagrams.

5.10.1. SendindP Multicast Datagrams

To =£nd a multicast datagram, specify an IP multicast address in the range 224.0.0.0 to
239.255.255.255 as the destination addresséendt@2) call.

The definitions required for the multicast-related sbakptions are found innetinet/in.h> All IP
addresses are passed in rakbyte-order

By default, IP multicast datagrams are sent with a timev®{I TL) of 1, which preents them from
being forvarded bgond a single subnetwk. A new socket option allavs the TTL for subsequent multi-
cast datagrams to be set ty &alue from 0 to 255, in order to control the scope of the multicasts:

u_char ttl;
setsockpt(sock, IPPRTO _IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl));

Multicast datagrams with a TTL of 0 will not be transmitted oy subnet, lit may be deliered locally if

the sending host belongs to the destination group and if multicast loopback has not been disabled on the
sending sookt (see belw). Multicastdatagrams with TTL greater than one may bevdedd to more than

one subnet if there are one or more multicast routers attached to the first-hop $almetide meaning-

ful scope control, the multicast routers support the notion of TTL "thresholds", whisdnpdatagrams

with less than a certain TTL from #&sing certain subnetsThe thresholds enforce the follimg corven-

tion:

Scope InitialTTL
restricted to the same host 0
restricted to the same subnet 1
restricted to the same site 32
restricted to the samegien 64
restricted to the same continent 128
unrestricted 255

"Sites" and "rgions" are not strictly defined, and sites may be further eigdedi into smaller

PSD:21-36 Adanced 4.4BSD IPCukorial

administratve wunits, as a local matter

An application may choose an initial TTL other than the ones listezkalbor example, an applica-
tion might perform an “ganding-ring search" for a netwk resource by sending a multicast quéingt
with a TTL of 0, and then with lger and lager TTLs, until a reply is reoesd, perhaps using the TTL
sequence 0, 1, 2, 4, 8, 16, 32.

The multicast routemrouted8), refuses to forard aty multicast datagram with a destination
address between 224.0.0.0 and 224.0.0.255, inejusigadless of its TTL. This range of addresses is
resened for the use of routing protocols and othev-level topology disceery or maintenance protocols,
such as gtewvay discovery and group membership reporting.

The address 224.0.0.0 is guaranteed not to be assignegdmap, and 224.0.0.1 is assigned to the
permanent group of all IP hosts (includingtavays). Thisis used to address all multicast hosts on the
directly connected netwk. Therels no multicast address (oryaather IP address) for all hosts on the total
Internet. Theaddresses of other well-kwa, permanent groups are published in the "Assigned Numbers"
RFC, which is gailable from the InterNIC.

Each multicast transmission is sent from a single osdvinterface, gen if the host has more than
one multicast-capable intade. (Ifthe host is also serving as a multicast rouaarulticast may bdor-
wardedto interfaces other than originating intace, preided that the TTL is greater than IThe deéult
interface to be used for multicasting is the primary woekwinterface on the systemA socket option is
awailable to @erride the dedult for subsequent transmissions fromwaegisocket:

struct in_addr addr;
setsockpt(sock, IPPRTO _IP, IP_MULTICAST_IF, &addt sizeof(addr));

where "addr" is the local IP address of the desired outgoingdogrfAnaddress of IRDDR_ANY may

be used to neert to the dedwult interbice. Thelocal IP address of an intedde can be obtained via the
SIOCGIFCONF ioctl. To determine if an integice supports multicasting, fetch the irded flags via the
SIOCGIFFLAGS ioctl and see if the IFF_MULCAST flag is set.(Normal applications should not need

to use this option; it is intended primarily for multicast routers and other system services specifically con-
cerned with internet topology The SIOCGIFCONF and SIOCGIFFL®S ioctls are described in the pre-
vious section.

If a multicast datagram is sent to a group to which the sending host itself belongs (on the outgoing
interface), a cop of the datagram is, by dailt, looped back by the IP layer for local dety. Another
soclet option gves the senderxlicit control over whether or not subsequent datagrams are looped back:

u_char loop;
setsockpt(sock, IPPRTO _IP, IP_MULTICAST_LOOR &loop, sizeof(loop));

whereloop is set to 0 to disable loopback, and set to 1 to enable looph&ik.option imprees perfor

mance for applications that mayvean more than one instance on a single host (such as a router demon),

by eliminating the werhead of rec@ing their avn transmissionslt should generally not be used by appli-
cations for which there may be more than one instance on a single host (such as a conferencing program) or
for which the sender does not belong to the destination group (such as a time querying program).

A multicast datagram sent with an initial TTL greater than 1 may beetkdi to the sending host on
a dfferent interéice from that on which itas sent, if the host belongs to the destination group on that other
interface. Thdoopback control option has ndeft on such delery.

5.10.2. Receiing IP Multicast Datagrams

Before a host can reeei IP rmulticast datagrams, it must become a member of one or more IP multi-
cast groupsA process can ask the host to join a multicast group by using theifulleoclet option:

struct ip_mreq mreq;
setsockpt(sock, IPPRTO _IP, IP_ADD_MEMBERSHIR&mreq, sizeof(mreq))

where "mreq" is the folling structure:

Advanced 4.4BSD |IPCukorial PSD:21-37

struct ip_mreq {
struct in_addr imr_multiaddr; fulticast goup to join*/
struct in_addr imr_inteaice; /*interface to join or¥/

}

Every membership is associated with a single iatesf and it is possible to join the same group on more
than one intedce. "imr_interfice" should be INDDR_ANY to choose the dafilt multicast intekice, or
one of the host local addresses to choose a particular (multicast-capable)aggerfUp to
IP_MAX_MEMBERSHIPS (currently 20) memberships may be added on a singketsock

To drop a membership, use:

struct ip_mreq mreq;
setsockpt(sock, IPPRTO _IP, IP_DROP_MEMBERSHIP&mreq, sizeof(mreq));

where "mreq" contains the sama&lwes as used to add the membershipe memberships associated with

a cket are also dropped when the seicis closed or the process holding the sbdk killed. However,

more than one soek may claim a membership in a particular group, and the host will remain a member of
that group until the last claim is dropped.

The memberships associated with a sbclo not necessarily determine which datagrams are
receved on that sockt. Incomingmulticast packts are accepted by therkel IP layer if ay socket has
claimed a membership in the destination group of the datagrameyérodelivery of a multicast datagram
to a particular soek is based on the destination port (or protocol type, foisoakets), just as with unicast
datagrams. dreceve multicast datagrams sent to a particular port, it is necessary to bind to that local port,
leaving the local address unspecified (i.e, ADDR_ANY). To receve nulticast datagrams sent to a par
ticular group and port, bind to the local port, with the local address set to the multicast group @iuess.
bound to a multicast address, the staannot be used for sending data.

More than one process may bind to the same SOCK_DGRAM UDP port or the same multicast group
and port if thebind call is preceded by:

inton =1,
setsockpt(sock, SOL_SOCKETSO_REUSEPOR, &on, sizeof(on));

All processes sharing the port must enable this optiwery incoming multicast or broadcast UDP data-
gram destined to the shared port is\aeéd to all sockts bound to the port-or backwards compatibility
reasons, this does not apply to incoming unicast datagrdmisast datagrams arevee delivered to more
than one soal, regardless of hw mary sockets are bound to the datagrardestination port.

A final multicast-relatedxtension is independent of IRwo new ioctls, SIOCADDMULTI and
SIOCDELMULTI, are aailable to add or delete linkyel (e.g., Ethernet) multicast addresses accepted by
a particular interhce. Theaddress to be added or deleted is passed as a sockaddr strucamelyof f
AF_UNSPEC, within the standard ifreq structure.

These ioctls are for the use of protocols other thaendPrequire superuser pileges. Alink-level
multicast address added via SIOCADDMIILis not automatically deleted when the sefcldsed to add it
goes ®vay; it must be gplicitly deleted. It is inadvisable to delete a linkvd address that may be in use
by IP

5.10.3. SampleMulticast Program

The follonving program sends or rewes nmulticast packts. Ifinvoked with one agument, it sends a
paclet containing the current time to an arbitrarily-chosen multicast group and UDRfpoxoked with
no aguments, it recees and prints these paeks. Starit as a sender on just one host and as avercai
all the other hosts.

PSD:21-38 Adanced 4.4BSD IPCukorial

#include <sys/types.h>
#include <sys/soak.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <time.h>
#include <stdio.h>

#define EXAMPLE_POR 60123
#define EXAMPLE_GRUP "224.0.0.250"

main(agc)
int amgc;

{
struct sockaddr_in addr;
int addrlen, fd, cnt;
struct ip_mreq mregq;
char message[50];

fd = soclet(AF_INET, SOCK_DGRAM, 0);
if (fd < 0) {

perror("soclet");

exit(1);
}

bzero(&addyszeof(addr));

addrsin_family = AF_INET,
addrsin_addis_addr = htonl(IKDDR_ANY);
addrsin_port = htons(EXAMPLE_POR;
addrlen = sizeof(addr);

if (argc>1){ /*Send*/
addrsin_addss_addr = inet_addr(EXAMPLE_GRJP);
while (1) {
time_t t = time(0);
sprintf(message, "time is %-24.24s", ctime(&t));
cnt = sendto(fd, message, sizeof(message), 0,
(struct sockaddr *)&addiddrlen);
if (cnt < 0) {
perror("sendto");
exit(1);
}
sleep(5);
}
}else { /* Receve */
if (bind(fd, (struct sockaddr *)&addsizeof(addr)) < 0) {
perror("bind");
exit(1);
}

mred.imr_multiadds_addr = inet_addr(EXAMPLE_GRJP);
mreg.imr_interdce.s_addr = htonl(INADDR_ANY);
if (setsoclopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP
&mreq, sizeof(mreq)) < 0) {
perror("setsockpt mreq");

Advanced 4.4BSD |IPCukorial PSD:21-39

exit(1);
}

while (1) {
cnt = recvfrom(fd, message, sizeof(message), O,
(struct sockaddr *)&add& addrlen);

if (cnt <=0){

if (cnt ==0) {

break;

}
perror(“recvfrom™);
exit(1);

}

printf("%s: message = \"%s\"\n",
inet_ntoa(addsin_addr), message);

5.11. NSPacket Sequences

The semantics of NS connections demand that the user both be able to look insidedticheziter
associated with gnincoming pacét and be able to specify what should go in certain fields of an outgoing
paclet. Usingdifferent calls tasetsokopt, it is possible to indicate whether prototype headers will be asso-
ciated by the user with each outgoing pcSO_HEADERS_ON_OUTPUT), to indicate whether the
headers receéd by the system should be deded to the user (SO_HEADERS_ON_INPUT), or to indi-
cate dedult information that should be associated with all outgoing giaclkon a gien socket
(SO_DERULT_HEADERS).

The contents of a SPP header (minus the IDP header) are:

struct sphdr {
u_char sp_cc; [* connection control */
#define SP_SP0x80 [* system paost */
#define SP_SA0x40 /*send acknwledgement */
#define SP_OBIx20 [* attention (out of band data) */
#define SP_EMX10 /*end of message */
u_char sp_dt; [* datastream type */
u_short sp_sid; [* source connection identifier */
u_short sp_did; [* destination connection identifier */
u_short sp_seq; [* sequence number */
u_short sp_ack; [* acknowledge number */
u_short sp_alo; [* allocation number */
¥

Here, the items of interest are tti@tasteam typeand theconnection conutl fields. Thesemantics of the
datastream type are defined by the application(s) in questionalthe of this field is, by datilt, zero, bt

it can be used to indicate things such as XerBulk Data Tansfer Protocol (in which case it is set to one).
The connection control field is a mask of the flags defined justvbeldrheuser may set or clear the end-
of-message bit to indicate that a@i message is the last of avgnh substream type, or may set/clear the
attention bit as an alternateayvto indicate that a paekshould be sent out-of-banéds an &le, to
associate prototype headers with outgoing SPPepsckonsider:

PSD:21-40 Adanced 4.4BSD IPCukorial

#include <sys/types.h>
#include <sys/soak.h>
#include <netns/ns.h>
#include <netns/sp.h>

struct sockaddr_ns sns, to;

ints, on=1,
struct databf {

struct sphdr proto_spp/* prototype header */

char wf[534]; /* max. possible data by Xerox std. */
} buf;

s = wcket(AF_NS, SOCK_SEQRCKET, 0);

bind(s, (struct sockaddr *) &sns, sizeof (sns));
setsockpt(s, NSPRTO_SPRPSO_HEADERS_ON_OUTPU]TI&0on, sizeof(on));

buf.proto_spp.sp_dt = I* bulk data */

buf.proto_spp.sp_cc = SP_EM; /* end-of-message */

strepy(buf.buf, "hello world\n");

sendto(s, (char *) &f, sizeof(struct sphdr) + strlen("hellcowd\n"),
(struct sockaddr *) &to, sizeof(to));

Note that one must be careful when writing headers; if the prototype header is not written with the data
with which it is to be associated, therkel will treat the first f& bytes of the data as the headeith
unpredictable resultsTo turn of the abee asociation, and to indicate that patkeaders reogd by the

system should be passed up to the,us&r might use:

#include <sys/types.h>
#include <sys/soak.h>
#include <netns/ns.h>
#include <netns/sp.h>

struct sockaddr sns;
ints,on=1, df=0;

s = 9cket(AF_NS, SOCK_SE@CKET, 0);
bind(s, (struct sockaddr *) &sns, sizeof (sns));

setsockpt(s, NSPRTO _SPRPSO_HEADERS_ON_OUTPU& off, sizeof(of));
setsockpt(s, NSPRTO _SPRPSO_HEADERS_ON_INPUT&on, sizeof(on));

Output is handled somat diferently in the IDP wrld. Theheader of an IDP-el paclket looks

like:
struct idp {

u_short idp_sum; /* Checksum */
u_short idp_len; /* Length, in bytes, including header */
u_char idp_tc; /* Transport Control (i.e., hop count) */
u_char idp_pt; /* Paclket Type (i.e., leel 2 protocol) */
struct ns_addidp_dna; [*Destination Netwrk Address */
struct ns_addidp_sna; /*Source Netwrk Address */

Advanced 4.4BSD |IPCukorial PSD:21-41

The primary field of interest in an IDP header ispheket typefield. Thestandard &lues for this field are
(as defined in retns/ns.h):

#define NSPRTO _RI 1 /* Routing Information */
#define NSPRTO ECHO 2 /* Echo Protocol */
#define NSPRTO ERROR 3 /* Error Protocol */
#define NSPRTO_PE 4 /* Packet Exchange */
#define NSPRTO_SPP 5 /* Sequenced &cket */

For SPP connections, the contents of this field are automatically set toOISPRPP; for IDP paceks,
this value deéults to zero, which mearisnknown”.

Setting the &lue of that field with SO_DE®JLT_HEADERS is easy:

#include <sys/types.h>
#include <sys/soak.h>
#include <netns/ns.h>
#include <netns/idp.h>

struct sockaddr sns;
struct idp proto_idp; [* prototype header */
ints,on=1,

s = ocket(AF_NS, SOCK_DGRAM, 0);

bind(s, (struct sockaddr *) &sns, sizeof (sns));

proto_idp.idp_pt = NSPBTO_PE; /*paclet exchange */

setsockpt(s, NSPRTO _IDP, SO_DEFAULT_HEADERS, (char *) &proto_idp,
sizeof(proto_idp));

Using SO _HEADERS_ON_OUTPUT is sowieat more dificult. When
SO_HEADERS_ON_OUTPUT is turned on for an IDP sickhe sockt becomes (for all intents and pur
poses) a & socket. Inthis case, all the fields of the prototype headecdpt the length and checksum
fields, which are computed by therkel) must be filled in correctly in order for the seicio send and
receve cata in a sensible mannefo be more specific, the source address must be set to that of the host
sending the data; the destination address must be set to that of the host for whom the data is intended; the
paclet type must be set to whage value is desired; and the hopcount must be set to some reasaiabéle v
(almost alvays zero). It should also be noted that simply sending data usittg will not work unless a
connector sendtocall is used, in spite of thadt that it is the destination address in the prototype header
that is used, not the onevgn in dther of those calls.For amost all IDP applications , using
SO_DERULT_HEADERS is easier and more desirable than writing headers.

5.12. Three-way Handshak

The semantics of SPP connections indicates that a ttagdwandshak, involving changes in the
datastream type, should —utlis not absolutely required to — tagace before a SPP connection is closed.
Almost all SPP connections are/éll-behared” in this manner; when communicating withygorocess, it
is best to assume that the thremywhandshak is required unless it is kmen for certain that it is not
required. Ina three-way close, the closing process indicates that it wishes to close the connection by send-
ing a zero-length paek with end-of-message set and with datastream type T other side of the con-
nection indicates that it is OK to close by sending a zero-lengtlepaith end-of-message set and datas-
tream type 255 Finally, the closing process replies with a zero-length paekth substream type 255; at
this point, the connection is considered clos&te folloving code fragments are simplifiedagnples of
how one might handle this threeay handshak & the user ledl; in the future, support for this type of close
will probably be preided as part of the C library or as part of tieenel. Thefirst code fragment belo
illustrates hav a process might handle threeaw handshak if it sees that the process it is communicating
with wants to close the connection:

PSD:21-42

Adanced 4.4BSD IPCukorial

#include <sys/types.h>
#include <sys/soak.h>
#include <netns/ns.h>
#include <netns/sp.h>

#ifndef SPPSST_END

#define SPPSST_END 254
#define SPPSST_ENDREPI255
#endif

struct sphdr proto_sp;

int s;

read(s, bf, BUFSIZE);
if (((struct sphdr *)if)->sp_dt == SPPSST_END) {

/*

* SPPSST_END indicates that the other sidmis to

* close.

*

proto_sp.sp_dt = SPPSST_ENDREPL

proto_sp.sp_cc = SP_EM,;

setsockpt(s, NSPRTO_SPRPSO_DEFRAULT_HEADERS, (char *)&proto_sp,

sizeof(proto_sp));

write(s, f, 0);

/*

* Write a zero-length paek with datastream type = SPPSST_ENDREPL
* to indicate that the close is OK with uShe packt that we

* don't see (because we daook for it) is another paet

* from the other side of the connection, with SPPSST_ENDREPL

*on it it, too. Once that paekt is sent, the connection is

* considered closed; note that we really ought to retransmit

* the close for some time if we do not get a reply

*/

close(s);

To indicate to another process that wauwd like to dose the connection, the folling code vould sufice:

Advanced 4.4BSD |IPCukorial PSD:21-43

#include <sys/types.h>
#include <sys/soak.h>
#include <netns/ns.h>
#include <netns/sp.h>

#ifndef SPPSST_END

#define SPPSST_END 254
#define SPPSST_ENDREPI255
#endif

struct sphdr proto_sp;

ints;

proto_sp.sp_dt = SPPSST_END;

proto_sp.sp_cc = SP_EM,;

setsockpt(s, NSPRTO_SPRPSO_DEFAULT_HEADERS, (char *)&proto_sp,
sizeof(proto_sp));

write(s, f, 0); /* send the end request */

proto_sp.sp_dt = SPPSST_ENDREPL

setsockpt(s, NSPRTO_SPRPSO_DEFAULT_HEADERS, (char *)&proto_sp,
sizeof(proto_sp));

/*

*We assume (perhaps unwisely)

* that the other side will send the

* ENDREPLY, so we’'ll just send our final ENDRERL

* as if we'd seen theirs already

*/

write(s, f, 0);

close(s);

5.13. Racket Exchange

The Xerox standard protocols include a protocol that is both reliable and datagram-orignged.
protocol is knavn as Rcket Exchange (PEX or PE) and,diPR is layered on top of IDPPEX is impor
tant for a number of things: Courier remote procedure calls maydeslieed through the use of PEX, and
mary Xerox serers are located by doing a PEBroadcastlerSeners’ operation. Althoughhere is no
implementation of PEX in theeknel, it may be simulated at the useelavith some cleer coding and the
use of one peculiagetsodkopt. A PEX paclet looks lile:

/*
* The packt-exchange header sivo here is not defined
* as part of aly of the system include files.

*/

struct pe {
struct idp p_idp; [*idp header */
u_short ph_id[2]; /* unique transaction ID for pe*/
u_short ph_client; [* client type field for pg */

¥

Theph_idfield is used to hold aunique id’ that is used in duplicate suppression;gheclientfield indi-

cates the PEX client type (similar to the patclype field in the IDP headerPEX reliability stems from

the fact that it is an idempotenti(send a packt to you, you send a pagkto me") protocol. Processes on
each side of the connection may use the unique id to determing Habheseen a gien packet before (the
unique id field difers on each paek sent) so that duplicates may be detected, and to indicate which mes-
sage a gien packet is in response tdf a paclet with a gven unique id is sent and no response is nexki

PSD:21-44 Adanced 4.4BSD IPCukorial

in a gven amount of time, the paek is retransmitted until it is decided that no response wl be
receved. To dmulate PEX, one must be able to generate unique ids -- something that is hard to do at the
user leel with ary real guarantee that the id is really unigUéwerefore, a means (vigsodkopt) has been
provided for getting unique ids from thetnel. Theollowing code fragment indicateswdo get a unique
id:

long uniqueid;

int s, idsize = sizeof(uniqueid);

s = ocket(AF_NS, SOCK_DGRAM, 0);

/* get id from the kernel -- only on IDP soaks */
getsoclkopt(s, NSPRTO_PE, SO_SEQNO, (char *)&uniqueid, &idsize);

The retransmission and duplicate suppression code required to simulate PEX fully is leftasisa fer
the reader

5.14. Inetd

One of the daemons prided with 4.4BSD isnetd the so called‘internet supessener” Having
one daemon listen for requests for maaemons instead of hiag each daemon listen for itevn requests
reduces the number of idle daemons and simplies their implementatietd. handles tw types of ser
vices: standard and TCPMUXA standard service has a well-kmo port assigned to it and is listed in
letc/serviceqseeservice$d)); it may be a service that implements dicil Internet standard or is a BSD-
specific service TCPMUX services are nonstandard and do nwoeleavell-knovn port assigned to them.
They are invoked from inetd when a program connects to the "tcpmux" wellskngort and specifies the
service nameThis is useful for adding locally-geloped serers.

Inetdis invoked & boot time, and determines from the fiéc/inetd.conthe serers for which it is to
listen. Oncehis information has been read and a pristinerenment creatednetdproceeds to create one
soclet for each service it is to listen fonding the appropriate port number to each sbck

Inetdthen performs aelecton all these so@ks for read ailability, waiting for somebody wishing a
connection to the service corresponding to thatetodketdthen performs aaccepton the sockt in ques-
tion, forks, dups the nev socket to file descriptors 0 and 1 (stdin and stdout), closes other open file descrip-
tors, andexecs the appropriate seev

Seners making use ahetdare considerably simplified, &asetdtakes care of the majority of the IPC
work required in establishing a connectiofhe serer invoked by inetd expects the so@k connected to its
client on file descriptors 0 and 1, and may immediately perfoynoerations such asad, write, send or
recv. Indeed, semrs may use Wfered 1/0 as praded by the ‘stdio” corventions, as long as as the
remember to usilushwhen appropriate.

One call which may be of interest to imidiuals writing serers undeinetdis thegetpeernamecall,
which returns the address of the peer (process) connected on the other end ofetheFepekample, to
log the Internet address iidot notation’ (e.g., ‘128.32.0.4") of a client connected to a senundelinetd,
the folloving code might be used:

struct sockaddr_in name;
int namelen = sizeof (name);

if (getpeername(0, (struct sockaddr *)&name, &namelen) < 0) {
syslog(LOG_ERR, "getpeername: %m");
exit(1);

} else
syslog(LOG_INFO, "Connection from %s", inet_ntoa(name.sin_addr));

While the getpeernamecall is especially useful when writing programs to run viittd, it can be used

Advanced 4.4BSD |IPCukorial PSD:21-45

under other circumstanceBe warned, haever, thatgetpeernamewill f ail on UNIX domain socéts.

Standard TCP services are assigned unique wellskmport numbers in the range of 0 to 1023 by the
Internet Assigned Numbers Authority (IA@ISI.EDU). Thelimited nhumber of ports in this range are
assigned to ditial Internet protocols.The TCPMUX service alles you to add locally-deloped proto-
cols without needing an fidial TCP port assignmenfThe TCPMUX protocol described in RFC-1078 is
simple:

“ A TCP client connects to a foreign host on TCP pofit $ends the service name falled by

a arriage-return line-feed <CRLF>The service name is w& case sensife. The serer

replies with a single character indicating pesit('+") or negdive ('-") acknavledgment,

immediately follaved by an optional message afplanation, terminated with a <CRLF3f

the reply vas positie, the selected protocol gms; otherwise the connection is closed.

In 4.4BSD, the TCPMUX service iqulit into inetd that is,inetd listens on TCP port 1 for requests for
TCPMUX services listed imetd.conf inetd8) describes the format of TCPMUX entries ifoetd.conf

The following is an &le TCPMUX serer and itsinetd.confentry More sophisticated sexxs
may want to do additional processing before returning the peditinegdive acknonledgement.

#include <sys/types.h>
#include <stdio.h>

main()

{

time_tt;

printf("+Go\r\n");
fflush(stdout);
time(&t);
printf("%d = %s", t, ctime(&t));
fflush(stdout);

}

Theinetd.confentry is:
tcpmux/current_time stream tcpwaat nobody /d/curtime curtime

Here’s the portion of the client code that handles the TCPMUX handshak

PSD:21-46 Adanced 4.4BSD IPCukorial

char line[BJFSIZ];
FILE *fp;

/* Use stdio for reading data from the sard/
fp = fdopen(sock, "r");
if (fp == NULL) {
fprintf(stdert "Cant create file pointer\n™);
exit(1);
}

/* Send service request */
sprintf(line, "%s\r\n", "current_time");
if (write(sock, line, strlen(line)) < 0) {
perror("write");
exit(1);
}

/* Get ACK/NAK response from the sesw*/
if (fgets(line, sizeof(line), fp) == NULL) {
if (feof(fp)) {
die();
}else {
fprintf(stdert "Error reading response\n");
exit(1);
}
}

/* Delete <CR>*/ ")) 1= NULL) {
if ((Ip = index(line,’

*lp = il 1;
}

switch (line[0]) {
case '+
printf("Got ACK: %s\n", &line[1]);
break;
case -
printf("Got NAK: %s\n", &line[1]);
exit(0);
default:
printf("Got unknavn response: %s\n", line);
exit(1);
}

[* Get rest of data from the senv*/

while ((fgets(line, sizeof(line), fp)) '= NULL) {
fputs(line, stdout);

}

