UML Tutorial:
Part 1 -- Class Diagrams.

Robert C. Martin

My next several columnswill be arunning tutorial of UML. The 1.0 version of UML was rel eased
on the 13th of January, 1997. The 1.1 release should be out before the end of the year. This col-
umn will track the progress of UML and present the issues that the three amigos (Grady Booch,
Jm Rumbaugh, and Ivar Jacobson) are dealing with.

Introduction

UML stands for Unified Modeling Language. It represents a unification of the concepts and nota-
tions presented by the three amigos in their respective books!. The goal isfor UML to become a
common language for creating models of object oriented computer software.

Inits current form UML is comprised of two major components: a Meta-model and anotation. In
the future, some form of method or process may also be added to; or associated with, UML.

The M eta-model

UML isuniqueinthat it has a standard data representation. This representation is called the meta-
model. The meta-model is a description of UML in UML. It describes the objects, attributes, and
relationships necessary to represent the concepts of UML within a software application.

This provides CASE manufacturers with a standard and unambiguous way to represent UML
models. Hopefully it will allow for easy transport of UML models between tools. It may also
make it easier to write ancillary tools for browsing, summarizing, and modifying UML models.

A deeper discussion of the metamodel is beyond the scope of this column. Interested readers can
learn more about it by downloading the UML documents from the rational web site?.

The Notation

The UML notation is rich and full bodied. It is comprised of two major subdivisions. Thereisa
notation for modeling the static elements of a design such as classes, attributes, and relationships.
There is also a notation for modeling the dynamic elements of a design such as objects, messages,
and finite state machines.

In this article we will present some of the aspects of the static modeling notation. Static models
are presented in diagrams called: Class Diagrams.
Class Diagrams.

The purpose of aclass diagram isto depict the classes within amodel. In an object oriented appli-
cation, classes have attributes (member variables), operations (member functions) and relation-

1. Object Oriented Analysis and Design, Grady Booch, Benjamin Cummings, 1994.
Object Oriented Modeling and Design, James Rumbaugh, et. al., Prentice Hall, 1991
Object Oriented Software Engineering, Ivar Jacobson, et. al., Addison Wesley, 1992

2. http://www.rational.com

ships with other classes. The UML class diagram can depict all these things quite easily. The
fundamental element of the class diagram is an icon the represents aclass. Thisicon is shown in
Figure 1.

Figure 1: The O ass lcon

Class
Attribute

operation()

A classicon is simply arectangle divided into three compartments. The topmost compartment
contains the name of the class. The middle compartment contains alist of attributes (member vari-
ables), and the bottom compartment contains alist of operations (member functions). In many
diagrams, the bottom two compartments are omitted. Even when they are present, they typically
do not show every attribute and operations. The goal is to show only those attributes and opera-
tions that are useful for the particular diagram.

This ability to abbreviate an icon is one of the hallmarks of UML. Each diagram has a particular
purpose. That purpose may be to highlight on particular part of the system, or it may be to illumi-
nate the system in general. The classiconsin such diagrams are abbreviated as necessary. Thereis
typically never aneed to show every attribute and operation of a class on any diagram. Figure 2
shows atypical UML description of aclass that representsacircle.

Figure 2: Crcle class

Circle

i t sRadi us: doubl e
i t sCent er: Poi nt

Area():doubl e

G rcunference(): doubl e
Set Cent er (Poi nt)

Set Radi us(doubl e)

Notice that each member variableis followed by a colon and by the type of the variable. If the
type is redundant, or otherwise unnecessary, it can be omitted. Notice also that the return values
follow the member functionsin asimilar fashion. Again, these can be omitted. Finally, notice that
the member function arguments are just types. | could have named them too, and used colons to
separate them from their types; or | could have omitted the arguments altogether.

Composition Relationships

Each instance of type G r cl e seemsto contain an instance of type Poi nt . Thisisarelationship
known as composition. It can be depicted in UML using a class relationship. Figure 3 shows the
composition relationship.

Figure 3: Grcle contains Point

Circle o > Point

The black diamond represents composition. It isplaced onthe G r cl e class becauseit isthe
G rcl e that iscomposed of aPoi nt . The arrowhead on the other end of the relationship
denotes that the relationship is navigable in only one direction. That is, Poi nt does not know
about G r cl e. In UML relationships are presumed to be bidirectional unless the arrowhead is
present to restrict them. Had | omitted the arrowhead, it would have meant that Poi nt knew
about G r cl e. At the code level, thiswould imply a#i ncl ude “circl e. h” within

poi nt . h. For thisreason, | tend to use alot of arrowheads.

Composition relationships are a strong form of containment or aggregation. Aggregation is a
whole/part relationship. In thiscase, G r cl e isthe whole, and Poi nt ispart of G r cl e. How-
ever, composition is more than just aggregation. Composition also indicates that the lifetime of
Poi nt isdependent upon G r cl e. Thismeansthat if G r cl e isdestroyed, Poi nt will be
destroyed with it. For those of you who are familiar with the Booch-94 notation, thisis the Has-
by-value relationship.

In C++ we would represent this as shown in Listing 1.

Listing 1. Crcle class

class Crcle

public:

voi d Set Center(const Point&);

voi d Set Radi us(doubl e);

doubl e Area() const;

doubl e Circunference() const;
private:

doubl e it sRadi us;

Point itsCenter;

}s

In this case we have represented the composition relationship as a member variable. We could also
have used a pointer so long as the destructor of G r cl e deleted the pointer.

Inheritance

The inheritance relationship in UML is depicted by a peculiar triangular arrowhead. This arrow-
head, that looks rather like a slice of pizza, points to the base class. One or more lines proceed
from the base of the arrowhead connecting it to the derived classes.

Figure 4 shows the form of the inheritance relationship. In thisdiagram we seethat G r cl e and
Squar e both derive from Shape. Note that the name of class Shape isshowninitalics. This
indicates that Shape is an abstract class. Note also that the operations, Dr aw() and Er ase()
are aso shown initalics. Thisindicates that they are pure virtual.

Figure 4: Inheritance

Shape
{abstract}

Draw()
Erase()

Circle Square

Italics are not always very easy to see. Therefore, as shown in Figure 4, an abstract class can also
be marked with the{ abst r act } property. What's more, though it is not a standard part of
UML, I will often write Dr aw() =0 in the operations compartment to denote a pure virtual func-

tion.

Aggregation / Association

The weak form of aggregation is denoted with an open diamond. This relationship denotes that
the aggregate class (the class with the white diamond touching it) isin some way the “whole”, and
the other class in the relationship is somehow “part” of that whole.

Fi gure 5: Aggregation

. Shape

Window <> - > {abstra
i t sShapes

Figure 5 shows an aggregation relationship. In this case, the W ndow class contains many Shape
instances. In UML the ends of arelationship are referred to asits “roles’. Notice that the role at
the Shape end of the aggregation is marked with a“*”. This indicates that the W ndow contains
many Shape instances. Notice also that the role has been named. Thisis the name that W ndow
knows its Shape instances by. i.e. it is the name of the instance variable within W ndow that
holds al the Shapes.

Listing 2 shows how Figure 5 might be implemented in C++

Li sting 2: Wndow contai ns Shapes

class Wndow
publi c:
/...
private:
vect or <Shape*> it sShapes;
1

There are other forms of containment that do not have whole / part implications. For example,
Each W ndowrefers back to its parent Fr ane. Thisis not aggregation sinceit is not reasonable to
consider a parent Fr anre to be part of achild W ndow We use the association relationship to
depict this.

Figure 6: Associations

—>»> Frame

i t sPar ent

Window

Figure 6 shows how we draw an association. An association is nothing but aline drawn between
the participating classes. In Figure 6 the association has an arrowhead to denote that Fr ane does
not know anything about W ndow Once again note the name on the role. This relationship will
almost certainly be implemented with a pointer of some kind.

What is the difference between an aggregation and an association? The difference is one of impli-
cation. Aggregation denotes whole/part relationshi ps whereas associations do not. However, there
isnot likely to be much difference in the way that the two relationships are implemented. That is,
it would be very difficult to look at the code and determine whether a particular relationship ought
to be aggregation or association. For thisreason, it is pretty safe to ignore the aggregation rela-
tionship altogether. As the amigos said in the UML 0.8 document: “...if you don’t understand
[aggregation] don’t useit.”

Aggregation and Association both correspond to the Has-by-reference relationship from the
Booch-94 notation.

Dependency

Sometimes the relationship between atwo classes is very weak. They are not implemented with
member variables at all. Rather they might be implemented as member function arguments. Con-
sider, for example, the Dr awfunction of the Shape class. Suppose that this function takes an
argument of type Dr awi ngCont ext .

Fi gure 7: Dependency

Shape

*

Window &>

>
i t sShapes |Draw Dr awi ngCont ext &)

i t sCont ext -7

DrawingContext

Figure 7 shows a dashed arrow between the Shape class and the Dr awi ngCont ext class. This
is the dependency relationship. In Booch94 thiswas called a“using’ relationship. Thisrelation-
ship simply means that Shape somehow depends upon Dr awi ngCont ext . In C++ this almost
awaysresultsin a#i ncl ude.

I nterfaces

There are classes that have nothing but pure virtual functions. In Java such entities are not classes
at all; they are a special language element called ani nt er f ace. UML hasfollowed the Java
example and has created some special syntactic elements for such entities.

The primary icon for an interfaceisjust like a class except that it has a special denotation called a
stereotype. Figure 8 shows thisicon. Note the «t ype» string at the top of the class. The two sur-
rounding characters “«»” are called guillemets (pronounced Gee-may). A word or phrase sur-
rounded by guillemetsis called a“ stereotype’. Stereotypes are one of the mechanisms that can be
used to extend UML. When a stereotype is used above the name of aclassit indicates that this
classisaspecial kind of classthat conformsto arather rigid specification.

The «t ype» stereotype indicates that the classis an interface. This means that it has no member
variables, and that all of its member functions are pure virtual.

UML supplies a shortcut for «type» classes. Figure 9 shows how the “lollypop” notation can be
used to represent an interface. Notice that the dependency between Shape and Dr awi ngCon-
t ext isshown asusual. The class W ndows DC is derived from, or conforms to, the Dr awi ng-
cont ext interface. Thisis a shorthand notation for an inheritance relationship between

Figure 8: Type cl ass

«t ype»
DrawingContext

Set Poi nt (i nt, int, bool)
d ear Screen()
Get Vertical Size():int

Get Hori zontal Si ze():in
t

W ndowsDCand Dr awi ngCont ext .

Figure 9: Interface Lollypop

Shape Fommmmmmo oo oo >»>O—— WindowsDC
DrawingContext

Conclusion

In this article we have explored afew of the notational elementsthat UML suppliesfor static soft-
ware design. In future columns we will expand upon this notation by showing how to useit for
solving some real software problems. We will also examine UML'’s contingent of tools for model-
ing dynamic design.

