

UML Tutorial:
Part 1 -- Class Diagrams.

Robert C. Martin

My next several columns will be a running tutorial of UML. The 1.0 version of UML was released
on the 13th of January, 1997. The 1.1 release should be out before the end of the year. This col-
umn will track the progress of UML and present the issues that the three amigos (Grady Booch,
Jim Rumbaugh, and Ivar Jacobson) are dealing with.

Introduction

UML stands for Unified Modeling Language. It represents a unification of the concepts and nota-
tions presented by the three amigos in their respective books

1

. The goal is for UML to become a
common language for creating models of object oriented computer software.

In its current form UML is comprised of two major components: a Meta-model and a notation. In
the future, some form of method or process may also be added to; or associated with, UML.

The Meta-model

UML is unique in that it has a standard data representation. This representation is called the meta-
model. The meta-model is a description of UML

in

 UML. It describes the objects, attributes, and
relationships necessary to represent the concepts of UML within a software application.

This provides CASE manufacturers with a standard and unambiguous way to represent UML
models. Hopefully it will allow for easy transport of UML models between tools. It may also
make it easier to write ancillary tools for browsing, summarizing, and modifying UML models.

A deeper discussion of the metamodel is beyond the scope of this column. Interested readers can
learn more about it by downloading the UML documents from the rational web site

2

.

The Notation

The UML notation is rich and full bodied. It is comprised of two major subdivisions. There is a
notation for modeling the static elements of a design such as classes, attributes, and relationships.
There is also a notation for modeling the dynamic elements of a design such as objects, messages,
and finite state machines.

In this article we will present some of the aspects of the static modeling notation. Static models
are presented in diagrams called: Class Diagrams.

Class Diagrams.

The purpose of a class diagram is to depict the classes within a model. In an object oriented appli-
cation, classes have attributes (member variables), operations (member functions) and relation-

1. Object Oriented Analysis and Design, Grady Booch, Benjamin Cummings, 1994.
Object Oriented Modeling and Design, James Rumbaugh, et. al., Prentice Hall, 1991
Object Oriented Software Engineering, Ivar Jacobson, et. al., Addison Wesley, 1992

2. http://www.rational.com

ships with other classes. The UML class diagram can depict all these things quite easily. The
fundamental element of the class diagram is an icon the represents a class. This icon is shown in
Figure 1.

A class icon is simply a rectangle divided into three compartments. The topmost compartment
contains the name of the class. The middle compartment contains a list of attributes (member vari-
ables), and the bottom compartment contains a list of operations (member functions). In many
diagrams, the bottom two compartments are omitted. Even when they are present, they typically
do not show every attribute and operations. The goal is to show only those attributes and opera-
tions that are useful for the particular diagram.

This ability to abbreviate an icon is one of the hallmarks of UML. Each diagram has a particular
purpose. That purpose may be to highlight on particular part of the system, or it may be to illumi-
nate the system in general. The class icons in such diagrams are abbreviated as necessary. There is
typically never a need to show every attribute and operation of a class on any diagram. Figure 2
shows a typical UML description of a class that represents a circle.

Notice that each member variable is followed by a colon and by the type of the variable. If the
type is redundant, or otherwise unnecessary, it can be omitted. Notice also that the return values
follow the member functions in a similar fashion. Again, these can be omitted. Finally, notice that
the member function arguments are just types. I could have named them too, and used colons to
separate them from their types; or I could have omitted the arguments altogether.

Composition Relationships

Each instance of type

Circle

 seems to contain an instance of type

Point

. This is a relationship
known as

composition

. It can be depicted in UML using a class relationship. Figure 3 shows the
composition relationship.

Figure 1: The Class Icon

Figure 2: Circle class

Class

operation()

Attribute

Circle

Area():double
Circumference():double
SetCenter(Point)
SetRadius(double)

itsRadius:double
itsCenter:Point

The black diamond represents composition. It is placed on the

Circle

 class because it is the

Circle

 that is composed of a

Point

. The arrowhead on the other end of the relationship
denotes that the relationship is navigable in only one direction. That is,

Point

 does not know
about

Circle

. In UML relationships are presumed to be bidirectional unless the arrowhead is
present to restrict them. Had I omitted the arrowhead, it would have meant that

Point

 knew
about

Circle

. At the code level, this would imply a

#include “circle.h”

 within

point.h

. For this reason, I tend to use a

lot

 of arrowheads.

Composition relationships are a strong form of containment or aggregation. Aggregation is a
whole/part relationship. In this case,

Circle

 is the whole, and

Point

 is part of

Circle

. How-
ever, composition is more than just aggregation. Composition also indicates that the lifetime of

Point

 is dependent upon

Circle

. This means that if

Circle

 is destroyed,

Point

 will be
destroyed with it. For those of you who are familiar with the Booch-94 notation, this is the Has-
by-value relationship.

In C++ we would represent this as shown in Listing 1.

In this case we have represented the composition relationship as a member variable. We could also
have used a pointer so long as the destructor of

Circle

 deleted the pointer.

Inheritance

The inheritance relationship in UML is depicted by a peculiar triangular arrowhead. This arrow-
head, that looks rather like a slice of pizza, points to the base class. One or more lines proceed
from the base of the arrowhead connecting it to the derived classes.

Figure 4 shows the form of the inheritance relationship. In this diagram we see that

Circle

 and

Square

 both derive from

Shape

. Note that the name of class

Shape

 is shown in italics. This
indicates that

Shape

 is an abstract class. Note also that the operations,

Draw()

 and

Erase()

are also shown in italics. This indicates that they are pure virtual.

Figure 3: Circle contains Point

Listing 1: Circle class

class Circle
{
 public:
 void SetCenter(const Point&);
 void SetRadius(double);
 double Area() const;
 double Circumference() const;
 private:
 double itsRadius;
 Point itsCenter;
};

Circle Point

Italics are not always very easy to see. Therefore, as shown in Figure 4, an abstract class can also
be marked with the

{abstract}

 property. What’s more, though it is not a standard part of
UML, I will often write

Draw()=0

 in the operations compartment to denote a pure virtual func-
tion.

Aggregation / Association

The weak form of aggregation is denoted with an open diamond. This relationship denotes that
the aggregate class (the class with the white diamond touching it) is in some way the “whole”, and
the other class in the relationship is somehow “part” of that whole.

Figure 5 shows an aggregation relationship. In this case, the

Window

 class contains many

Shape

instances. In UML the ends of a relationship are referred to as its “roles”. Notice that the role at
the

Shape

 end of the aggregation is marked with a “

*

”. This indicates that the

Window

 contains
many

Shape

 instances. Notice also that the role has been named. This is the name that

Window

knows its

Shape

 instances by. i.e. it is the name of the instance variable within

Window

 that
holds all the

Shapes

.

Figure 4: Inheritance

Figure 5: Aggregation

Circle Square

Shape

Draw()
Erase()

{abstract}

Window

Shape
{abstrac

*

itsShapes

Listing 2 shows how Figure 5 might be implemented in C++

There are other forms of containment that do not have whole / part implications. For example,
Each

Window

 refers back to its parent

Frame

. This is not aggregation since it is not reasonable to
consider a parent

Frame

 to be part of a child

Window

. We use the association relationship to
depict this.

Figure 6 shows how we draw an association. An association is nothing but a line drawn between
the participating classes. In Figure 6 the association has an arrowhead to denote that

Frame

 does
not know anything about

Window

. Once again note the name on the role. This relationship will
almost certainly be implemented with a pointer of some kind.

What is the difference between an aggregation and an association? The difference is one of impli-
cation. Aggregation denotes whole/part relationships whereas associations do not. However, there
is not likely to be much difference in the way that the two relationships are implemented. That is,
it would be very difficult to look at the code and determine whether a particular relationship ought
to be aggregation or association. For this reason, it is pretty safe to ignore the aggregation rela-
tionship altogether. As the amigos said in the UML 0.8 document: “...if you don’t understand
[aggregation] don’t use it.”

Aggregation and Association both correspond to the Has-by-reference relationship from the
Booch-94 notation.

Listing 2: Window contains Shapes

class Window

{
 public:
 //...
 private:
 vector<Shape*> itsShapes;
};

Figure 6: Associations

Frame

Window

itsParent

Dependency

Sometimes the relationship between a two classes is very weak. They are not implemented with
member variables at all. Rather they might be implemented as member function arguments. Con-
sider, for example, the Draw function of the Shape class. Suppose that this function takes an
argument of type DrawingContext.

Figure 7 shows a dashed arrow between the Shape class and the DrawingContext class. This
is the dependency relationship. In Booch94 this was called a ‘using’ relationship. This relation-
ship simply means that Shape somehow depends upon DrawingContext. In C++ this almost
always results in a #include.

Interfaces

There are classes that have nothing but pure virtual functions. In Java such entities are not classes
at all; they are a special language element called an interface. UML has followed the Java
example and has created some special syntactic elements for such entities.

The primary icon for an interface is just like a class except that it has a special denotation called a
stereotype. Figure 8 shows this icon. Note the «type» string at the top of the class. The two sur-
rounding characters “«»” are called guillemets (pronounced Gee-may). A word or phrase sur-
rounded by guillemets is called a “stereotype”. Stereotypes are one of the mechanisms that can be
used to extend UML. When a stereotype is used above the name of a class it indicates that this
class is a special kind of class that conforms to a rather rigid specification.

The «type» stereotype indicates that the class is an interface. This means that it has no member
variables, and that all of its member functions are pure virtual.

UML supplies a shortcut for «type» classes. Figure 9 shows how the “lollypop” notation can be
used to represent an interface. Notice that the dependency between Shape and DrawingCon-
text is shown as usual. The class WindowsDC is derived from, or conforms to, the Drawing-
context interface. This is a shorthand notation for an inheritance relationship between

Figure 7: Dependency

Window

Shape

DrawingContext

*

itsShapes

itsContext

Draw(DrawingContext&)

WindowsDC and DrawingContext.

Conclusion

In this article we have explored a few of the notational elements that UML supplies for static soft-
ware design. In future columns we will expand upon this notation by showing how to use it for
solving some real software problems. We will also examine UML’s contingent of tools for model-
ing dynamic design.

Figure 8: Type class

Figure 9: Interface Lollypop

DrawingContext
«type»

SetPoint(int,int,bool)
ClearScreen()
GetVerticalSize():int
GetHorizontalSize():in
t

Shape

DrawingContext

WindowsDC

