SE 430: Object-Oriented Modeling
Mid-term Study Guide


SE 430: Object-Oriented Modeling

Mid-term Study Guide
Introduction

The mid-term will include material covered during the first five lectures, covering the analysis phase of development and the transition to design. The mid-term will include a variety of different problem types, chosen from the following list:

· Matching terms, definitions, and examples.

· True/false.

· Multiple-choice.

· Fill-in.

· Short answers.

· Word problems with multiple parts.
· Identify parts of a diagram.
Important disclaimer: This guide is simply a means of giving you some help in studying for the mid-term exam. It is not intended as a comprehensive inventory of every topic discussed in class nor that might be included on the exam. It is the student’s responsibility to be familiar with all the material covered through the fifth lecture and in the homework assignments.

Topics for Study

Be sure you understand the material in the following list. Be able to define and give examples for terms and concepts. For techniques, be sure you know the essential steps and their significance. For artifacts, be sure you understand the techniques with which they are associated, their notation, and be able to produce the artifact, if requested. 

· Types.

· Classes.

· Objects.

· Abstraction.

· Encapsulation.

· Hierarchy.

· Typing.

· Modularity.

· Entity-level abstraction vs. coincidental abstraction—characteristics and examples.

· Interplay of abstraction and encapsulation.

· Generalization/specialization.

· Aggregation.

· Strong and weak typing.

· Static and dynamic binding.
· Polymorphism—what aspects of typing lead to polymorphism.
· Analysis—general definition.

· Design—general definition.
· Iterative and incremental approach to software development—benefits and advantages over ‘traditional’ approaches.

· Features of iterative and incremental development—how is it accomplished?
· Requirements levels—names and usefulness of each.

· Techniques and artifacts of requirements capture.

· Scope – what it is and what it should contain.

· Understand what a use case is and how it is captured.

· Sources of use cases.

· User goals and system interactions.

· Use cases and scenarios.

· How user goals lead to use cases.

· Basic use case format: its parts and the purpose and definition of each part.

· Primary vs. alternate scenarios.

· Use-case workflow, including techniques and artifacts.

· Actors and types of actors.

· The types of use case formats and their proper roles in the Unified Process.

· Difference between use-case model and use-case diagram.
· Components of the use-case model.

· Use-case diagram, including its essential components.
· System boundary: definition and what is inside and outside of it.

· You should be able to take a prose description of a user/system interaction and produce a detailed use case with primary and alternate scenarios.

· Understand the relationship between a system sequence diagram and a use-case.

· Define the components of system sequence diagrams.

· Draw a system sequence diagram from a detailed use case.

· How use case diagrams and system sequence diagrams are similar and how they differ.

· Decomposition—the types of decomposition and how they compare and relate.

· Types of abstractions uncovered in analysis and design phases. Limitations on abstractions in the analysis phase.

· Difference between domain model and domain diagram.
· Elements of the domain model.
· Domain objects/conceptual classes.

· Class associations.

· Class attributes.
· UML class diagram notation 
· Use of compartments

· Fundamental type vs. associations for attribute 
· Draw a domain model diagram with associations and attributes based on a prose description.

· Define and give examples of different class categories. (Note: You need not memorize Larman’s conceptual class categories list!)

· Define and give examples of different class association categories. (Note: You need not memorize Larman’s class associations list!)

· Definition of software architecture.

· Why software architecture is important.

· Definition, elements of, and an example of an architectural pattern.

· Architectural baseline and architectural releases, including how they are determined.

· Definition and use of design scenarios (general).

· CRC (Class, Responsibility, Collaborator) cards—what they are, what they capture, and how they are used.

· Function-Class Decomposition—basics of the method and what it accomplishes.
· Robustness Diagram and its contents and rules

Page 1 of 2
Rev: 5-Oct-16

Page 2 of 2
Rev: 5-Oct-16

