

Acyclic Visitor

(v1.0)

Robert C. Martin

Object Mentor
rmartin@oma.com

I

NTENT

Allow new functions to be added to existing class hierarchies without affecting those hierarchies, and without creating
the troublesome dependency cycles that are inherent to the GOF

1

 V

ISITOR

 Pattern.

M

OTIVATION

Procedural software can be written in such a way that new functions can be added to existing data structures without
affecting those data structures. Object oriented software can be written such that new data structures can be used by
existing functions without affecting those functions. In this regard they are the inverse of each other. Adding new data
types without affecting existing functions is at the heart of many of the benefits of OO. Yet there are times when we
really want to add a new function to an existing set of classes without changing those classes. The V

ISITOR

2

 pattern
provides a means to accomplish this goal.

However, the V

ISITOR

 pattern, when used in static languages like C++, Java, or Eiffel, causes a cycle in the source
code dependency structure. (See Figure 1 and the legend at the end of this paper.) A source code dependency means
that the source code of one module must refer to (via

#include

, or

import

, or some other mechanism) the source
code of another module.

1. “Gang of Four” : Gamma, Helm, Vlissides, and Johnson. The four authors of

Design Patterns Elements of Reusable Object Oriented Soft-
ware

, Gamma, et. al. Addison Wesley, 1995

2.

Design Patterns Elements of Reusable Object Oriented Software

, Gamma, et. al. Addison Wesley, 1995 p. 331

Figure 1: The dependency cycle in the

V

ISITOR

 Pattern

Element

Accept(Visitor&)=0

Visitor

VisitA(A&)=0
VisitB(B&)=0

A

B

MyFunction
Visitor

 The dependency cycle in this case is as follows:

•

The base class of the visited hierarchy (

Element

) depends upon the base class of the corresponding visitor hier-
archy (

Visitor

).

•

The

Visitor

 base class has member functions for each of the derivatives of the

Element

 base class. Thus the
Visitor class depends upon each derivative of

Element

.

•

Of course, each derivative of

Element

 depends upon

Element

.

Thus we have a cycle of dependencies that causes

Element

 to transitively depend upon all its derivatives.

This knot of dependencies can cause significant troubles for the programmer who must maintain the code which con-
tains them. Any time a new derivative of

Element

 is created, the

Visitor

 class must also be changed. Since

El-
ement

 depends upon

Visitor

, every module that depends upon

Element

 must be recompiled. This means that
every derivative of

Element

, and possibly every

user

 of every derivative of

Element,

 must also be recompiled.

Where possible, this dependency cycle should be mitigated by using

forward declarations

. That is, in many cases the

Element

 base class can

forward declare

 the

Visitor

 base class, and the

Visitor

 base class can

forward declare

the derivatives of

Element

. This creates a much weaker source code dependency that Lakos

3

 refers to as a

name only

dependency. Although weaker, this is still a dependency cycle and still causes many of the problems mentioned in the
last paragraph. Specifically, even when

name only

 dependencies are used as much as possible, every time a new de-
rivative of

Element

 is created, all the existing derivatives of

Element

 must be recompiled

4

.

Partial Visitation

Another disadvantage to the dependency cycle created by the Visitor pattern is the need to address

every

 derivative of
Element in

every

 derivative of Visitor. Often, there are hierarchies for which visitation is only required for certain de-
rivatives of Element. For example, consider a modem hierarchy (See Figure 2).

Here we see a very compelling use for V

ISITOR

. We have a typical hierarchy of

Modem

 classes with one derivative for
each modem manufacturer. We also see a hierarchy of visitors for the

Modem

 hierarchy. In this example, there is one
visitor that adds the ability to configure a modem for Unix; and another that adds the ability to configure a modem for
DOS. Clearly, we do not want to add these functions directly to the

Modem

 hierarchy. There is no end to such func-
tions! The last thing we want is for every user of

Modem

 to be recompiled every time a new operating system is re-
leased. Indeed, we don’t want

Modem

 to know anything at all about operating systems. Thus, we use V

ISITOR

 to add
the configuration function to the

Modem

 hierarchy without affecting that hierarchy.

However, V

ISITOR

 forces us to write a function for the cross product of all

Modem

 derivatives and all

ModemVisi-
tor

 derivatives. i.e. we need to write the functions that configure every type of modem to every type of operating

3.

Large Scale C++ Software Design

, John Lakos, Addison Wesley, 1996. p249.

4. See: “What’s wrong with recompiling?”, in the Notes section.

Figure 2: Modem Configuration Visitors

Modem ModemVisitor

HayesModem

ZoomModem
Configure
for Unix

Modem Visitor

Configure
for DOS

Modem Visitor

Accept(ModemVisitor&)=0 Visit(HayesModem&)=0
Visit(ZoomModem&)=0

system. However, what if we never use Hayes modems with Unix? V

ISITOR

 will still force us to write a function to do
it! We could, of course, print an error from the function in the Visitor base class, and then allow that function to be
inherited, but we still have to write that function.

Now consider a much larger hierarchy, one in which the cross product of

Element

 derivatives and

Visitor

 deriv-
atives is sparsely populated. The V

ISITOR

 pattern may become inconvenient in such a hierarchy because every visitor
depends upon every derivative of

Element

. Any time a new derivative of

Element

 is added

all

 derivatives, even
derivatives which do not require visitor functions, must be recompiled. We would prefer to write only the functions
that need writing and keep them independent from all the other derivatives of

Element

.

Solution

These problems can be solved by using multiple inheritance and

dynamic_cast

. (See Figure 3)

Here we see how the dependency cycle can be broken. Rather than put pure virtual functions into the

ModemVisitor

class, we make it completely degenerate; i.e. it has no member functions at all! We also create one abstract class for
each derivative of

Modem

. These classes,

HayesVisitor

 and

ZoomVisitor

, provide a pure virtual

Visit

 func-
tion for

HayesModem

 and

ZoomModem

 respectively. Finally we inherit all three of these classes into the

Config-
ureDOSModemVisitor

. Note that this class has exactly the same functions that it had in Figure 2. Moreover, they
are implemented in exactly the same way.

The

Accept

 function in the derivatives of

Modem use dynamic_cast to cast across the visitor hierarchy from
ModemVisitor to the appropriate abstract visitor class. Note: this is not a downcast - it is a cross cast. It is one of
the great benefits of dynamic_cast that it can safely cast to any class anywhere in the inheritance structure of the object
it operates on.

Now what happens if we never use Hayes modems with Unix? The ConfigureUnixModemVisitor class will

Figure 3: Acyclic Modem Visitor

Modem

Accept(ModemVisitor&)=0

ModemVisitor
«degenerate»

This class has no
functions. It is

degenerate.

HayesModem

ZoomModem

HayesVisitor

ZoomVisitor

Visit(HayesModem&)=0

Visit(ZoomModem&)=0

ConfigureDOS
ModemVisitor

Visit(HayesModem&)
Visit(ZoomModem&)

Accept(ModemVisitor&)

Accept(ModemVisitor&)

void HayesModem::Accept(ModemVisitor& v)
{
 HayesVisitor* hv = dynamic_cast<HayesVisitor*>(&v);
 if (hv)
 hv->Visit(*this);
 else
 // ‘v’ cannot visit HayesModem.
}

simply not inherit from HayesVisitor. Any attempt to use a Hayes modem with Unix will cause the
dynamic_cast in HayesModem::Accept function to fail, thus detecting the error at that point.

There are no dependency cycles anywhere in this structure. New Modem derivatives have no affect on existing modem
visitors unless those visitors must implement their functions for those derivatives. New Modem derivatives can be add-
ed at any time without affecting the users of Modem, the derivatives of Modem, or the users of the derivatives of Mo-
dem. The need for massive recompilation is completely eliminated.

APPLICABILITY

This pattern can be used anywhere the VISITOR pattern can be used:

• When you need to add a new function to an existing hierarchy without the need to alter or affect that hierarchy.

• When there are functions that operate upon a hierarchy, but which do not belong in the hierarchy itself. e.g. the
ConfigureForDOS / ConfigureForUnix / ConfigureForX issue.

• When you need to perform very different operations on an object depending upon its type.

This pattern should be preferred over VISITOR under the following circumstances:

• When the visited class hierarchy will be frequently extended with new derivatives of the Element class.

• When the recompilation, relinking, retesting or redistribution of the derivatives of Element is very expensive.

STRUCTURE (See Figure 4.)

PARTICIPANTS

• Element. The base class of the hierarchy which needs to be visited. Visitors will operate upon the classes within
this structure. If you are using visitor to add functions to a hierarchy, this is the base class of that hierarchy

• E1, E2, ... The concrete derivatives of Element that require visiting. If you are using visitor to add functions to a
hierarchy, you will write one function for each of these concrete derivatives.

• Visitor. A degenerate base class. This class has no member functions at all. It sole purpose is as a place holder in
the type structure. It is the type of the argument that is taken by the Accept method of Element. Since the
derivatives of Element use this argument in a dynamic_cast expression, Visitor must have at least one
virtual function -- typically the destructor.

• E1Visitor, E2Visitor, ... The abstract visitors that correspond to each of the concrete derivatives of Element.
There is a one to one relationship between these classes. Each concrete derivative of Element will have a corre-
sponding abstract visitor. The abstract visitor class will have one pure virtual Visit method that takes a refer-
ence to the concrete Element derivative.

• VisitForF. This is the actual visitor class. It derives from Visitor so that it can be passed to the Accept func-
tion of Element. It also derives from each of the abstract visitors that correspond to the concrete classes that this
visitor will visit. There is no need for the visitor to derive from all the abstract visitor classes; it only needs to
derive from the ones for which it will implement Visit functions.

COLLABORATIONS

1. The process begins when a user wishes to apply one of the visitors to an object in the Element hierarchy. The
user does not know which of the concrete derivatives of Element it actually has; instead is simply has a reference
(or a pointer) to an Element.

2. The user creates the visitor object. (e.g. VisitForF in Figure 4) The visitor object represents the function that
the user would like to invoke upon the Element.

3. The user sends the Accept message to the Element and passes the visitor object as a reference to a Visitor.

4. The Accept method of the concrete derivative of Element uses dynamic_cast to cast the Visitor object
to the appropriate abstract visitor class (e.g. E1Visitor from Figure 4).

5. If the dynamic_cast succeeds, then the Visit message is sent to the visitor object using the interface of the
abstract visitor class. The concrete derivative of Element is passed along with the Visit message.

6. The actual visitor object executes the Visit method.

CONSEQUENCES

The consequences of this pattern are the same as those for VISITOR with the following additions:

+ All dependency cycles are eliminated. Derivatives of Element do not depend upon each other. Recompilation is
minimized.

+ Partial visitation is natural and does not require additional code or overhead.

- dynamic_cast can be expensive in terms of runtime efficiency. Moreover, its efficiency may vary as the class
hierarchy changes. Thus, ACYCLIC VISITOR may be inappropriate in very tight real time applications where run
time performance must be predictable

- Some compilers don’t support dynamic_cast.

- Some languages don’t support dynamic type resolution, and/or multiple inheritance.

- In C++, the Visitor class must have at least one virtual function. Since the class is also degenerate, we typically
make the destructor virtual.

Figure 4: Acyclic Modem Visitor

Element

Visitor

«degenerate»E1 E2

E1Visitor E2Visitor

Visit(E1&)=0 Visit(E2&)=0

Accept(Visitor&) = 0

Accept(Visitor&) Accept(Visitor&)

VisitForF

Visit(E1&)
Visit(E2&)

void E1::Accept(Visitor& v)
{
 if (E1Visitor* ev = dynamic_cast<E1Visitor*>(&v))
 ev->Visit(*this);
 else
 // Accept Error
}

- Use of this pattern implies that there will be an abstract visitor class for each derivative of Element. Thus, classes
tend to proliferate rapidly.

SAMPLE CODE

The following is the code for the Modem example used in Figure 3.

// Visitor is a degenerate base class for all visitors.
class Visitor
{
 public:
 virtual ~Visitor() = 0;
 // The destructor is virtual, as all destructors ought to be.
 // it is also pure to prevent anyone from creating an
 // instance of Visitor. Since this class is going to be
 // used in a dynamic_cast expression, it must have at least
 // one virtual function.
};

class Modem
{
 public:
 virtual void Accept(Visitor&) const = 0;
};

class HayesModem;
class HayesModemVisitor
{
 public:
 virtual void Visit(HayesModem&) const = 0;
};

class HayesModem : public Modem
{
 public:
 virtual void Accept(Visitor& v) const;
};

void HayesModem::Accept(Visitor& v) const
{
 if (HayesModemVisitor* hv = dynamic_cast<HayesModemVisitor*>(&v))
 hv->Visit(*this);
 else
 // AcceptError
}

class ZoomModem;
class ZoomModemVisitor
{
 public:
 virtual void Visit(ZoomModem&) const = 0;
};

class ZoomModem : public Modem
{
 public:
 virtual void Accept(Visitor& v) const;
};

void ZoomModem::Accept(Visitor& v) const
{
 if (ZoomModemVisitor* zv = dynamic_cast<ZoomModemVisitor*>(&v))

 zv->Visit(*this);
 else
 // AcceptError
}

//-------------------------
// ConfigureForDOSVisitor
//
// This visitor configures both Hayes and Zoom modems
// for DOS.
//
class ConfigureForDosVisitor : public Visitor
 , public HayesModemVisitor
 , public ZoomModemVisitor
{
 public:
 virtual void Visit(HayesModem&); // configure Hayes for DOS
 virtual void Visit(ZoomModem&); // configure Zoom for DOS
};

//--------------------------
// ConfigureForUnixVisitor
//
// This visitor configures only Zoom modems for Unix
//

class ConfigureForUnixVisitor : public Visitor
 , public ZoomModemVisitor
{
 public:
 virtual void Visit(ZoomModem&); // configure Zoom for Unix
};

KNOWN USES

We have used this pattern in several of the projects we have consulted for. It has been used in the design of the “Mark
Facility Controller” created by the Toolkit Working Group at Xerox. It has also been used in the ETS/NCARB project.5

NOTES

This pattern solves a particularly nasty problem of tangled dependencies. I find this interesting in light of the fact that
it depends on two such controversial features. The pattern would not be possible were it not for multiple inheritance
and run time type information; both of which have been attacked as being “non-OO”.

What’s wrong with recompiling?

Recompiles can be very expensive for a number of reasons. First of all, they take time. When recompiles take too
much time, developers begin to take shortcuts. They may hack a change in the “wrong” place, rather than engineer a
change in the “right” place; simply because the “right” place will force a huge recompilation. Secondly, a recompila-
tion means a new object module. In this day and age of dynamically linked libraries and incremental loaders, generat-
ing more object modules than necessary can be a significant disadvantage. The more DLLs that are affected by a
change, the greater the problem of distributing and managing the change. Finally, a recompile means a new release of
every module which needed recompiling. New releases require documentation, and testing; causing potentially huge
amounts of manpower to be invested.

5. see ‘publications’ at www.oma.com

LEGEND

Legend of the 0.91 UML Notation

Base ClassBase ClassBase Class

Bi-directional
Association

Inheritance

Derived

P1

P2

A1

X
dependency

Aggregation
By Reference

Aggregation
By Value

A2

Directional
Association

