Comparing algebraic and finite group cohomology

Christopher Drupieski
Department of Mathematics
University of Georgia

Southeastern Lie Theory Workshop on Finite and Algebraic Groups

June 1, 2011
University of Georgia VIGRE Algebra Group

Faculty
- Brian Boe
- Jon Carlson
- Leonard Chastkofsky
- Daniel Nakano
- Lisa Townsley

Postdoctoral Fellows
- Christopher Drupieski
- Niles Johnson

Graduate Students
- Brian Bonsignore
- Theresa Brons
- Wenjing Li
- Phong Thanh Luu
- Tiago Macedo
- Nham Ngo
- Brandon Samples
- Andrew Talian
- Benjamin Wyser
- G - simple, simply-connected algebraic group over $\overline{\mathbb{F}}_p$
- $G(\mathbb{F}_q)$ - finite subgroup of \mathbb{F}_q-rational points in G, $q = p^r$
- B - Borel subgroup of G
- U - unipotent radical of B
- G_r - Frobenius kernel of G
- $L(\lambda)$ - irreducible G-module of highest weight λ
- $V(\lambda)$ - Weyl module of highest weight λ
- $H^0(\lambda) = \text{ind}^G_B(\lambda)$ - induced module

e.g.,
- $G = SL_n(\overline{\mathbb{F}}_p)$
- $G(\mathbb{F}_q) = SL_n(\mathbb{F}_q)$
- B - lower triangular invertible matrices
- U - lower triangular unipotent matrices
Problem

Compute

\[H^1(G(\mathbb{F}_q), L(\lambda)) \quad \text{and} \quad H^2(G(\mathbb{F}_q), L(\lambda)) \]

for \(\lambda \) small, say, less than or equal to a fundamental dominant weight.

Cline, Parshall, Scott (1975, 1977), Jones (1975)

Let \(\lambda \) be a minimal nonzero dominant weight. Then

\[\dim H^1(G(\mathbb{F}_q), L(\lambda)) \leq \begin{cases} 2 & \text{if } p = 2 \\ 1 & \text{if } p \neq 2 \end{cases} \]

Our goal: Compare \(H^i(G(\mathbb{F}_q), L(\lambda)) \) to \(H^i(G, L(\lambda)) \).
Commutative square of restriction maps:

\[
\begin{array}{ccc}
H^i(G, V) & \sim & H^i(B, V) \\
\downarrow & & \downarrow \\
H^i(G(F_q), V) & \sim & H^i(B(F_q), V).
\end{array}
\]

Cline, Parshall, Scott, van der Kallen (1977)

Let \(V \) be a finite-dimensional rational \(G \)-module, and let \(i \in \mathbb{N} \). Then for all sufficiently large \(e \) and \(q \), the restriction map is an isomorphism

\[
H^i(G, V^{(e)}) \sim H^i(G(F_q), V^{(e)}).
\]

Avoid twists and \(q \gg 0 \) by more direct appeal to the left column.
Consider the functor \(\text{ind}_G^{G(\mathbb{F}_q)}(-) \). There exists a short exact sequence

\[
0 \to k \to \text{ind}_G^{G(\mathbb{F}_q)}(k) \to N \to 0.
\]

Let \(M \) be a rational \(G \)-module. Then there exists a short exact sequence

\[
0 \to M \to \text{ind}_G^{G(\mathbb{F}_q)}(M) \to M \otimes N \to 0.
\]

Using \(\text{Ext}^n_G(k, \text{ind}_G^{G(\mathbb{F}_q)}(M)) \cong \text{Ext}^n_G(\mathbb{F}_q)(k, M) \), we get:

Long exact sequence for restriction

\[
0 \to \text{Hom}_G(k, M) \to \text{Hom}_G(\mathbb{F}_q)(k, M) \to \text{Hom}_G(k, M \otimes N) \\
\to \text{Ext}^1_G(k, M) \to \text{Ext}^1_G(\mathbb{F}_q)(k, M) \to \text{Ext}^1_G(k, M \otimes N) \\
\to \text{Ext}^2_G(k, M) \to \text{Ext}^2_G(\mathbb{F}_q)(k, M) \to \text{Ext}^2_G(k, M \otimes N) \\
\]
Restriction Isomorphism Theorem

Let λ be less than or equal to a fundamental dominant weight. Suppose p and q are as below. Then $\text{Ext}^i_G(k, L(\lambda)) \cong \text{Ext}^i_{G(\mathbb{F}_q)}(k, L(\lambda))$ for $i \leq 2$.

<table>
<thead>
<tr>
<th>Type</th>
<th>Conditions on p and q</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_n</td>
<td>p odd, $q > 3$</td>
</tr>
<tr>
<td>B_n</td>
<td>$p > 3$ ($q > 5$ if $n \leq 3$)</td>
</tr>
<tr>
<td>C_n</td>
<td>$p > 3$, $q > 5$</td>
</tr>
<tr>
<td>D_n</td>
<td>p odd, $q > 3$</td>
</tr>
<tr>
<td>E_6</td>
<td>$p > 3$</td>
</tr>
<tr>
<td>E_7</td>
<td>$p > 3$, $q > 5$</td>
</tr>
<tr>
<td>E_8</td>
<td>$p > 5$</td>
</tr>
<tr>
<td>F_4</td>
<td>$p > 3$, $q > 5$</td>
</tr>
<tr>
<td>G_2</td>
<td>$p > 5$</td>
</tr>
</tbody>
</table>
Bendel, Nakano, Pillen (2010)

$\text{ind}^G_G(\mathbb{F}_q) (k)$ admits a filtration by G-submodules with sections of the form

$$H^0(\mu) \otimes H^0(\mu^*)(r) \quad \mu \in X(T)_+.$$

Corollary: $N = \text{coker}(k \rightarrow \text{ind}^G_G(\mathbb{F}_q) (k))$ admits such a filtration with $\mu \neq 0$.

Then $\text{Ext}^i_G(k, L(\lambda) \otimes N) = 0$ if it is zero for each section, i.e., if for $\mu \neq 0$,

$$\text{Ext}^i_G(k, L(\lambda) \otimes H^0(\mu) \otimes H^0(\mu^*)(r))$$

$$\cong \text{Ext}^i_G(V(\mu)(r), L(\lambda) \otimes H^0(\mu)) = 0.$$
Analyze the spectral sequences

\[E_{2}^{i,j} = \text{Ext}_{G/Gr}^{i} (V(\mu)^{(r)}, \text{Ext}_{Gr}^{j} (k, L(\lambda) \otimes H^{0}(\mu))) \]

\[\Rightarrow \text{Ext}_{G}^{i+j} (V(\mu)^{(r)}, L(\lambda) \otimes H^{0}(\mu)) \]

and \[E_{2}^{i,j} = R^{i} \text{ind}_{B/Br}^{G/Gr} \text{Ext}_{Br}^{j} (k, L(\lambda) \otimes \mu) \Rightarrow \text{Ext}_{Gr}^{i+j} (k, L(\lambda) \otimes H^{0}(\mu)). \]

Critical calculation

Let \(\lambda \in X(T)_{+} \) be less than or equal to a fundamental dominant weight, and let \(p \) and \(q \) be as above. Then there exists \(I \subseteq \Delta \) such that

\[\text{Ext}_{Ur}^{1} (k, L(\lambda)) \cong \bigoplus_{\alpha \in I} -s_{\alpha} \cdot \lambda^{*} \oplus \bigoplus_{\sigma \uparrow \lambda} (-\sigma)^{\oplus m_{\sigma}} \]

where \(m_{\sigma} = \dim \text{Ext}_{G}^{1} (L(\lambda^{*}), H^{0}(\sigma)) \).
First Cohomology Main Theorem

Let $\lambda \in X(T)_+$ be a fundamental dominant weight. Assume $q > 3$ and

$p > 2$ if Φ has type A_n, D_n;
$p > 3$ if Φ has type $B_n, C_n, E_6, E_7, F_4, G_2$;
$p > 5$ if Φ has type E_8.

Then $\dim H^1(G(\mathbb{F}_q), L(\lambda)) = \dim H^1(G, L(\lambda)) \leq 1$.

Space is one-dimensional in the following cases:

- Φ has type E_7, $p = 7$, and $\lambda = \omega_6$; and
- Φ has type C_n, $n \geq 3$, and $\lambda = \omega_j$ with $\frac{j}{2}$ a nonzero term in the p-adic expansion of $n + 1$, but not the last term in the expansion.

Reasons for vanishing: Linkage principle for G, $\text{Ext}^1_G(V(0), H^0(\lambda)) = 0$.
Second Cohomology Main Theorem

Let $\lambda \in X(T)_+$ be less than or equal to a fundamental dominant weight. Let $p > 7$. Then $\operatorname{Ext}^2_{G(F_q)}(k, L(\lambda)) \cong \operatorname{Ext}^2_G(k, L(\lambda)) = 0$, except possibly in the cases

- $\Phi = E_8$, $p = 31$, and $\lambda \in \{\omega_6 + \omega_8, \omega_7 + \omega_8\}$
- $\Phi = C_n$, $n \geq 3$, and $\lambda = \omega_j$ with j even
Adamovich described combinatorially the submodule structure of Weyl modules in Type C having fundamental highest weight. We use this and $\text{Ext}^2_{C_n}(k, L(\omega_j)) \cong \text{Ext}^1_{C_n}(\text{rad}_G V(\omega_j), k)$ to make computations.
Values of n and j for which $H^2(Sp_{2n}, L(\omega_j)) \neq 0$, $p = 3$.

In each case, H^2 is 1-dimensional.

<table>
<thead>
<tr>
<th>n</th>
<th>j</th>
<th>n</th>
<th>j</th>
<th>n</th>
<th>j</th>
<th>n</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>15</td>
<td>6, 8</td>
<td>24</td>
<td>6, 8, 18</td>
<td>33</td>
<td>6, 8, 18</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>16</td>
<td>6, 10</td>
<td>25</td>
<td>6, 10, 18</td>
<td>34</td>
<td>6, 10, 18</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>17</td>
<td></td>
<td>26</td>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>18</td>
<td>6, 14</td>
<td>27</td>
<td>6, 14</td>
<td>36</td>
<td>6, 14</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>19</td>
<td>6, 16</td>
<td>28</td>
<td>6, 16</td>
<td>37</td>
<td>6, 16</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>20</td>
<td>18</td>
<td>29</td>
<td>18</td>
<td>38</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>21</td>
<td>6, 18</td>
<td>30</td>
<td>6, 18</td>
<td>39</td>
<td>6, 18, 20</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>22</td>
<td>6, 18</td>
<td>31</td>
<td>6, 18</td>
<td>40</td>
<td>6, 18, 22</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>23</td>
<td>18</td>
<td>32</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For $n = 12$, we have also $H^1(Sp_{2n}, L(\omega_6)) \neq 0$ (parity vanishing violated).
Values of n and j for which $H^2(Sp_{2n}, L(\omega_j)) \neq 0$: $p = 5$.

In each case, H^2 is 1-dimensional.

<table>
<thead>
<tr>
<th>n</th>
<th>j</th>
<th>n</th>
<th>j</th>
<th>n</th>
<th>j</th>
<th>n</th>
<th>j</th>
<th>n</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>30</td>
<td>10</td>
<td>40</td>
<td>10, 22</td>
<td>50</td>
<td>10, 42</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>21</td>
<td>10</td>
<td>31</td>
<td>10</td>
<td>41</td>
<td>10, 24</td>
<td>51</td>
<td>10, 44</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>22</td>
<td>10</td>
<td>32</td>
<td>10</td>
<td>42</td>
<td>10, 26</td>
<td>52</td>
<td>10, 46</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>23</td>
<td>10</td>
<td>33</td>
<td>10</td>
<td>43</td>
<td>10, 28</td>
<td>53</td>
<td>10, 48</td>
</tr>
<tr>
<td>14</td>
<td>24</td>
<td>34</td>
<td></td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>25</td>
<td>10</td>
<td>35</td>
<td>10, 12</td>
<td>45</td>
<td>10, 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>26</td>
<td>10</td>
<td>36</td>
<td>10, 14</td>
<td>46</td>
<td>10, 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>27</td>
<td>10</td>
<td>37</td>
<td>10, 16</td>
<td>47</td>
<td>10, 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>28</td>
<td>10</td>
<td>38</td>
<td>10, 18</td>
<td>48</td>
<td>10, 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>29</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For $n = 30$, we also have $H^1(Sp_{2n}, L(\omega_{10})) \neq 0$ (parity vanishing violated).