Support varieties for irreducible modules of small quantum groups

Christopher M. Drupieski

Department of Mathematics
University of Georgia

April 21, 2012
Joint work with Daniel Nakano (UGA) and Brian Parshall (UVA).

• \(\mathfrak{g} \) finite-dimensional simple complex Lie algebra
• \(\Phi \) root system of \(\mathfrak{g} \), with highest short root \(\alpha_0 \)
• \(\rho = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha \) the Weyl weight
• \(h = (\rho, \alpha_0^\vee) + 1 \) the Coxeter number of \(\Phi \)
• \(\mathcal{W} \) the Weyl group of \(\Phi \)

• \(\ell \in \mathbb{N} \) odd integer with \(\ell > h \) and \(3 \nmid \ell \) if \(\Phi \) is of type \(G_2 \)
• \(\zeta \in \mathbb{C} \) primitive \(\ell \)-th root of unity
• \(u_\zeta(\mathfrak{g}) \) small quantum group associated to \(\mathfrak{g} \), a finite-dimensional Hopf subalgebra of the Lusztig quantum group \(U_\zeta(\mathfrak{g}) \) with parameter \(\zeta \).

• \(\mathcal{W}_\ell = \mathcal{W} \ltimes \ell \mathbb{Z} \Phi \) affine Weyl group
• \(\mathcal{N} \) nullcone of \(\mathfrak{g} \), consisting of the nilpotent elements in \(\mathfrak{g} \)
Let A be a Hopf algebra over an algebraically closed field k. Suppose $R = H^{2\bullet}(A, k)$ is finitely-generated as an algebra over k.

Cohomological spectrum

$$V_A(k) = \text{MaxSpec } H^{2\bullet}(A, k) \text{ (maximal ideal spectrum)}.$$

Let M be a finite-dimensional A-module. Set $I_A(M) = \text{Ann}_R \text{Ext}^\bullet_A(M, M)$.

Support variety of a module

$$V_A(M) = \text{MaxSpec}(H^{2\bullet}(A, \mathbb{C})/I_A(M)), \text{ closed subvariety of } V_A(k).$$

The cases $A = kG$, the group ring of a finite group G, and $A = u(g)$, the restricted enveloping algebra of a p-restricted Lie algebra g, have been of interest since at least the early 1980s.
Ginzburg–Kumar (1993)

\[H^2(\mathfrak{u}\zeta(\mathfrak{g}), \mathbb{C}) \cong \mathbb{C}[\mathcal{N}], \text{ hence } V_{\mathfrak{u}\zeta(\mathfrak{g})}(\mathbb{C}) \cong \mathcal{N}. \]

General problem that few explicit examples of support varieties of known.
Ginzburg–Kumar (1993)

\[H^{2\bullet}(\mathfrak{u}_\zeta(\mathfrak{g}), \mathbb{C}) \cong \mathbb{C}[\mathcal{N}], \text{ hence } V_{\mathfrak{u}_\zeta(\mathfrak{g})}(\mathbb{C}) \cong \mathcal{N}. \]

General problem that few explicit examples of support varieties of known.

For \(\lambda \in \mathfrak{X}^+ \), have \(H^0(\lambda) \) and \(V(\lambda) \) (induced and Weyl modules for \(U_\zeta(\mathfrak{g}) \)).

Set \(\Phi_\lambda = \{ \alpha \in \Phi : (\lambda + \rho, \alpha^\vee) \equiv 0 \text{ mod } \ell \} \).

There exists \(w \in \mathcal{W} \) and a subset of simple roots \(J \) such that \(w(\Phi_\lambda) = \Phi_J \).

Let \(\mathfrak{u}_J \) be the nilradical of the standard parabolic subalgebra \(\mathfrak{p}_J \subset \mathfrak{g} \).
Ginzburg–Kumar (1993)

\[H^2(\mathfrak{u}_\zeta(\mathfrak{g}), \mathbb{C}) \cong \mathbb{C}[\mathcal{N}], \text{ hence } \mathcal{V}_{\mathfrak{u}_\zeta(\mathfrak{g})}(\mathbb{C}) \cong \mathcal{N}. \]

General problem that few explicit examples of support varieties of known.

For \(\lambda \in X^+ \), have \(H^0(\lambda) \) and \(V(\lambda) \) (induced and Weyl modules for \(U_\zeta(\mathfrak{g}) \)).

Set \(\Phi_\lambda = \{ \alpha \in \Phi : (\lambda + \rho, \alpha^\vee) \equiv 0 \text{ mod } \ell \} \).

There exists \(w \in W \) and a subset of simple roots \(J \) such that \(w(\Phi_\lambda) = \Phi_J \).

Let \(\mathfrak{u}_J \) be the nilradical of the standard parabolic subalgebra \(\mathfrak{p}_J \subset \mathfrak{g} \).

\[\mathcal{V}_{\mathfrak{u}_\zeta(\mathfrak{g})}(H^0(\lambda)) = \mathcal{V}_{\mathfrak{u}_\zeta(\mathfrak{g})}(V(\lambda)) = G \cdot \mathfrak{u}_J, \text{ irreducible of dimension } |\Phi| - |\Phi_J| \]
Question
What is the support variety of each irreducible $u_\zeta(g)$-module $L(\lambda)$?

No previous calculation of the support varieties for all irreducible modules of a finite-dimensional Hopf algebra (except in cases where all $V_A(L)$ equal the full cohomological spectrum, i.e., the variety of the trivial module).
Question
What is the support variety of each irreducible $u_\zeta(\mathfrak{g})$-module $L(\lambda)$?

No previous calculation of the support varieties for all irreducible modules of a finite-dimensional Hopf algebra (except in cases where all $V_A(L)$ equal the full cohomological spectrum, i.e., the variety of the trivial module).

$L(\lambda) = \text{soc}_{u_\zeta(\mathfrak{g})} H^0(\lambda)$, follows via induction that $V_{u_\zeta(\mathfrak{g})}(L(\lambda)) \subseteq G \cdot u_J$.

Theorem (D–Nakano–Parshall)
Suppose $w(\Phi_\lambda) = \Phi_J$ for some $w \in W$. Then $V_{u_\zeta(\mathfrak{g})}(L(\lambda)) = G \cdot u_J$.
Let M be a finite-dimensional $U_{\zeta}(g)$-module, with $M = \bigoplus_{\lambda \in \mathcal{X}} M_\lambda$.

Generic dimension of a weight module

\[
\dim_t M = \sum_{\lambda \in \mathcal{X}} (\dim M_\lambda) t^{-2 \text{wht}(\lambda)} \in \mathbb{Z}[t, t^{-1}]
\]

Here $\text{wht}(\lambda) = \frac{1}{2} \sum_{\alpha \in \Phi^+} d_\alpha(\lambda, \alpha^\vee) \in \mathbb{Z}[\frac{1}{2}]$, where $d_\alpha = (\alpha, \alpha)/(\alpha_0, \alpha_0)$.
Let M be a finite-dimensional $U_\zeta(g)$-module, with $M = \bigoplus_{\lambda \in \mathcal{X}} M_\lambda$.

Generic dimension of a weight module

$$\dim_t M = \sum_{\lambda \in \mathcal{X}} (\dim M_\lambda) t^{-2 \text{wht}(\lambda)} \in \mathbb{Z}[t, t^{-1}]$$

Here $\text{wht}(\lambda) = \frac{1}{2} \sum_{\alpha \in \Phi^+} d_\alpha(\lambda, \alpha^\vee) \in \mathbb{Z}[\frac{1}{2}]$, where $d_\alpha = (\alpha, \alpha)/(\alpha_0, \alpha_0)$.

Suppose ζ is a root of multiplicity s in $\dim_t M$. Then

$$\dim V_{U_\zeta(g)}(M) \geq |\Phi| - 2s.$$
Outline of the argument for the induced modules:

“Generic” Weyl Character Formula

\[\dim_t H^0(\mu) = D_\lambda(t)/D_0(t), \text{ where} \]

\[D_\lambda(t) = \prod_{\alpha \in \Phi^+} (t^{d_\alpha(\lambda+\rho,\alpha^\vee)} - t^{-d_\alpha(\lambda+\rho,\alpha^\vee)}). \]

Note that \(\zeta \) is a root of \(t^{d_\alpha(\lambda+\rho,\alpha^\vee)} - t^{-d_\alpha(\lambda+\rho,\alpha^\vee)} \) if and only if \(\alpha \in \Phi^+_\lambda \).
Outline of the argument for the induced modules:

"Generic" Weyl Character Formula

\[
\dim_t H^0(\mu) = D_\lambda(t)/D_0(t), \quad \text{where} \\
D_\lambda(t) = \prod_{\alpha \in \Phi^+} (t^{d_\alpha(\lambda+\rho,\alpha^\vee)} - t^{-d_\alpha(\lambda+\rho,\alpha^\vee)}).
\]

Note that \(\zeta\) is a root of \(t^{d_\alpha(\lambda+\rho,\alpha^\vee)} - t^{-d_\alpha(\lambda+\rho,\alpha^\vee)}\) if and only if \(\alpha \in \Phi^+_\lambda\).

Then \(\zeta\) is a root of \(\dim_t H^0(\lambda)\) with multiplicity \(|\Phi^+_\lambda| = |\Phi^+_J|\), hence

\[
\dim V_{u_\zeta(g)}(H^0(\lambda)) \geq |\Phi| - 2|\Phi^+_J| = |\Phi| - |\Phi_J| = \dim G \cdot u_J.
\]

But \(V_{u_\zeta(g)}(H^0(\lambda)) \subseteq G \cdot u_J\) from other techniques, so by dimension comparison and irreducibility of \(G \cdot u_J\), the varieties must be equal.
Outline of the argument for the induced modules:

“Generic” Weyl Character Formula

$$\dim_t H^0(\mu) = D_\lambda(t)/D_0(t),$$

where

$$D_\lambda(t) = \prod_{\alpha \in \Phi^+} (t^{d_\alpha(\lambda+\rho,\alpha^\vee)} - t^{-d_\alpha(\lambda+\rho,\alpha^\vee)}).$$

Note that ζ is a root of $t^{d_\alpha(\lambda+\rho,\alpha^\vee)} - t^{-d_\alpha(\lambda+\rho,\alpha^\vee)}$ if and only if $\alpha \in \Phi^+_\lambda$.

Then ζ is a root of $\dim_t H^0(\lambda)$ with multiplicity $|\Phi^+_\lambda| = |\Phi^+_J|$, hence

$$\dim V_{u\zeta(g)}(H^0(\lambda)) \geq |\Phi| - 2|\Phi^+_J| = |\Phi| - |\Phi_J| = \dim G \cdot u_J.$$

But $V_{u\zeta(g)}(H^0(\lambda)) \subseteq G \cdot u_J$ from other techniques, so by dimension comparison and irreducibility of $G \cdot u_J$, the varieties must be equal.

To imitate this approach for the $L(\lambda)$, we need to know their characters.
Let $\lambda \in X^+$. Choose $\lambda^- \in \overline{C_Z}$ (alcove opposite to the lowest ℓ-alcove) and $w \in W_\ell$ of minimal length such that $\lambda = w \cdot \lambda^-$. Then

$$\dim_t L(\lambda) = \sum_{y \in W_\ell} (-1)^{\ell(w) - \ell(y)} P_{y, w}(1) \cdot \dim_t H^0(y \cdot \lambda^-).$$

Let $W_{\ell, I}$ be the standard parabolic subgroup stabilizing λ^-, and let W^I_ℓ be the set of minimal length right coset representatives for $W_{\ell, I}$. Then

$$\dim_t L(\lambda) = \sum_{y \in W^I_\ell} (-1)^{\ell(w) - \ell(y)} P^{I, -1}_{y, w}(1) \cdot \dim_t H^0(y \cdot \lambda^-).$$
Recall \(D_\lambda(t) = \prod_{\alpha \in \Phi^+} (t^{d_\alpha(\lambda+\rho,\alpha^\vee)} - t^{-d_\alpha(\lambda+\rho,\alpha^\vee)}) \). Then

\[
f(t) = D_0(t) \cdot \dim_t L(\lambda) = \sum_{\substack{y \in W^l_y \\mid y \cdot \lambda^- \in X^+}} (-1)^{\ell(w) - \ell(y)} P_{y,w}^{l,-1}(1) \cdot D_{y \cdot \lambda^-}(t).
\]

Set \(s = |\Phi_j^+| \). Now \(\zeta \) is a root with multiplicity \(s \) in \(f(t) \) if \(f^{(s)}(\zeta) \neq 0 \).
Recall $D_\lambda(t) = \prod_{\alpha \in \Phi^+} (t^{d_\alpha(\lambda+\rho,\alpha^\vee)} - t^{-d_\alpha(\lambda+\rho,\alpha^\vee)})$. Then

$$f(t) = D_0(t) \cdot \dim_t L(\lambda) = \sum_{y \in W^I_{\ell}, y \cdot \lambda^- \in X^+} (-1)^{\ell(w)-\ell(y)} P_{y,w}^{l,-1}(1) \cdot D_{y \cdot \lambda^-}(t).$$

Set $s = |\Phi_j^+|$. Now ζ is a root with multiplicity s in $f(t)$ if $f^{(s)}(\zeta) \neq 0$.

The derivative

$$f^{(s)}(\zeta) = z \cdot \left(\sum_{y \in W^I_{\ell}, y \cdot \lambda^- \in X^+} P_{y,w}^{l,-1}(1) \prod_{\alpha \in \Phi^+_{y \cdot \lambda^-}} 2d_\alpha(y \cdot \lambda^- + \rho, \alpha^\vee) \right)$$

for some explicitly describable nonzero element $z \in \mathbb{C}$.
Recall \(D_\lambda(t) = \prod_{\alpha \in \Phi^+} (t^{\alpha_\lambda + \rho, \alpha} - t^{-\alpha_\lambda + \rho, \alpha}) \). Then

\[
f(t) = D_0(t) \cdot \dim_t L(\lambda) = \sum_{y \in W^I_\ell, y \cdot \lambda^- \in X^+} (-1)^{\ell(w) - \ell(y)} P_{y,w}^{y,-1}(1) \cdot D_{y \cdot \lambda^-}(t).
\]

Set \(s = |\Phi_j^+| \). Now \(\zeta \) is a root with multiplicity \(s \) in \(f(t) \) if \(f^{(s)}(\zeta) \neq 0 \).

The derivative

\[
f^{(s)}(\zeta) = z \cdot \left(\sum_{y \in W^I_\ell, y \cdot \lambda^- \in X^+} P_{y,w}^{y,-1}(1) \left(\prod_{\alpha \in \Phi^+_{y \cdot \lambda^-}} 2d_\alpha(y \cdot \lambda^- + \rho, \alpha^\vee) \right) \right)
\]

for some explicitly describable nonzero element \(z \in \mathbb{C} \).

\(P_{y,w}^{y,-1}(1) \in \mathbb{N} \cup \{0\} \), and \(P_{w,w}^{w,-1}(1) = 1 \). Follows that \(f^{(s)}(\zeta) \neq 0 \).
Summary:

- $V_{u_\zeta(\mathfrak{g})}(L(\lambda)) \subseteq G \cdot u_J$
- $\dim V_{u_\zeta(\mathfrak{g})}(L(\lambda)) \geq \dim G \cdot u_J$ from differentiating the generic LCF
- By irreducibility of $G \cdot u_J$, must have $V_{u_\zeta(\mathfrak{g})}(L(\lambda)) = G \cdot u_J$.

Christopher M. Drupieski (UGA)
Support varieties for irreducible modules
April 21, 2012 11 / 14
Let G be a simple simply-connected algebraic group over an algebraically closed field k of characteristic $p > h$. Assume that the Lusztig character formula holds for G for all restricted dominant weights. Let $\lambda \in X^+$, and suppose $\Phi_\lambda \sim \Phi_J$ for some subset of simple roots J. Then

$$V_{u(g)}(L(\lambda)) = G \cdot u_J.$$

Equivalently, $V_{G_1}(L(\lambda)) = G \cdot u_J$.

Holds for groups of type A_1 if $p \geq 2$, A_2 if $p \geq 3$, B_2 if $p \geq 5$, G_2 if $p \geq 11$, A_3 if $p \geq 5$, A_4 if $p \in \{5, 7\}$, and $p \gg 0$ in general.
Suslin, Friedlander, Bendel (1997)

Suppose G admits an embedding of exponential type $G \hookrightarrow GL_n$. Then

$$V_{G_r}(k) \cong C_r(N^r) = \{(x_0, \ldots, x_{r-1}) \in N^r : [x_i, x_j] = 0 \text{ for all } i, j\}.$$

Using SFB's rank variety characterization of $V_{G_r}(M)$, Sobaje has proved:

Sobaje (2011)

Suppose G is a classical group, and that $p > hc$, where c is as given below. Let $\lambda = \lambda_0 + p\lambda_1 + \cdots + p^s\lambda_s$ with $\lambda_i \in X_1(T)$. Then

$$V_{G_r}(L(\lambda)) = \{(x_0, \ldots, x_{r-1}) \in C_r(N^r) : x_i \in V_{G_1}(L(\lambda_i))\}.$$

c = \left(\frac{n+1}{2}\right)^2 \text{ for } A_n, \quad \frac{n(n+1)}{2} \text{ for } B_n, \quad \frac{n^2}{2} \text{ for } C_n, \text{ and } \frac{n(n-1)}{2} \text{ for } D_n.
Results for algebraic groups

Christopher M. Drupieski (UGA)

Support varieties for irreducible modules

April 21, 2012