Cohomology rings of infinitesimal unipotent algebraic and quantum groups

Christopher Drupieski

Department of Mathematics
University of Georgia

April 11, 2010
Joint work with Daniel Nakano and Nham Ngo.

MAGMA support provided by Jon Carlson.
Standard notation:

- \(k \) an algebraically closed field of characteristic \(p \),
- \(G \) a simple, simply-connected algebraic group (e.g., \(G = SL_n(\overline{\mathbb{F}_p}) \)),
- \(T \subset G \) a maximal torus,
- \(\Phi \) the root system of \(T \) in \(G \),
- \(h \) the Coxeter number of \(\Phi \),
- \(B \subset G \) a Borel subgroup corresponding to \(\Phi^+ \),
- \(U \subset B \) the unipotent radical of \(B \),
- \(U_1 \subset B_1 \) the first Frobenius kernels of \(U \) and \(B \).
- \(n = \text{Lie}(U) \), the nilradical of \(b = \text{Lie}(B) \).
Problem

What is the ring structure of the cohomology ring $H^\bullet(U_1, k)$?

Equivalently: What is the ring structure of $H^\bullet(u(n), k)$?

$u(n)$ = restricted enveloping algebra of n.
Problem
What is the ring structure of the cohomology ring $H^\bullet(U_1, k)$?

Equivalently: What is the ring structure of $H^\bullet(u(n), k)$?

$u(n) =$ restricted enveloping algebra of n.
Theorem (Friedlander–Parshall, 1986)

Suppose \(p > h \). Then there exists a filtration on \(H^\bullet(U_1, k) \) such that

\[
gr H^\bullet(U_1, k) \cong S^\bullet(n^*)^{(1)} \otimes H^\bullet(n, k).
\]

\(H^\bullet(n, k) \) = ordinary Lie algebra cohomology.
\(S^\bullet(n^*)^{(1)} \) = polynomial ring generated in degree two.
Filtration is by polynomials of higher degree.
Theorem (Friedlander–Parshall, 1986)

Suppose $p > h$. Then there exists a filtration on $H^\bullet(U_1, k)$ such that

$$\text{gr } H^\bullet(U_1, k) \cong S^\bullet(n^*)^{(1)} \otimes H^\bullet(n, k).$$

$H^\bullet(n, k) =$ ordinary Lie algebra cohomology.

$S^\bullet(n^*)^{(1)} =$ polynomial ring generated in degree two.

Filtration is by polynomials of higher degree.

In $H^\bullet(U_1, k)$:

$$(a \otimes b)(c \otimes d) = (ac \otimes bd) + \text{ terms with higher degree polynomial part.}$$
Main tools used to prove the ring isomorphism:
Main tools used to prove the ring isomorphism:

1. F-P Spectral sequence:

\[E_2^{2i,j} = S^i(n^*)^{(1)} \otimes H^j(n, k) \Rightarrow H^{2i+j}(U_1, k). \]
Main tools used to prove the ring isomorphism:

1. F-P Spectral sequence:

\[E_2^{2i,j} = S^i(n^*)^{(1)} \otimes H^j(n, k) \Rightarrow H^{2i+j}(U_1, k). \]

2. Explicit computation of \(H^\bullet(n, k) \) as a \(B \)-module: If \(p > h \), then

\[H^\bullet(n, k) = \bigoplus_{w \in W} w \cdot 0. \quad \text{(Kostant’s Theorem)} \]
Problem

Can we “ungrade” the ring isomorphism, i.e., is the vector space isomorphism $\mathbb{H}^\bullet(U_1, k) \cong S^\bullet(n^*)(1) \otimes \mathbb{H}^\bullet(n, k)$ *also a ring isomorphism?*
Problem

Can we “ungrade” the ring isomorphism, i.e., is the vector space isomorphism \(H^\bullet(U_1, k) \cong S^\bullet(n^*)(1) \otimes H^\bullet(n, k) \) also a ring isomorphism?

\[
H^\bullet(B_1, k) = H^\bullet(U_1, k)^{T_1} \cong S^\bullet(n^*)(1) \text{ is already a polynomial subalgebra.}
\]
Can we “ungrade” the ring isomorphism, i.e., is the vector space isomorphism $H^\bullet(U_1, k) \cong S^\bullet(n^*)(1) \otimes H^\bullet(n, k)$ also a ring isomorphism?

$H^\bullet(B_1, k) = H^\bullet(U_1, k)^{T_1} \cong S^\bullet(n^*)(1)$ is already a polynomial subalgebra.

Suppose $G = SL_n$ and $p > h = n + 1$. Then, as a ring,

$H^\bullet(U_1, k) \cong S^\bullet(n^*)(1) \otimes H^\bullet(n, k)$.
Theorem (DNN)

Suppose $p > 2(h - 1)$. Then, as a ring,

$$H^\bullet(U_1, k) \cong S^\bullet(n^*)^{(1)} \otimes H^\bullet(n, k).$$
Proof.

Look at the weight of $x_1 x_2$, for $x_i \in H^\bullet(U_1, k)_{w_i \cdot 0} \cong H^\bullet(n, k)_{w_i \cdot 0}$.

Either $x_1 x_2 = 0$ in $H^\bullet(U_1, k)$, or $x_1 x_2$ has T-weight $w_1 \cdot 0 + w_2 \cdot 0 = w_3 \cdot 0 + \sigma$ for some $w_3 \in W$ and $\sigma \in N_{\Phi}$.

If $\sigma = 0$, then $x_1 x_2 \in H^\bullet(U_1, k)_{w_3 \cdot 0} \subset H^\bullet(n, k)_{w_i \cdot 0}$.

Suppose $\sigma \neq 0$. Then for some $y, y', w'_1, w'_2 \in W$, $y(w'_1 \cdot 0) + y'(w'_2 \cdot 0) = p \tilde{\sigma} \in X(T) + \cap Z_{\Phi}$.

(1) Now $p \tilde{\sigma} \leq 2 \rho + 2 \rho$.

Then $2p \leq p(\tilde{\sigma}, \alpha \vee 0) \leq 4(\rho, \alpha \vee 0) = 4(h - 1)$.

So $p > 2(h - 1)$ implies $\sigma = 0$.

Christopher Drupieski (UGA)
Proof.

Look at the weight of x_1x_2, for $x_i \in H^\bullet(U_1, k)_{w_i \cdot 0} \cong H^\bullet(n, k)_{w_i \cdot 0}$.

- Either $x_1x_2 = 0$ in $H^\bullet(U_1, k)$, or x_1x_2 has T-weight

$$w_1 \cdot 0 + w_2 \cdot 0 = w_3 \cdot 0 + p\sigma$$

for some $w_3 \in W$ and $\sigma \in \mathbb{N}\Phi^-$.
Proof.

Look at the weight of $x_1 x_2$, for $x_i \in H^\bullet(U_1, k)_{w_i \cdot 0} \cong H^\bullet(n, k)_{w_i \cdot 0}$.

- Either $x_1 x_2 = 0$ in $H^\bullet(U_1, k)$, or $x_1 x_2$ has T-weight

 $$w_1 \cdot 0 + w_2 \cdot 0 = w_3 \cdot 0 + p\sigma$$

 for some $w_3 \in W$ and $\sigma \in \mathbb{N}\Phi^-$.

- If $\sigma = 0$, then $x_1 x_2 \in H^\bullet(U_1, k)_{w_3 \cdot 0} \subset H^\bullet(n, k)$.

Proof.

Look at the weight of x_1x_2, for $x_i \in H^\bullet(U_1, k)_{w_i \cdot 0} \cong H^\bullet(n, k)_{w_i \cdot 0}$.

- Either $x_1x_2 = 0$ in $H^\bullet(U_1, k)$, or x_1x_2 has T-weight $w_1 \cdot 0 + w_2 \cdot 0 = w_3 \cdot 0 + p\sigma$ for some $w_3 \in W$ and $\sigma \in \mathbb{N}\Phi^{-}$.
- If $\sigma = 0$, then $x_1x_2 \in H^\bullet(U_1, k)_{w_3 \cdot 0} \subset H^\bullet(n, k)$.
- Suppose $\sigma \neq 0$. Then for some $y, y', w'_1, w'_2 \in W$,

$$y(w'_1 \cdot 0) + y'(w'_2 \cdot 0) = p\tilde{\sigma} \in X(T)_+ \cap \mathbb{Z}\Phi. \quad (1)$$
Proof.

Look at the weight of x_1x_2, for $x_i \in H^\bullet(U_1, k)_{w_i \cdot 0} \cong H^\bullet(n, k)_{w_i \cdot 0}$.

- Either $x_1x_2 = 0$ in $H^\bullet(U_1, k)$, or x_1x_2 has T-weight

 $w_1 \cdot 0 + w_2 \cdot 0 = w_3 \cdot 0 + p\sigma$

 for some $w_3 \in W$ and $\sigma \in \mathbb{N}\Phi^-$.

- If $\sigma = 0$, then $x_1x_2 \in H^\bullet(U_1, k)_{w_3 \cdot 0} \subset H^\bullet(n, k)$.

- Suppose $\sigma \neq 0$. Then for some $y, y', w_1', w_2' \in W$,

 $y(w_1' \cdot 0) + y'(w_2' \cdot 0) = p\tilde{\sigma} \in X(T)_+ \cap \mathbb{Z}\Phi$. \hspace{1cm} (1)

- Now $p\tilde{\sigma} \leq 2\rho + 2\rho$.

Proof.

Look at the weight of x_1x_2, for $x_i \in H^\bullet(U_1, k)_{w_i \cdot 0} \cong H^\bullet(n, k)_{w_i \cdot 0}$.

- Either $x_1x_2 = 0$ in $H^\bullet(U_1, k)$, or x_1x_2 has T-weight

 $$w_1 \cdot 0 + w_2 \cdot 0 = w_3 \cdot 0 + p\sigma$$

 for some $w_3 \in W$ and $\sigma \in \mathbb{N}\Phi^-$.
- If $\sigma = 0$, then $x_1x_2 \in H^\bullet(U_1, k)_{w_3 \cdot 0} \subset H^\bullet(n, k)$.
- Suppose $\sigma \neq 0$. Then for some $y, y', w'_1, w'_2 \in W$,

 $$y(w'_1 \cdot 0) + y'(w'_2 \cdot 0) = p\tilde{\sigma} \in X(T)_+ \cap \mathbb{Z}\Phi. \quad (1)$$

 - Now $p\tilde{\sigma} \leq 2\rho + 2\rho$.
 - Then $2p \leq p(\tilde{\sigma}, \alpha_0^\vee) \leq 4(\rho, \alpha_0^\vee) = 4(h - 1)$.

Christopher Drupieski (UGA)
Cohomology rings
April 11, 2010 9 / 16
Proof.

Look at the weight of $x_1 x_2$, for $x_i \in H^\bullet(U_1, k)_{w_i \cdot 0} \cong H^\bullet(n, k)_{w_i \cdot 0}$.

- Either $x_1 x_2 = 0$ in $H^\bullet(U_1, k)$, or $x_1 x_2$ has T-weight

 $$w_1 \cdot 0 + w_2 \cdot 0 = w_3 \cdot 0 + p\sigma$$

 for some $w_3 \in W$ and $\sigma \in \mathbb{N}\Phi^-$.

- If $\sigma = 0$, then $x_1 x_2 \in H^\bullet(U_1, k)_{w_3 \cdot 0} \subset H^\bullet(n, k)$.

- Suppose $\sigma \neq 0$. Then for some $y, y', w'_1, w'_2 \in W$,

 $$y(w'_1 \cdot 0) + y'(w'_2 \cdot 0) = p\tilde{\sigma} \in X(T)_+ \cap \mathbb{Z}\Phi. \quad (1)$$

- Now $p\tilde{\sigma} \leq 2\rho + 2\rho$.

- Then $2p \leq p(\tilde{\sigma}, \alpha_0^\vee) \leq 4(\rho, \alpha_0^\vee) = 4(h - 1)$.

- So $p > 2(h - 1)$ implies $\sigma = 0$.

\[\square\]
Problem

What happens for $h < p < 2(h - 1)$?
Problem

What happens for $h < p < 2(h - 1)$?

Example (Type B_2, $p = 5$)

Let α, β be simple with α long. Note that $h = 4 < p < 6 = 2(h - 1)$.

$$s_\beta s_\alpha \cdot 0 + s_\beta s_\alpha \cdot 0 = s_\alpha s_\beta \cdot 0 + 5(-\beta)$$

Corresponds to squaring an element in $H^2(n, \mathbb{F}_5)$ of weight $s_\beta s_\alpha \cdot 0$.
Problem

What happens for \(h < p < 2(h - 1) \)?

Example (Type \(B_2, p = 5 \))

Let \(\alpha, \beta \) be simple with \(\alpha \) long. Note that \(h = 4 < p < 6 = 2(h - 1) \).

\[
s_\beta s_\alpha \cdot 0 + s_\beta s_\alpha \cdot 0 = s_\alpha s_\beta \cdot 0 + 5(-\beta)
\]

Corresponds to squaring an element in \(H^2(n, \mathbb{F}_5) \) of weight \(s_\beta s_\alpha \cdot 0 \).

Though all elements of \(H^\bullet(n, \mathbb{F}_5) \) square to zero, we have verified using MAGMA that this vector does NOT square to zero in \(H^\bullet(U_1, \mathbb{F}_5) \). So the ring isomorphism need not hold for \(h < p < 2(h - 1) \).
Can we generalize the cohomology ring calculation to quantum groups (i.e., quantized enveloping algebras) at a root of unity?
Problem
Can we generalize the cohomology ring calculation to quantum groups (i.e., quantized enveloping algebras) at a root of unity?

Can we also generalize to quantum groups another calculation of F-P:

Theorem (Friedlander–Parshall, 1986)
Suppose \(\lambda \in C_\mathbb{Z} \). Then, as a graded \(T \)-module and as a \(H^\bullet(B_1, k) \)-module,

\[
H^\bullet(U_1, L(\lambda)) \cong S^\bullet(n^*)^{(1)} \otimes H^\bullet(u, L(\lambda)).
\]
Let q be an indeterminate. Set $\mathfrak{g} = \text{Lie}(G)$.

Definition

The quantized enveloping algebra $\mathcal{U}_q(\mathfrak{g})$ is a $\mathbb{C}(q)$-algebra defined by generators and relations similar to those defining the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$.
Let $\zeta \in \mathbb{C}$ be a primitive ℓ-th root of unity, $A = \mathbb{Z}[q, q^{-1}]$.

<table>
<thead>
<tr>
<th>Quantum</th>
<th>Classical</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{U}_q(g)$</td>
<td>Quantized env alg</td>
</tr>
<tr>
<td>$\mathcal{U}(g)$</td>
<td>UEA of g</td>
</tr>
</tbody>
</table>
Let $\zeta \in \mathbb{C}$ be a primitive ℓ-th root of unity, $A = \mathbb{Z}[q, q^{-1}]$.

<table>
<thead>
<tr>
<th>Quantum</th>
<th>Classical</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{U}_q(\mathfrak{g})$</td>
<td>Quantized env alg</td>
</tr>
<tr>
<td>$\mathcal{U}_\mathbb{A}(\mathfrak{g})$</td>
<td>DCK integral form</td>
</tr>
<tr>
<td>$\mathcal{U}(\mathfrak{g})$</td>
<td>UEA of \mathfrak{g}</td>
</tr>
<tr>
<td>$\mathcal{U}_\mathbb{Z}(\mathfrak{g})$</td>
<td>\mathbb{Z}-span of PBW basis</td>
</tr>
</tbody>
</table>
Let $\zeta \in \mathbb{C}$ be a primitive ℓ-th root of unity, $A = \mathbb{Z}[q, q^{-1}]$.

<table>
<thead>
<tr>
<th>Quantum</th>
<th>Classical</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{U}_q(g)$</td>
<td>$\mathcal{U}(g)$</td>
</tr>
<tr>
<td>Quantized env alg</td>
<td>UEA of g</td>
</tr>
<tr>
<td>$\mathcal{U}_A(g)$</td>
<td>$\mathcal{U}_\mathbb{Z}(g)$</td>
</tr>
<tr>
<td>DCK integral form</td>
<td>\mathbb{Z}-span of PBW basis</td>
</tr>
<tr>
<td>$\mathcal{U}_\zeta(g)$</td>
<td>$\mathcal{U}(g)$</td>
</tr>
<tr>
<td>DCK quantum alg at $\sqrt{1}$</td>
<td>UEA in characteristic p</td>
</tr>
</tbody>
</table>

Christopher Drupieski (UGA)
Cohomology rings
April 11, 2010
13 / 16
Let $\zeta \in \mathbb{C}$ be a primitive ℓ-th root of unity, $A = \mathbb{Z}[q, q^{-1}]$.

<table>
<thead>
<tr>
<th>Quantum</th>
<th>Classical</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{U}_q(\mathfrak{g})$</td>
<td>Quantized env alg</td>
</tr>
<tr>
<td>$\mathcal{U}_A(\mathfrak{g})$</td>
<td>DCK integral form</td>
</tr>
<tr>
<td>$\mathcal{U}_\zeta(\mathfrak{g})$</td>
<td>DCK quantum alg at $\sqrt{1}$</td>
</tr>
<tr>
<td>$u_\zeta(\mathfrak{g})$</td>
<td>small quantum group</td>
</tr>
</tbody>
</table>
Let $\zeta \in \mathbb{C}$ be a primitive ℓ-th root of unity, $A = \mathbb{Z}[q, q^{-1}]$.

<table>
<thead>
<tr>
<th>Quantum</th>
<th>Classical</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{U}_q(g)$</td>
<td>$\mathcal{U}(g)$</td>
</tr>
<tr>
<td>Quantized env alg</td>
<td>UEA of g</td>
</tr>
<tr>
<td>$\mathcal{U}_A(g)$</td>
<td>$\mathcal{U}_\mathbb{Z}(g)$</td>
</tr>
<tr>
<td>DCK integral form</td>
<td>\mathbb{Z}-span of PBW basis</td>
</tr>
<tr>
<td>$\mathcal{U}_\zeta(g)$</td>
<td>$\mathcal{U}(g)$</td>
</tr>
<tr>
<td>DCK quantum alg at $\sqrt{\ell}$</td>
<td>UEA in characteristic p</td>
</tr>
<tr>
<td>$u_\zeta(g)$</td>
<td>$u(g)$</td>
</tr>
<tr>
<td>small quantum group</td>
<td>restricted enveloping alg</td>
</tr>
<tr>
<td>$L_\zeta(\lambda)$</td>
<td>$L(\lambda)$</td>
</tr>
<tr>
<td>simple $u_\zeta(g)$-module</td>
<td>simple $u(g)$-module</td>
</tr>
</tbody>
</table>
Let $\zeta \in \mathbb{C}$ be a primitive ℓ-th root of unity, $A = \mathbb{Z}[q, q^{-1}]$.

<table>
<thead>
<tr>
<th>Quantum</th>
<th>Classical</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{U}_q(g)$</td>
<td>Quantized env alg</td>
</tr>
<tr>
<td>$\mathcal{U}_A(g)$</td>
<td>DCK integral form</td>
</tr>
<tr>
<td>$\mathcal{U}_\zeta(g)$</td>
<td>DCK quantum alg at $\sqrt[\ell]{1}$</td>
</tr>
<tr>
<td>$u_\zeta(g)$</td>
<td>small quantum group</td>
</tr>
<tr>
<td>$L^\zeta(\lambda)$</td>
<td>simple $u_\zeta(g)$-module</td>
</tr>
</tbody>
</table>

- If $p > h$, $u(n) \cong \mathcal{U}(n) // Z$, where Z is generated by $\{ E^{p}_{\alpha} : \alpha \in \Phi^+ \}$.
Let $\zeta \in \mathbb{C}$ be a primitive ℓ-th root of unity, $A = \mathbb{Z}[q, q^{-1}]$.

<table>
<thead>
<tr>
<th>Quantum</th>
<th>Classical</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{U}_q(g)$</td>
<td>Quantized env alg</td>
</tr>
<tr>
<td>$\mathcal{U}_A(g)$</td>
<td>$\mathcal{U}(g)$</td>
</tr>
<tr>
<td>$\mathcal{U}_\zeta(g)$</td>
<td>$\mathcal{U}_Z(g)$</td>
</tr>
<tr>
<td>$u_\zeta(g)$</td>
<td>$u(g)$</td>
</tr>
<tr>
<td>$L_\zeta(\lambda)$</td>
<td>$L(\lambda)$</td>
</tr>
</tbody>
</table>

- If $p > h$, $u(n) \cong \mathcal{U}(n) / \mathbb{Z}$, where \mathbb{Z} is generated by $\{E^p_\alpha : \alpha \in \Phi^+\}$.
- $u_\zeta(n) \cong \mathcal{U}_\zeta(n) / \mathbb{Z}$, where \mathbb{Z} is generated by $\{E^\ell_\alpha : \alpha \in \Phi^+\}$.
We do have the LHS spectral sequence:

\[E^{i, j} = H^i(u_\lambda(n), H^j(Z, L_\lambda(\lambda))) \Rightarrow H^{i+j}(U_\lambda(n), L_\lambda(\lambda)) \]

Have a computation for the target:

Theorem (UGA VIGRE Algebra Group, 2008)

Suppose \(\ell > h \) and \(\lambda \in C_{\mathbb{Z}} \). Then

\[H^\bullet(U_\lambda(n), L_\lambda(\lambda)) \sim = \bigoplus_{w \in W} w \cdot \lambda. \]

The Borel subalgebras \(u_\lambda(b) \sim = u_0 \otimes u_\lambda(n) \) and \(U_\lambda(b) \sim = u_0 \otimes U_\lambda(n) \) are Hopf algebras, as is \(Z \subset U_\lambda(b) \).
No analogue of the F-P spectral sequence for quantum groups. We do have the LHS spectral sequence:

\[E_2^{i,j}(L^\zeta(\lambda)) = H^i(u_\zeta(n), H^j(Z, L^\zeta(\lambda))) \Rightarrow H^{i+j}(U_\zeta(n), L^\zeta(\lambda)) \]
1. No analogue of the F-P spectral sequence for quantum groups. We do have the LHS spectral sequence:

\[E_2^{i,j}(L^\zeta(\lambda)) = H^i(u^\zeta(n), H^j(Z, L^\zeta(\lambda))) \Rightarrow H^{i+j}(U^\zeta(n), L^\zeta(\lambda)) \]

2. Have a computation for the target:

Theorem (UGA VIGRE Algebra Group, 2008)

Suppose \(\ell > h \) and \(\lambda \in C_{\mathbb{Z}} \). Then \(H^\bullet(U^\zeta(n), L^\zeta(\lambda)) \cong \bigoplus_{w \in W} w \cdot \lambda \).
No analogue of the F-P spectral sequence for quantum groups. We do have the LHS spectral sequence:

\[E_2^{i,j}(L^\zeta(\lambda)) = H^i(u^\zeta(n), H^j(Z, L^\zeta(\lambda))) \Rightarrow H^{i+j}(U^\zeta(n), L^\zeta(\lambda)) \]

Have a computation for the target:

Theorem (UGA VIGRE Algebra Group, 2008)

*Suppose \(\ell > h \) and \(\lambda \in C_Z \). Then \(H^\bullet(U^\zeta(n), L^\zeta(\lambda)) \cong \bigoplus_{w \in W} w \cdot \lambda. \)

\(U^\zeta(n) \) and \(u^\zeta(n) \) are not Hopf algebras, so we don’t automatically have nice product structures on the LHS spectral sequence.
1. No analogue of the F-P spectral sequence for quantum groups. We do have the LHS spectral sequence:

\[E_2^{i,j}(L^\lambda) = H^i(u^\lambda(n), H^j(Z, L^\lambda)) \Rightarrow H^{i+j}(U^\lambda(n), L^\lambda) \]

2. Have a computation for the target:

Theorem (UGA VIGRE Algebra Group, 2008)

Suppose \(\ell > h \) and \(\lambda \in C_Z \). Then \(H^\bullet(U^\lambda(n), L^\lambda) \cong \bigoplus_{w \in W} w \cdot \lambda \).

3. \(U^\lambda(n) \) and \(u^\lambda(n) \) are not Hopf algebras, so we don’t automatically have nice product structures on the LHS spectral sequence.

4. The Borel subalgebras \(u^\lambda(b) \cong u^0_\lambda \otimes u^\lambda(n) \) and \(U^\lambda(b) \cong u^0_\lambda \otimes U^\lambda(n) \) are Hopf algebras, as is \(Z \subset U^\lambda(b) \).
Work one u_ζ^0-weight space at a time.

$$\bigoplus_{\mu \in X} H^\bullet(u_\zeta(n), L_\zeta^{\lambda}(\mu))_{w \cdot \lambda + \ell \mu} \cong H^\bullet(u_\zeta(b), L_\zeta^{\lambda} \otimes -w \cdot \lambda).$$

$$\bigoplus_{\mu \in X} H^\bullet(u_\zeta(n), L_\zeta^{\lambda}(\mu))_{w \cdot \lambda + \ell \mu} \cong H^\bullet(u_\zeta(b), L_\zeta^{\lambda} \otimes -w \cdot \lambda).$$
Work one u^0_ζ-weight space at a time.

$$\bigoplus_{\mu \in \mathcal{X}} H^\bullet(\mathcal{U}_\zeta(n), L^\zeta(\lambda))_{w \cdot \lambda + \ell \mu} \cong H^\bullet(\mathcal{U}_\zeta(b), L^\zeta(\lambda) \otimes -w \cdot \lambda)$$

$$\bigoplus_{\mu \in \mathcal{X}} H^\bullet(u^\zeta(n), L^\zeta(\lambda))_{w \cdot \lambda + \ell \mu} \cong H^\bullet(u^\zeta(b), L^\zeta(\lambda) \otimes -w \cdot \lambda)$$

LHS Spectral sequence for the Borel subalgebras:

$$E_2^{i,j} = H^i(u^\zeta(b), H^j(Z, L^\zeta(\lambda) \otimes -w \cdot \lambda) \Rightarrow H^{i+j}(\mathcal{U}_\zeta(b), L^\zeta(\lambda) \otimes -w \cdot \lambda).$$

This LHS spectral sequence is compatible with cup products.
Theorem (DNN)

Suppose \(\ell \) is odd, coprime to 3 if \(\Phi \) has type \(G_2 \), and \(\ell > 2(h - 1) \). Then there exists a ring isomorphism

\[
H^\bullet(u_\zeta(n), \mathbb{C}) \cong H^\bullet(u_\zeta(b), \mathbb{C}) \otimes H^\bullet(U_\zeta(n), \mathbb{C}) \\
\cong S^\bullet(n^*)(1) \otimes H^\bullet(U_\zeta(n), \mathbb{C}).
\]
Theorem (DNN)

Suppose \(\ell \) is odd, coprime to 3 if \(\Phi \) has type \(G_2 \), and \(\ell > 2(h - 1) \). Then there exists a ring isomorphism

\[
H^\bullet(u_\zeta(n), \mathbb{C}) \cong H^\bullet(u_\zeta(b), \mathbb{C}) \otimes H^\bullet(U_\zeta(n), \mathbb{C}) \\
\cong S^\bullet(n^*)^{(1)} \otimes H^\bullet(U_\zeta(n), \mathbb{C}).
\]

Theorem (DNN)

Suppose \(\ell \) is odd, coprime to 3 if \(\Phi \) has type \(G_2 \). Suppose \(\lambda \in \mathbb{C}^\mathbb{Z} \). Then

\[
H^\bullet(u_\zeta(n), L_\zeta(\lambda)) \cong H^\bullet(u_\zeta(b), \mathbb{C}) \otimes H^\bullet(U_\zeta(n), L^\zeta(\lambda)) \\
\cong S^\bullet(n^*)^{(1)} \otimes H^\bullet(U_\zeta(n), L^\zeta(\lambda))
\]

as a weight module and as a module for \(H^\bullet(u_\zeta(b), \mathbb{C}) \).