
PHY 475
Homework 5 solutions

(Due by noon on Thursday, May 31, 2012)

1. Answer the following questions.

(a) Show that the Doppler effect implies that an observer moving with a nonrelativistic velocity
~v through an isotropic CMB would see a temperature dipole anisotropy of

δT

T
(θ) =

(v

c

)

cos θ

where θ is the angle from the direction of motion.

Solution:

The non-relativistic Doppler effect is given by

f ′ = f

[

1−
n̂ · ~v
c

]

where ~v is the relative velocity between source and observer, and n̂ is a unit vector along
the direction of motion.

Since θ is the angle from the direction of motion, we have n̂ · ~v = v cos θ, so that the above
equation becomes

f ′ = f
[

1−
(v

c

)

cos θ
]

Now, since temperature T scales as the inverse of the scale factor a, and a ∝ λ, whereas
λ ∝ 1/f , we get δT/T = δf/f .

Therefore,
δT

T
=

δf

f
=

f − f ′

f
=

(v

c

)

cos θ −→ proved

(b) Smarty P. Antz tells you that recombination took place when the mean energy per CMB
photon fell below the ionization energy of hydrogen (13.6 eV). A quick calculation shows you
that this would correspond to a temperature of 60,000 K. Yet we know that recombination
took place long afterward, when the Universe had cooled down to 3800 K. Why was this the
case (i.e., what is wrong with Smarty P. Antz’s reasoning)?

Solution: Even though the mean energy per CMB photon is below the ionization energy,
there are still a large number of photons in the high energy tail of the distribution, more
so because there are almost a billion photons for every baryon. This high energy tail of
photons continues to break up any hydrogen atoms that form, until the Universe has cooled
to a much lower temperature.
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2. When the Universe was fully ionized, photons interacted primarily with electrons via Thom-
son scattering, for which the cross-section is σe = 6.65× 10−29 m2.

(a) Find the average distance traveled by a photon between collisions, also known as the mean
free path: λmfp = 1/neσe, at the time of radiation-matter equality when arm ≈ 3× 10−4.

Solution:

When fully ionized, ne ≈ nbary. But nbary ∝ 1/a3, so we get nbary = nbary/a
3, assuming

a0 = 1.

Therefore, with a = arm at the time of radiation-matter equality, we get

λmfp =
1

(

nbary/a3rm

)

σe

=
a3rm

nbary σe
=

(3× 10−4)3

(0.22 m−3)(6.65× 10−29 m2)
= 1.8× 1018 m

(b) The Friedmann equation for a radiation-dominated flat universe is

H2

H2
0

=
Ωr,0

a4

Use this to find the Hubble parameter at the time of radiation-matter equality when arm ≈
3× 10−4. Take the value of Ωr,0 from the Benchmark model.

Solution:

Hrm =
H0

√

Ωr,0

a2rm
=

(70 km s−1 Mpc−1)
√
8.4× 10−5

(3× 10−4)2
= 71× 105 km s−1 Mpc−1

(c) The photons remain coupled to the electrons as long as their mean free path λmfp is shorter
than the Hubble distance c/H . Verify that they are coupled at the time of radiation-matter
equality.

Solution:

Converting Hrm to SI units, we find c/Hrm = 1.3× 1021 m.

Therefore, clearly

λrm

(

= 1.8× 1018 m
)

<
c

Hrm

(

= 1.3× 1021 m
)

and so the photons are coupled to the electrons at the time of radiation-matter equality.
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3. Given that the Universe is described by the Benchmark model, and the redshift of the last
scattering surface is zls = 1100,

(a) Find the angular diameter distance to the surface of last scattering.

Solution:

From equation (6.42) in Lecture 11, we know that the horizon distance in the Benchmark
model is given by

dhor(t0) = 3.24
c

H0

= 14, 000 Mpc

And, from equation (7.41), we know that as z → ∞, the angular distance

dA ≃
dhor(t0)

z

Therefore, the angular distance to the surface of last scattering will be

dA ≃
dhor(t0)

zls
=

14, 000 Mpc

1100
= 13 Mpc

(b) Find the luminosity distance to the surface of last scattering.

Solution:

From equation (7.37) in Lecture 12, we get

dL = dA

(

1 + z
)2

= 13 Mpc
(

1 + 1100
)2

= 1.6× 107 Mpc

(c) Find the proper distance dp(t0) to the surface of last scattering.

Solution:

From equation (3.28) in Lecture 5, we get

dp(t0) = r

Meanwhile from equation (7.36) in Lecture 12, we get

dA =
Sκ(r)

1 + z
=

r

1 + z

because Sκ(r) = r in a flat universe, which is the case here since we’re assuming the Bench-
mark model.

Combining the two equations above, we get

dp(t0) = dA

(

1 + z
)

= 13 Mpc
(

1 + 1100
)

≈ 14,000 Mpc
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4. Big Bang Nucleosynthesis of 4He was a race against time to bind neutrons before they
decayed to protons.

(a) First, prove that the maximum possible value of the primordial 4He fraction is

[

Yp

]

max
=

2f

1 + f

where f = nn/np ≤ 1 is the neutron-proton ratio at the time of nucleosynthesis.

Solution:

First, since f = nn/np, we get nn = fnp.

Now, we get the maximum 4He fraction if all available nn neutrons bind to protons. Since
there are 2 neutrons (and 2 protons) in one 4He nucleus, this implies that we would get
nn/2 nuclei of 4He.

Furthermore, since one 4He nucleus has a mass of 4mp, where mp is the mass of a proton,
nn/2 such nuclei will have a mass of (nn/2) 4mp. We are assuming mp = mn.

And, since we have a total of (nn+np) neutrons and protons, their mass will be (nn+np)mp.

From the above considerations, we get

[

Yp

]

max
=

(nn/2) 4mp

(nn + np)mp
=

2nn

nn + np
=

2(fnp)

fnp + np

Therefore, canceling common terms and rearranging, we get

[

Yp

]

max
=

2f

1 + f

(b) Assuming that the neutron-proton ratio remained constant at f = nn/np = 1/5 after freeze-
out, and that all available neutrons were incorporated into 4He, find the value of [Yp]max.

Solution: For f = 1/5, we get

[

Yp

]

max
=

2f

1 + f
=

2(1/5)

1 + 1/5
=

2/5

6/5
=

2

6
=

1

3

Therefore, we get

[

Yp

]

max
= 0.33
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(c) In reality, [Yp]max was less than this value because some of the free neutrons decayed into
protons, thereby decreasing the number of neutrons available to combine with protons to
form 4He.

Show that if nucleosynthesis starts after a time delay of tnuc, neutron decay makes the
neutron-to-proton ratio decrease from its freeze-out value of nn/np = 1/5 to

nnf

npf
=

exp (−tnuc/τn)

5 +
[

1− exp (−tnuc/τn)
]

where τn is the decay time of the neutron.

Solution:

At freeze-out, we have nni/npi = 1/5, so npi = 5nni.

Given that if you start out with a population of free neutrons nni, the number of free neutrons
remaining after time tnuc will be

nnf = nni exp

(

−
tnuc
τn

)

The remaining neutrons become protons, so the number of protons after time tnuc is

npf = npi +
[

nni − nnf

]

Putting npi = 5nni and the expression for nnf into this expression, we get

npf = 5nni +
[

nni − nni exp(−tnuc/τn)
]

and this may be written as

npf = nni

{

5 +
[

1− exp(−tnuc/τn)
]}

From the expressions above, we obtain

nnf

npf
=

nni exp(−tnuc/τn)

nni

{

5 +
[

1− exp(−tnuc/τn)
]}

Therefore, we get the desired expression:

nnf

npf
=

exp (−tnuc/τn)

5 +
[

1− exp (−tnuc/τn)
]
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(d) As a result of the process described in part (c), find the neutron-proton ratio fnew = nnf/npf ,
and the corresponding value of [Yp]max, if nucleosynthesis starts after a delay of tnuc = 200
s, and the decay time of the neutron is τn = 890 s. Assume that all available neutrons (that
haven’t decayed) are incorporated into 4He nuclei.

Solution:

Given tnuc = 200 s, and τn = 890s, we get

fnew =
nnf

npf
=

exp (−200/890)

5 +
[

1− exp (−200/890)
] = 0.15

and

New
[

Yp

]

max
=

2fnew
1 + fnew

=
2(0.15)

1 + 0.15
= 0.26

(e) Suppose, instead, that the neutron decay time were τn = 89 s, with all other physical
parameters unchanged (including that we still have tnuc = 200 s). Calculate [Yp]max, again
assuming that all available neutrons are incorporated into 4He nuclei.

Solution:

With tnuc = 200 s, and a smaller τn = 89s, we get

fnew =
nnf

npf
=

exp (−200/89)

5 +
[

1− exp (−200/89)
] = 0.018

and

New
[

Yp

]

max
=

2fnew
1 + fnew

=
2(0.018)

1 + 0.018
= 0.04

This makes sense — the neutrons decay faster, so there are fewer neutrons left to form 4He,
so the maximum 4He fraction is smaller.

Continued on the next page . . .
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5. Consider the inflaton field
V (φ) = Aφ4

Equation (11.53) can be used to find when the slow roll condition breaks down by setting

(

EP

V

dV

dφ

)2

∼ 1

where EP = (~c5/G)1/2 is the Planck energy.

(a) Use the limiting condition given above to find the value of φ at which the slow roll condi-
tions break down; this marks the end of the period of inflation. Leave your answer as an
expression, don’t substitute numerical values.

Solution:

Setting
dV

dφ
= 4Aφ3

in the expression
E2

P

V 2

(

dV

dφ

)2

∼ 1

we get

~c5/G

(Aφ4)2

(

4Aφ3
)2

∼ 1

which works out to
~c5(16)φ6

Gφ8
∼ 1

or
16~c5

G
∼

φ8

φ6

Therefore, we get

φ ∼
(

16~c5

G

)1/2

We can either leave it in this form, or simplify by inserting EP = (~c5/G)1/2 to get

φ ∼
(

16~c5

G

)1/2

∼ 4EP
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(b) Find the number of e-foldings N .

Solution:

Equation (11.48):

3Hφ̇ = −~c3
dV

dφ

with dV/dφ = 4Aφ3 gives

−
3H

~c3
dφ

(4Aφ3)
= dt

Then, we get

N = ln

[

a(tf )

a(ti)

]

=

∫ tf

ti

H(t) dt

=

∫ φf

φi

H

[

−
3H

~c3
dφ

(4Aφ3)

]

=

∫ φf

φi

−3H2

4A~c3φ3
dφ

=

∫ φf

φi

−3

4A~c3φ3

[

8πGV

3c2

]

dφ

where we have put H = (8πGV/3c2)1/2.

Putting V = Aφ4, and canceling terms we get

N = −
2πG

~c5

∫ φf

φi

φ dφ = −
2πG

~c5

[

φ2

2

]φf

φi

Therefore

N = −
πG

~c5

[

φ2
f − φ2

i

]

We can leave it in this form, or use the fact that inflation ends of φf = 4EP , together with
E2

P = ~c5/G and write this as

N =
π

E2
P

[

φ2
i − φ2

f

]

= π

[

φ2

i

E2

P

− 16

]
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